A Coherence Criterion for Fréchet Modules
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1 Introduction

In the literature, one finds essentially two general criteria to get the finiteness of the
cohomology groups of complexes of locally convex topological vector spaces. They are

(a) If w : G — F" is a compact morphism of complexes of Fréchet spaces then
dim H*(F") < 400 for any k € Z such that H*(u’) is surjective.

(b) If w : G° — F" is a continuous morphism between a complex of (DFS) spaces
and a complex of Fréchet spaces then dim H*(F") < +oo for any k € Z such that
H*(u) is surjective.

The first of these criterion was used by Cartan-Serre [3] in order to get the finiteness
of the cohomology groups of a compact complex analytic manifold with values in a
coherent analytic sheaf. It was also used by Kashiwara [5] to get the constructibility
of the solution complex associated to a holonomic differential module. The second
criterion was proved by Bony-Schapira in [2]. Both are extensions of the Schwartz
compact perturbation theorem.

In 1973, Houzel [4] has extended criterion (a) to complexes of modules over some
sheaf of bornological algebras A; the finiteness of the cohomology groups being replaced
by the pseudo-coherence of the complex in the sense of SGA6 [1] (this is the only
cohomological notion of finiteness which works well for a non necessarily coherent base
algebra).

More precisely, Houzel assumes that A is a sheaf of bornological algebras which is
complete and multiplicatively convex. The fibers of A are also assumed to be separated
and to possess the homomorphism property. Then, working with complexes null in
degree > b, he shows that in order to get the a-pseudocoherence of a complex M of
complete bornological A-modules it is sufficient to find a sequence of r > b —a + 1
complexes of complete bornological A-modules and bounded a-quasi-isomorphisms

My = My e o M
such that u; is A-nuclear in degree > a and that the fibers of M¥ are separated and
possess the homomorphism property.

Using this theorem, Houzel shows that it is possible to give a simple proof of
Grauert’s coherence theorem. This theorem has also been used by Houzel and Schapira
to give a criterion for the coherence of direct images of a coherent D-module.

99



In [7], we found a situation where Houzel’s result was not sufficient to solve the
problem. What was needed was a generalization of the criterion (b) above. It is that
extension which is the subject of this paper. It is contained in the following theorem.

Theorem 1.1 Let X be a topological space with countable basis endowed with a multi-
plicatively convex sheaf of Fréchet algebras A. Let (M;);ewn, M be complexes of Fréchet
A-modules null in degree > b, let w11, : M; — M1 be A-nuclear morphisms and
let
u: lim M; — M
ieN

be a continuous morphism of A-modules. Assume that u is an a-quasi-isomorphism
and that any x € X has a fundamental system of open neighborhoods on which M and
each M; has enough sections. Then the complex M is a-pseudo-coherent over A.

We refer the reader to §4 for definitions of the various concepts used in the previous
statement. Note that the main difference with Houzel’s results is that we only need one
quasi-isomorphism to get the pseudo-coherence. This is important since, in practice, it
is much more difficult to build quasi-isomorphisms than nuclear maps. For example,
if X, S are complex analytic manifolds and U CC V are two Stein open subsets of X
then the restriction map

7T*<OU><S) - 7T*<OV><S)

is Og-nuclear.

The proof of this theorem will be found in §4. It has essentially the same structure
as the proof of Houzel’s finiteness theorem [4]. Despite our much weaker hypothesis,
a proper use of Baire’s theorem allows us to get the pseudo-coherence of the target
complex.

2 Nuclear Perturbation Theorem

The basic finiteness tool used in this paper is Houzel’s nuclear perturbation theorem.
For the reader’s convenience, we will give a quick proof of this result for Fréchet modules
over a multiplicatively convex Fréchet algebra. We will avoid Houzel’s bornological point
of view since it is not important for our application (we are in a Fréchet framework).
To fix the vocabulary, we first give some definitions.

Definition 2.1 A Fréchet algebra is a Fréchet space endowed with a continuous -
bilinear multiplication
T AXA— A

which is associative and admits a unit. We do not assume A commutative.
A Fréchet algebra is multiplicatively convez if any bounded subset B of A is absorbed
by an absolutely convex subset of A stable for the multiplication law.
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A (left) Fréchet module over a Fréchet algebra A is a Fréchet space M endowed with
a structure of (left) A-module in such way that the action

AXM—M

is continuous.

A morphism of Fréchet A-modules is a continuous A-linear map. We denote by
LA(FE, F) the set of morphisms of the A-module E to the A-module F'. This is naturally
a @-vector space. We turn it into a locally convex topological vector space by endowing
it with the semi-norms

qp(u) = Sup q(u(zr))

associated with the bounded subsets B of E and the semi-norms ¢ of F. With this
topology La(E, F') is complete.
A morphism u : E — F between two Fréchet A-modules is A-nuclear if

u() = f A €™ ) f

where
e )\, is a summable sequence in C,
e ¢ is a bounded sequence in L(E, A),
e f,, is a bounded sequence in F'.

We denote by N4(E, F') the C-vector space of A-nuclear morphisms from E to F'.
A morphism u : ¥ — F between two Fréchet A-modules is A-finite if

where
eV ....eP € La(E,A)

fo,.- fp € F
In the rest of this section, A denotes a Fréchet algebra.
Proposition 2.2 Let u : E — F, v : FF — G be two morphisms of Fréchet A-

modules. Assume that either u or v is A-nuclear then so is v o u. Hence Na(E, F) is
naturally a functor in E and F.

Proof: Obvious. O

Proposition 2.3 [Lifting of nuclear morphisms]

Let w : E — F, v : G — F be two morphisms of Fréchet A-modules. Assume u
is surjective and v is A-nuclear. Then there is a morphism w : G — FE such that
uow = .
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Proof: Since v is A-nuclear one can find sequences A\, € €, €™ € L,(G,A), fm € F
such that Y07 [A\m| < 400, fin being bounded in F' and ™ being bounded in La(G, A)
in such a way that

v(z) = JFZO:Z Am (€™, ) fin.

Lemma 2.5 below shows that one can even assume f,, converges to 0 in F. Since u
is surjective it is a strict morphism and one can find by Lemma 2.4 below a sequence
em € E converging to 0 and such that u(e,,) = fn. Let us define w : G — E by
setting

+oo
w(z) =Y An(e™ x)en.
m=0
Obviously w is A-nuclear and u o w = v as required. O

Lemma 2.4 Let u : E — F be a continuous T linear map between l.c.s. with a
countable basis of semi-norms. Then u is a strict epimorphism if and only if for any
sequence f,, of F' converging to 0 there exist a sequence e,, of E converging to 0 such
that u(em) = fm-

Proof:  The condition is necessary.

Assume f,,, converges to 0 in F. Let (V,,)men be a countable fundamental system
of absolutely convex neighborhoods of 0 such that

meN= VD Vi

Since u(V;;,) is a neighborhood of 0 in F" one can build a strictly increasing sequence of
natural numbers M, such that

For M), < m < Mj41 let us choose an e, € Vi such that f,, = u(e,). The sequence e,,
converges to 0 in F as required.

The condition is sufficient.

Let V be a neighborhood of 0 in E. We need to show that u(V') is a neighborhood
of 0 in F. If it is not the case there is a sequence f,, € F\u(V) which converges to 0
in F. Let e, be a sequence in E converging to 0 and such that u(e,,) = fm. There is
an integer M such that e,, € V for m > M. For such an M, fy; € u(v) and this is
impossible. O

Lemma 2.5 Let \,, be a sequence of complex numbers such that

| Am| < +00.

m=0
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Then, there is a sequence r,, of positive real numbers converging to 0 such that

+o00 1
> —[Anl < 4o0.
r

m=0 "M
Proof: There is a strictly increasing sequence M} of integers such that
+oo

S A <27,

m:Mk

Let us define 7, to be 27% if M, < m < M;,;. We have

Myy1—1

Yoo — Pl <27R

m:Mk m

Hence,
+o0o 1
Z _‘)\m‘ §2—k+2—k—1+...§2—k+1’
m:Mk m
and the conclusion follows. O

Proposition 2.6 Assume A is multiplicatively convex. Then, every A-nuclear endo-
morphism u : E — E of the Fréchet A-module F may be written as

u=u+u"
where v’ is A-finite and 1 — " is invertible in L4(E, E).
Proof:  Let .
u(z) = m; Am (€™, @) fm

with \,,, summable, e™ bounded in Ls(E, A), f., bounded in E. Since ™ is bounded in
La(E,A) and A is multiplicatively convex, there is a multiplicatively stable absolutely
convex subset By of A such that

{{e™, fn) :m,n € N} C uBy

where p is a positive real number. Let us define w, by setting

—+00
Uy = Z Am (€™, ) fin.
m=p

We have:
k +oo +o0o
up(;,;) — Z Z Ay, - Ay (€™, Y (€2 frn) - <emk’fmk_1>fmk_
mp=p m1=p
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Thus, for any semi-norm ¢ in £ and any bounded subset B of F, there is a constant C
such that

sup(ut(@)) < C( 3 )4

reB
+oo
for any p, k € IN. Choosing p such that Y |A,| = ¢ < 1, it follows that
m=p

+oo
> U
k=0

+o0o
converges in La(E, E) and (1 —w,) Y ul; = 1. The conclusion follows since
k=0
p—1
u= Z A (€™, ) fon + Up.
m=0

Theorem 2.7 [Nuclear perturbation]

Let w : F — F, v : E — F be two morphisms of Fréchet A-modules over a
multiplicatively convex Fréchet algebra A. Assume u is surjective and v is A-nuclear.
Then the A-module coker(u + v) is finitely generated.

Proof: Using Proposition 2.3, let us write —v as u o w where w : £ — FE is an
A-nuclear morphism. By the preceding proposition,

w = w/ + w//
where w' is A-finite and 1 — w” is invertible in L (E, E). We have
u+v=u—uow=uo(l—w)=uo(l—-w")—uow"

Of course u' = wo (1 —w”) is an epimorphism and v = v o w' is A-finite. Since they
induce the same morphism from E to coker(u + v), coker(u + v) is finitely generated
over A. O

3 Coherence over Fréchet Algebras

We will first consider the case where the base space X is reduced to a point and work
with Fréchet modules over a multiplicatively convex Fréchet algebra.
Let us recall the notion of pseudo-coherence introduced in SGA6 [1].

Definition 3.1 Let A be any ring.

A morphism v : E© — F" of complexes of A-modules is an a-quasi-isomorphism if
H%(u’) is an epimorphism and H*(u’) is an isomorphism for & > a. Equivalently, we
can ask that H*(cone(u)) = 0 for k > a.
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A complex of A-modules E" is perfect if it is quasi-isomorphic to a bounded complex
F" such that F* is a finite free A-module for every k € Z.

A complex of A-modules is a-pseudo-coherent if it is a-quasi-isomorphic to a perfect
complex.

One checks that if in a distinguished triangle of complexes of A-modules,

EF—F—_G—,
+1

E and G are a-pseudo-coherent, then so is F".

The global version of our coherence criterion is the following theorem.

Theorem 3.2 Let A be a multiplicatively convex Fréchet algebra. Assume (F});cn,
F" are complexes of Fréchet A-modules null in degree > b. Let u; 1, @ F;y — F;_| be
an A-nuclear morphism and let

w:lim F; — F
—
ieN
be a continuous morphism of A-modules. Assume u is an a-quasi-isomorphism. Then

F" is a-pseudo-coherent over A.

This result is a consequence of the two following lemmas.

Lemma 3.3 Under the assumptions and notations of the theorem, let ¢ €]a,b] and
assume H¥(F") =0 for k > c. Then

(i) For i > 0, there is an A-nuclear homotopy
h;: F; — F'[—1]
such that
v, = fl - d[—l] o) h, - h,[l] od
is zero in degrees > c.
(ii) He'(F") is an A-module of finite type.

Proof: (i) We will proceed by decreasing induction on ¢ (the case ¢ = b being clear).
For 7 > 0 there is an
hip1 s Fiy — F[=1]
such that
Vig1 = fiqn —d[=1] o hi y — hip1[l] od
is zero in degrees > c + 1.

We have

c c __ ,c+1 c _
d°ovj, = v} odi, =0.
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Thus, we get a morphism

c . c c

The map
c c . c c
Uit1 © fi-}—l,i B — 7

is A-nuclear since f7,; is A-nuclear.

The differential
dc—l . Fc—l 7

is a continuous epimorphism since H(F") = 0. Since both F*~! and Z°™! are Fréchet
A-modules there is an A-nuclear morphism

h': Ff — Fet
such that
ol = Vi1 © fit1
Let us set
WY =hoff, if k#c
and

c__ gc c /
h'y =hi0 i+1,i+h-

By construction the homotopy

B F, — F[—1]

(2

is A-nuclear, and

is zero in degrees > c.
(ii) Let us take i great enough so that there is an homotopy

hiyy = Fiyy — F[=1]
which is A-nuclear and such that
Vi1 = fix1 —d[~1] 0 hiy1 — hipa[1] o d
is zero in degrees > c. It is clear that v{}] induces a morphism

c—1 . -1 c—1
v FL — 2.
The arrow
c—1 o c—1 . Fc—l Zc—l
Vi1 © Jig1 - 4% —
is A-nuclear since fﬁfﬁi is A-nuclear.
Let us denote by

'LLi . Fc—2 o Fic_l _ Zc—l

106



the morphism defined by
u'(a,b) = d?(a) + %04:11 104:111<b)
Since H* *(vi41 0 fis1.4) = H'(f;), the assumptions show that
U im v’ = 27"
€N

Since Z¢' and all the F*~2 @ Ff ! are Fréchet A-modules, the conjunction of Baire’s
theorem and Banach’s homomorphism theorem shows that

imu' = Z¢7!

for some i € IN. The morphism u’ is thus an epimorphism, and, since u*(0,b) is A-
nuclear, the nuclear perturbation theorem shows that u’(a,0) has a finitely generated
cokernel. Hence H™'(F") = Z¢7!/im d°72 is finitely generated over A, and the proof is
complete. O

Lemma 3.4 Under the assumptions and the notations of the theorem, let ¢ € |a,b]
and assume H¥(F") =0 for k > c¢. Then F" is a-pseudo-coherent over A.

Proof:  We proceed by increasing induction on ¢ (the case ¢ = a being clear).
We know that H*~1(F") is finitely generated over A. Hence, there is an epimorphism

u'c A™ — HYF).
The morphism
lim HY(F}) — H(F)
ielN
is surjective. Hence, for ¢ > 0, we can find morphisms
v 2 A" — ZH(F)

which are compatible with the 1‘04:11,1‘ (i.e. 1‘04:11,1‘ ov; = vi41) and

v: A" — ZNF)
such that ff~' owv; = v. Moreover, we can ask that
Pe—r1ov =1

where p._1 : Z°Y(F) — H }(F") is the canonical projection.
This construction gives us an inductive system of morphisms of complexes of Fréchet
A-modules
w; : A" [—(c—1)] — F;

(2

and a morphism
w A" (c—1)] — F"
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such that w = f; o w; which induce an epimorphism
H Y w) : A™ — HHF).

It is clear that the mapping cones of w and w; are complexes of Fréchet A-modules null
in degrees > b, the transition maps

cone (w;) — cone (W;41)

induced by f;+1, being A-nuclear.
We get the following commutative diagram

A"[=(c=1)] — limF;, — limcone(w;) —>

ielN ieN i
! ! !
A"—(c-1)] — F —  cone(w) —

+1

where the lines are distinguished triangles. Since the first two vertical arrows are a-
quasi-isomorphisms, so is the third one. From the second line we get the exact sequence

H Y A™[—(c—1)]) — H Y F) — H *(cone (w)) — 0

and since u is surjective, H"!(cone (w)) = 0. Applying the induction hypothesis to
cone (w'), we see that it is an a-pseudo-coherent complex. Since A™[—(c—1)] is perfect,
the conclusion follows easily. O

4 Proof of Theorem 1.1

We will now extend the result established in the preceding section to the case of Fréchet
modules over a sheaf of Fréchet algebras. Since the proof follows the same lines as in
the absolute case, we shall give, in a few lemmas, the tools needed for the extension,
and leave most of the obvious translation process to the reader.

Let X be a topological space with countable basis.

Recall that a sheaf of Fréchet spaces F on X is simply a sheaf with values in
the category of Fréchet spaces and continuous linear maps. This means that for any
countable covering U of an open subset U of X, I'(U; F) is the topological kernel of the
usual Cech map

[ITV:;F)— [ T(Vnw;F).
veu V,Weu

A morphism of Fréchet sheaves on X is a usual morphism of sheaves of T-vector
spaces which is continuous on the sections.

A sheaf of Fréchet algebras A on X is a sheaf of Fréchet spaces endowed with a
(C-bilinear continuous multiplication

cAxA— A
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which is associative and admits a unit 1 € I'(X; A).

A sheaf of Fréchet algebras on X is multiplicatively convez if, for any open subset
U of X, any bounded subset B of I'(U; . A) and any x € X, we can find a neighborhood
V of z and a multiplicatively stable absolutely convex bounded subset B’ of I'(V; A)
absorbing Bjy.

A Fréchet module over a sheaf of Fréchet algebras A on X is a Fréchet sheaf F on
X endowed with a structure of A-module in such a way that the action map

i AXF — F

is continuous.

Let U be an open subset of X. A Fréchet module F over a sheaf of Fréchet algebras
A on X has enough sections on U if for any x € U and any f, € F, we may find a
neighborhood V' of x in X and

e )\, : a summable sequence of complex numbers,
e fn : abounded sequence in I'(U; F),

e a,, : a bounded sequence in T'(V; A),
such that f, = g, where g € I'(V; F) is defined by

g = i )\mam<fm)|V
m=0

A morphism of Fréchet modules over a sheaf of Fréchet algebras A on X is a mor-
phism of Fréchet sheaves which is .A-linear. We denote by L 4(E, F) the set of morphisms
from the Fréchet A-module £ to the Fréchet A-module F. It is naturally endowed with
a structure of locally convex topological vector space with the semi-norms

qp(u) = Sup q(uv(e))

where V' is an open subset of X, B a bounded subset of I'(V; £) and ¢ a semi-norm of
LV, F).

A morphism u : &€ — F between two Fréchet A-modules is A-nuclear if for any
x € X we can find an open neighborhood V' of x and

e )\, a summable sequence of complex numbers,
e ¢ a bounded sequence of L4, (&v, Av),

e f. a bounded sequence of I'(V; F),
such that .
u(s) = m; Am€"™ (8) fomjwr
for any open subset W C V and any s € I'(W, £). If in the preceding definition we use

only finite sequences, we get the notion of A-finite morphism.
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Lemma 4.1 Let u: £ — F be a morphism of Fréchet sheaves on X and let © € X.
Assume u, : £ — F, is surjective. Then any neighborhood U of x contains a
neighborhood V' such that

Viel(U;F) Jeel(V;€) fiv =u(e).

Proof:  Of course, we may assume U is open. Let (V,)men denote a countable funda-
mental system of open neighborhoods of x in U. For any m € IN consider the cartesian

square
I(Vi; &) — T(Vie; F)

T O Tlvm
Gm — (U F).

Um

By construction, G,, is a Fréchet space and the hypothesis implies that

U imu, =D(U;F).

meN

Hence, there is m € IN such that imw,, = I'(U; F). This relation gives us the requested
result. O

Using this lemma, the reader will easily check that in the sheaf version of Proposi-
tion 2.3, Proposition 2.6 and Theorem 2.7 the conclusions remain true locally.

Lemma 4.2 Let A be a sheaf of Fréchet algebras on X, and let
w:F—F  (ieN)
be a family of morphisms of Fréchet A-modules. Assume that

i€IN

Assume moreover that x € X has a fundamental system of neighborhoods on which
each F; has enough sections. Then, for any x € X, there is a neighborhood V' of x and
an integer i € IN such that

(i) = (Fo)w — Fiv

is a sheaf epimorphism.

Proof: Denote by V a fundamental system of open neighborhoods of x on which each
F; has enough sections. Notice that F has also enough sections on any V' € V.

Working as in the preceding lemma, it is easy to show that any U € )V contains a
V €V such that the map

is surjective for some ¢ € IN. Let W be an open subset of V' and assume
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e )\, is a summable sequence of complex numbers,
e a,, is a bounded sequence in I'(W; A),
e f, is a bounded sequence in I'(U; F).

Then, we can find a bounded sequence g,, € I'(V, F;) such that (f,,)v = wi(gm). Hence,

+00 1o
m=0 m=0

Combining this fact with the fact that F has enough sections on U, we see that
(ui)yw = (Fi)y — Fv
is a sheaf epimorphism. O

With the preceding lemmas at hand, we can prove Theorem 1.1 by working as in
the proof of Theorem 3.2 but in the context of sheaves. For the sake of brevity we leave
this straightforward rewriting to the reader.

5 An application to analytic geometry

In this section, we will give an example of application of our finiteness criterion in the
case of topological modules over the algebra Og of holomorphic functions on a complex
manifold S. This corollary is used in [7] to get the relative finiteness theorem for elliptic
pairs.

Let S be a complex analytic manifold. Recall that the sheaf Og of holomorphic
functions on S is a multiplicatively convex sheaf of Fréchet algebras over S (see [4]).
Also recall that if V' is a relatively compact open subset of a Stein open subset U of X,
then the restriction map

I'(U;0s) — T'(V; Os)

is C-nuclear. From this it follows easily that I'(U; Op) is a Fréchet nuclear (FN) space
and that T'(V, Og) is a dual Fréchet nuclear (DFN) space.

Following [6], an FN-free (resp. a DFN-free) Og-module is a module isomorphic to
E & Og for some Fréchet nuclear (resp. dual Fréchet nuclear) space E.

Corollary 5.1 Let M’ (resp. N°) be a complex of DFN-free (resp. FN-free) Og-
modules. Assume M and N~ are bounded from above and

is a continuous Og-linear quasi-isomorphism. Then M' and N~ have Og-coherent co-
homology.
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Proof: Let E be a (DFN)-space and set £ = E® Og. It is well-known that we can find
a countable inductive system (F,, fmn)new of Fréchet spaces with nuclear transition
maps such that

lim F,, = FE.

neN
Let us denote by f,, : F,, — E the projection to the limit. Since FE is separated, ker f,
is a Fréchet subspace of F;,, and it follows from the equality

ker f, = U ker fn

m>n

that ker f,, = ker f,,, for m > 0. The sheaf F,, = F},, @ Og is obviously a sheaf of Fréchet
modules over the Fréchet algebra Og and each transition map ¢,,, = f mn®idos is clearly
Ogs-nuclear. Using the maps ¢,, = f,, ® ido,, we get the isomorphism

lim F, = &.
—_—
nelN

Moreover, locally on S,
ker ¢, = ker ¢,,,,, for m > 0. (5.1)
Now, let E°, E' be two (DFN) spaces and consider a continuous Og-linear morphism
u: & — &
between the associated DFN-free Og-modules. As above,

E'=lim FY, &'=lim F.,
—_— —_—
nelN nelN

where (F2,¢0 ), (FL ¢l ) are inductive systems of FN-free Og-modules with Og-
nuclear transition maps. Let us fix n € IN. Working as in Lemma 4.1 it is easy to see
that for m > 0, there is a map wu,, : F — F! such that u o ¢, = ¢y, o u,. Hence,
locally, thanks to (5.1), it is possible to find a strictly increasing sequence k,, € IN and
a morphism

(un) : (F) — (F,)
of inductive systems such that h_n} Up = U.

melN
Finally, assume we have a complex £ of DFN-free Og-modules. Using the preceding
procedure and (5.1) one sees that it is possible to find an inductive system of complexes
of FN-free Og-modules (F;,, ¢;,,)new With Og-nuclear transition maps such that

lim F, ~ &'
nelN

The conclusion then follows easily from Theorem 1.1 by using the well-known fact that
FN-free Og-modules have enough sections on polydiscs. O
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