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1 Introduction

Let f : X −→ Y be a morphism of complex analytic manifolds, M a coherent module

over the ring DX of differential operators on X, F an IR-constructible object on X. In

this first paper, we give a criterion insuring that the derived direct images of the DX -

module F ⊗M are coherent DY -modules, and we prove related duality and Künneth

formulas. Part of these results were announced in [20, 21].

In [22], making full use of these results, we shall associate to (M,F ) a characteristic

class and show its compatibility with direct image, thus obtaining an index theorem

generalizing (in some sense) the Atiyah-Singer index theorem as well as its relative

version [1, 3].

Let us describe our results with more details, beginning with the non-relative case

for the sake of simplicity.

An elliptic pair on a complex analytic manifold X is the data of a coherent DX -

moduleM and an IR-constructible sheaf F on X (more precisely, objects of the derived

categories), these data satisfying the transversality condition

char(M) ∩ SS(F ) ⊂ T ∗XX. (1.1)

Here char(M) denotes the characteristic variety of M, SS(F ) the micro-support of F

(see [12]) and T ∗XX the zero section of the cotangent bundle T ∗X.

This notion unifies many classical situations. For example, if M is a coherent DX -

module, then the pair (M,CIX) is elliptic. If U is an open subset of X with smooth

boundary ∂U , the pair (M,CIU) is elliptic if and only if ∂U is non characteristic forM.

If X is the complexification of a real analytic manifold M , then (M,CIM ) is an elliptic

pair if and only if M is elliptic on M in the classical sense. If F is IR-constructible

on X, then (OX ,F ) is an elliptic pair. If G is a coherent OX-module, we can associate

to it the coherent DX -module G ⊗OX DX , and the results obtained for the elliptic pair

(G ⊗OX DX ,CIX) will give similar results for G. See §8 for a more detailed discussion.

If f : X −→ Y is a morphism of complex analytic manifolds, we generalize the

preceding definition and introduce the notion of an f -elliptic pair, replacing in (1.1)

char(M) by charf (M), the f -characteristic variety of M (this set was already defined

in [19] when f is smooth).

The main results of this paper assert that if the pair (M,F ) is f -elliptic, f is proper

on supp(M) ∩ supp(F ) and M is endowed with a good filtration, then:

1) the direct image (in the sense of D-modules) f
!
(M⊗ F ) has DY -coherent coho-

mology,

2) the duality morphism

f
!
(D′F ⊗DXM) −→ DY f !

(M⊗ F )

is an isomorphism (here, D denotes the dualizing functor for D-modules and D′

is the simple dual for sheaves),
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3) there is a Künneth formula for elliptic pairs,

4) direct image commutes with microlocalization.

See Theorem 4.2, Theorem 5.15, Theorem 6.7 and Theorem 7.5 below for more details.

In fact, we obtain these results in a relative situation over a smooth complex manifold

S, working with the rings of relative differential operators. This relative setting makes

notations a little heavy but it gives us the freedom on the base manifold we need in

the proofs. Even if we want the final result over a base manifold reduced to a point, in

the proofs, we need to use other bases. So, it is better to work in a relative situation

everywhere. Moreover, the base change Theorem 6.5 is a natural way to get the Künneth

formula for elliptic pairs.

The idea of the proof of the finiteness result goes as follows.

First, using the graph embedding, we are reduced to prove the theorem for a closed

embedding (this one does not offer much difficulty) and for a projection. Then, using

the same trick as in [8], we reduce to the case Y = S. Then it remains to treat the case

where X = Z ×S, f : X −→ S is the second projection,M is a DX |S-module endowed

with a good filtration and F = G × CIS where G is an IR-constructible sheaf on Z. We

call it the projection case and we have to prove that in this case Rf!(F ⊗M⊗DX|S OX)

is OS coherent and OS dual to Rf!RHomDX|S (F ⊗M,ΩX |S[dX − dS ]).

For that purpose, we “trivialize” F by replacing it by a bounded complex of sheaves

of the form ⊕α CI Uα, the Uα’s being relatively compact subanalytic open subsets of X

satisfying the regularity condition:

D′(CI Uα) = CI Uα.

This construction is made possible thanks to the triangulation theorem and a result of

Kashiwara [11].

Next, we consider the relative realificationMIR|S of M obtained by adding the rel-

ative Cauchy-Riemann system to the DZ×S|S -module M and remark that since M is

assumed to be good we may always find a resolution of MIR|S by finite free DZIR×S|S-

modules near subsets of ZIR × S of the form K × ∆ where K is a compact subset

of Z and ∆ is an open polydisc in S. Moreover, since the solutions of the relative

Cauchy-Riemann system are the same in the sheaves of analytic functions, differen-

tiable functions or distributions with holomorphic parameters in S, we can compute

the holomorphic solutions ofM as the relative analytic, differentiable or distributional

solutions of MIR|S.

Now, the elliptic hypothesis insures the regularity theorem, that is, the isomorphism

F ⊗M⊗LDX|S OX
∼−→ RHom(D′F,M⊗LDX|S OX).

Applying Rf! to this isomorphism, we shall compute both sides using the trivialization

of F and a finite free resolution of the relative realification of M using analytic (resp.
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differentiable) solutions for the left (resp. right) hand side. This will give us a continuous

OS-linear quasi-isomorphism

R·1 ∼−→ R·2 (1.2)

where the components of the left (resp. right) hand side are DFN-free (resp. FN-free)

topological modules over the Fréchet algebra OS. The coherence then follows from an

extension of Houzel’s finiteness theorem [7] due to one of the authors [25]. Note that we

found no way of applying the original Houzel’s theorem in our situation since it is not

obvious to find the requested chain of nuclear quasi-isomorphisms for a given elliptic

pair.

The duality result is proved along the same lines once we have a clear construction

of the general duality morphism which makes it easy to check its compatibility with

the various simplifications and transformations used in the proof.

Note that the hypothesis that the D-module M is endowed with a good filtration

could be relaxed by using cohomological descent techniques as in [24]. However, doing

so would have cluttered the proof with unessential technical difficulties. This is why we

have preferred to stay to a simpler setting, sufficient for all known applications.

Our theorems provide a wide generalization of many classical results as shown in

the last section.

In particular, we obtain Grauert’s theorem [6] (in the smooth case) on direct images

of coherentO-modules and the corresponding duality result of Ramis-Ruget-Verdier [15,

16]. Since we treat D-modules, we are allowed to “realify” the manifolds by adding

the Cauchy-Riemann system to the module, and the rigidity of the complex situation

disappears, which makes the proofs much simpler and, may be, more natural than the

classical ones.

We also obtain Kashiwara’s theorem [9] on direct images of coherent D-modules as

well as its extension to the non-proper case of [8] (whose detailed proof had never been

published) and the corresponding duality result of [23, 24].

In the absolute case, we regain and generalize many well-known theorems concerning

regularity, finiteness or duality for D-modules (in particular those of [2, 13, 14]), see §8
for a more detailed discussion.

2 Elliptic pairs and regularity

2.1 Relative D-modules

In this section, we recall some basic facts about relative D-modules.

In the sequel, by an analytic manifold we mean a complex analytic manifold X of

finite dimension dX . Keeping the notations of [12], we denote by

τ : TX −→ X and π : T ∗X −→ X

the tangent and cotangent bundles of X.

8



To every complex analytic map f : X −→ Y , we associate the natural maps

TX −→
f ′

X ×Y TY −→
fτ

TY

T ∗X ←−
tf ′

X ×Y T ∗Y −→
fπ

T ∗Y.

Let S be an analytic manifold. A relative analytic manifold over S is an analytic

manifold X endowed with a surjective analytic submersion εX : X −→ S. We often use

the notation X|S for such an object when we want to avoid confusion on the basis and

set for short dX |S = dX − dS .

A morphism f : X|S −→ Y |S of relative analytic manifolds is the data of a complex

analytic map f : X −→ Y such that εY ◦ f = εX .

Let X|S be a relative analytic manifold over S.

Since ε : X −→ S is smooth, the map

TX −→
ε′

X ×S TS

is surjective. Its kernel is thus a sub-bundle of TX. We denote it by TX|S and call

it the relative tangent bundle of X|S. Its holomorphic sections form the sheaf ΘX |S of

vertical holomorphic vector fields on X|S. Recall that a holomorphic vector field θ is

vertical if and only if

θ(h ◦ εX) = 0

for any section h of OS. The dual map

X ×S T ∗S −→
tε′

T ∗X

is injective. Its cokernel is thus a quotient-bundle of T ∗X which is isomorphic to the

dual of TX|S. This is the relative cotangent bundle of X|S, we denote it by T ∗X|S
and denote by

pX |S : T ∗X −→ T ∗X|S
the canonical projection. The holomorphic sections of

∧p T ∗X|S form the sheaf Ωp
X |S

of relative holomorphic differential forms of degree p. To shorten the notations, we set

ΩX |S = Ω
dX|S
X |S .

To every morphism f : X|S −→ Y |S, we associate the natural maps

TX|S −→
f ′

X ×Y TY |S −→
fτ

TY |S
T ∗X|S ←−

tf ′
X ×Y T ∗Y |S −→

fπ
T ∗Y |S.

Note that we use the same notations as in the non-relative case since the context will

avoid any confusion.

The subring of HomCIX
(OX ,OX) generated by the derivatives along vertical holo-

morphic vector fields and multiplication with holomorphic functions is denoted byDX |S .

We call it the ring of relative differential operators on X|S.
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The basic algebraic properties of DX |S are easily obtained using the usual fil-

tration/graduation techniques. We will not review them here and refer the reader

to [18, 19].

As usual, we denote by Mod(DX |S) the abelian category of left DX |S-modules and

by Coh(DX |S) the full subcategory of coherent modules. The category Coh(DX |S) is

a thick subcategory of Mod(DX |S) (i.e. it is full and stable by kernel, cokernel and

extensions).

A coherent DX |S-module M is good if, in a neighborhood of any compact subset of

X, M admits a finite filtration by coherent DX |S-submodules Mk (k = 1, . . . , `) such

that each quotient Mk/Mk−1 can be endowed with a good filtration. We denote by

Good(DX |S) the full subcategory of Coh(DX |S) consisting of good DX |S-modules. This

definition ensures that Good(DX |S) is the smallest thick subcategory of Mod(DX |S)

containing the modules which can be endowed with good filtrations on a neighborhood

of any compact subset of X.

We denote by D(DX |S) the derived category of Mod(DX |S) and by Db(DX |S) its

full triangulated subcategory consisting of objects with bounded amplitude. The full

triangulated subcategory of Db(DX |S) consisting of objects with coherent (resp. good)

cohomology modules is denoted by Db
coh(DX |S) (resp. Db

good(DX |S)).

We introduce similar notations with the ringDX |S replaced by the opposite ringDop
X |S

to deal with right DX |S-modules. Since the categories Mod(DX |S) and Mod(Dop
X |S) are

equivalent, we will work only in the most convenient one depending on the problem at

hand.

In the sequel, we will often need to work with bimodule structures. Let k be a field.

Recall that if A and B are k-algebras, giving a left (A,B)-bimodule structure on an

abelian group M is just giving M a left structure of A-module and a left structure of

B-module such that

a · (b ·m) = b · (a ·m)

(c · a) · (b ·m) = (c · b) · (a ·m)

for any a ∈ A, b ∈ B, c ∈ k and m ∈ M . Hence, it is equivalent to consider that

M is endowed with a structure of A ⊗k B-module. Using this point of view it is easy

to extend to bimodules the notions and notations defined usually for modules. For

example, we will denote by Mod(DX |S⊗DX |S) the category of left DX |S bimodules and

by D(DX |S ⊗DX |S) the corresponding derived category.

Let f : X|S −→ Y |S be a morphism of relative analytic manifolds over S.

Recall that

DX |S→Y |S = OX ⊗f−1OY
f−1DY |S

has a natural structure of left DX |S-module compatible with its structure of right

f−1DY |S-module. Using this transfer module, we may define the relative proper di-

rect image of an object M of Db(Dop
X |S) by the formula

f |S!
(M) = Rf!(M⊗LDX|S DX |S→Y |S)
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It is an object of Db(Dop
Y |S).

Recall also that ifM (resp. N ) is a right (resp. left) DX |S-module then there is on

M⊗OX N a unique structure of right DX |S-module such that

(m⊗ n) · θ = m · θ ⊗ n−m⊗ θ · n
(m⊗ n) · h = m · h⊗ n = m⊗ h · n

for any sections m, n, θ and h of M, N , ΘX |S and OX respectively.

In the same way, if N , P are two left DX |S-modules then there is on N ⊗OX P a

unique structure of left DX |S-module such that

θ · (n⊗ p) = θ · n⊗ p + n⊗ θ · p
h · (n⊗ p) = h · n⊗ p = n⊗ h · p

for any sections n, p, θ and h of N , P , ΘX |S and OX respectively.

Finally, recall the following exchange lemma which will be useful in the sequel.

Lemma 2.1 If M is a right DX |S-module and N , P are left DX |S-modules then the

map

M⊗DX|S (N ⊗OX P) −→ (M⊗OX N )⊗DX|S P
m⊗ (n⊗ p) 7→ (m⊗ n)⊗ p

is a canonical isomorphism.

Let X be a relative analytic manifold over S. Recall that the characteristic variety of

a coherent DX |S-moduleM is a conic analytic subset of T ∗X|S denoted by charX |S(M)

and that

char(DX ⊗DX|SM) = p−1
X |ScharX |S(M).

Hence theorem 11.3.3 of [12] gives the equality

SS(RHomDX|S (M,OX)) = p−1
X |ScharX |S(M).

The sheaf ΩX |S of relative holomorphic differential forms of maximal degree is canon-

ically endowed with a structure of right DX |S-module which is compatible with its struc-

ture of OX-module and characterized by the fact that, for every open subset U of X,

one has ω.θ = −Lθω if ω ∈ ΩX |S(U) and θ is a vertical vector field defined on U .

Definition 2.2 The dualizing complex for right DX |S-modules is the complex of right

DX |S-bimodules defined by setting

KX |S = ΩX |S[dX |S]⊗OX DX |S
and using the natural structure of right DX |S-bimodule on the sheaf ΩX |S ⊗OX DX |S.

The dual of an objectM of D−(Dop
X |S) is

RHomDX|S (M,KX |S)

as an object of D+(Dop
X |S). We denote it by DX |S(M).

The functor DX |S is the dualizing functor for right DX |S-modules.
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As in algebraic geometry, the terminology used in the preceding definition is justified

by the following biduality result.

Lemma 2.3 There is a canonical sheaf involution of ΩX |S ⊗OX DX |S interchanging its

two right DX |S-module structures.

Proof: Let us consider the sheaf DX |S⊗OX DX |S where the tensor product uses the left

OX module structures of the two copies of DX |S. This sheaf is obviously endowed with

one structure of left DX |S-module and two structures of right DX |S-module which are

compatible with each other.

The involution

DX |S ⊗OX DX |S −→ DX |S ⊗OX DX |S
P ⊗Q 7→ Q⊗ P

exchanges the two right structures and preserves the left one.

Tensoring over DX |S with ΩX |S using its right structure and the left structure of

DX |S⊗OX DX |S and applying the exchange lemma 2.1 gives us the requested involution.

2

Proposition 2.4 For any object M of Db
coh(Dop

X |S), the canonical arrow

M−→ RHomDX|S (RHomDX|S (M,KX |S),KX |S)

deduced from the involution of the preceding lemma is an isomorphism.

Proof: Since M is locally isomorphic to a bounded complex of finite free right DX |S-

modules it is sufficient to prove the result forM = DX |S where it is an easy consequence

of the preceding lemma and the fact that ΩX |S is a locally free OX module of rank one.

2

It follows that the characteristic variety does not change by duality:

Proposition 2.5 If M is an object of Db
coh(Dop

X |S) then one has

charX |S(M) = charX |S(DX |SM).

2.2 Relative f-characteristic variety

In this subsection, we consider a morphism f : X|S −→ Y |S of relative analytic

manifolds over S and define the relative characteristic variety charf(M) of a coherent

Dop
X |S-module M. First, we consider the case of a relative submersion where such a

variety was already defined in [19] for S = {pt}. Next, by using the graph embed-

ding, we extend this definition to the general case. Finally, we show how the relative

characteristic variety controls the micro-support of M⊗LDX|S DX |S→Y |S.
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Let f : X|S −→ Y |S be a relative analytic submersion over S. Since f is smooth,

we have the following exact sequence of vector bundles on X:

0 −→ X ×Y T ∗Y |S −→
ψf

T ∗X|S −→
φf

T ∗X|Y −→ 0.

Working as in paragraph III.1.3 of [19] we get the following lemmas.

Lemma 2.6 AssumeM0 is a coherent DX |Y -module. Then

charX |S(DX |S ⊗DX|Y M0) = φ−1
f charX |Y (M0).

Lemma 2.7 Assume M is a coherent DX |S-module and assume M0, N0 are two co-

herent DX |Y -submodules of M which generates it as a DX |S-module then

charX |Y (M0) = charX |Y (N0).

Hence, we may introduce the following definition.

Definition 2.8 Let M be a coherent DX |S-module. One defines the relative charac-

teristic variety charf |S(M) of M with respect to f to be the subset of T ∗X|S which

coincide on T ∗U |S with φ−1
f charU |Y (M0) for any open subset U and any coherent DU |Y -

submodule M0 of M|U which generatesM|U as a DU |S-module.

It is clear that charf |S(M) is a closed conic analytic subvariety of T ∗X|S and that

charf |S(M) = charf |S(M) + ψf(X ×Y T ∗Y |S).

The functor charf |S is additive:

Proposition 2.9 If f : X −→ Y is a relative analytic submersion over S and if

0 −→ L −→M −→ N −→ 0

is an exact sequence of coherent DX |S-modules then

charf |S(M) = charf |S(L) ∪ charf |S(N ).

In the sequel we will need the following lemma essentially due to [8].

Lemma 2.10 Let f : X|S −→ Y |S be a relative analytic submersion over S and let K

be a compact subset of X. AssumeM is a DX |S-module which admits a good filtration

in a neighborhood of K. Then, in a neighborhood of K, M has a left resolution by

DX |S-modules of the form

DX |S ⊗DX|Y N

where the DX |Y -module N admits a good filtration and is such that

φ−1
f charX |Y (N ) ⊂ charf |S(M).
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Proof: In this proof, we always work in some neighborhood of K.

SinceM admits a good filtration, we can find a coherent OX-submodule M0 ofM
which generates it as a DX |S-module. Set N0 = DX |YM0. By construction, N0 is a

DX |Y -submodule of M which generates it as a DX |S-module. Obviously, N0 admits a

good filtration. Moreover, by definition,

φ−1
f charX |Y (N0) = charf |S(M).

The kernel K of the canonical DX |S-linear epimorphism

DX |S ⊗DX|Y N0 −→M−→ 0

is a DX |S-module which admits a good filtration and we have

charf |S(K) ⊂ charf |S(DX |S ⊗DX|Y N0) = charf |S(M).

We may thus start over the same construction withM replaced by K and build the

requested resolution by induction. 2

Now, by using the graph factorization, we will define the notion of relative charac-

teristic variety for a map which is not necessarily a relative submersion.

Let f : X|S −→ Y |S be any morphism of relative analytic manifolds.

Denote by

X −→
i
X ×S Y −→

q
Y

the relative graph factorization of f .

First, we notice:

Lemma 2.11 Assume f is a relative submersion and M is a coherent DX |S-module.

Then

charf |S(M) = ti′i−1
π charq|S(i|S!(M)).

Hence, for a general f , the following definition is a natural extension of our previous

one.

Definition 2.12 For any coherent DX |S-module M, we set

charf |S(M) = ti′i−1
π charq|S(i|S!(M)).

As usual, for an objectM of Db
coh(DX |S), we also set

charf |S(M) =
⋃
j∈ZZ

charf |S(Hj(M)).

We also introduce similar definitions for right DX |S-modules.
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Note that charf |S(M) is a closed conic analytic subset of T ∗X|S and that

charf |S(M) = charf |S(M) + ψf(X ×Y T ∗Y |S).

A link between the relative characteristic variety and the micro-local theory of

sheaves is given in the following theorem:

Theorem 2.13 Let f : X|S −→ Y |S be a morphism of relative analytic manifolds

over S and assume M is an object of Db
coh(Dop

X |S). Then

SS(M⊗LDX|S DX |S→Y |S) ⊂ p−1
X |Scharf |S(M).

Proof: Consider the graph factorization of f :

X −→
i
X ×S Y −→

q
Y.

By Proposition 5.4.4 of [12], if F is a sheaf on X, then SS(i∗F ) is the natural image of

SS(F ). Hence, in view of the definition of charf |S, it is enough to prove the inclusion:

SS(i!(M⊗LDX|S DX |S→Y |S)) ⊂ p−1charq|S(i|S!(M))

where we write p instead of pX×SY |S. Since

i!(M⊗LDX|S DX |S→Y |S) ' i|S!(M)⊗LDX×SY |S DX×SY |S→Y |S,

we have reduced the proof to the case where f is a relative submersion, what we shall

assume now.

Since the problem is local on X and

charf |S(M) =
⋃
j∈ZZ

charf |S(Hj(M)),

we may assume M is a coherent right DX |S-module. Using Lemma 2.10, we are then

reduced to consider the case where M = M0 ⊗DX|Y DX |S , for a coherent right DX |Y -

module M0. Now,

M⊗LDX|S DX |S→Y |S ' M0 ⊗LDX|Y DX |S→Y |S
' (M0 ⊗LDX|Y OX)⊗f−1OY f

−1DY |S.

This last sheaf is locally on X a direct sum of an infinite number of copies ofM0⊗LDX|Y
OX . Applying [12] Exercise V.5(i) (which is an easy consequence of Proposition 5.1.1(3)

[loc. cit.]) we get successively

SS(M⊗LDX|S DX |S→Y |S) = SS(M0 ⊗LDX|Y OX)

= SS(M0 ⊗DX|Y DX ⊗
L
DX
OX)

= char(M0 ⊗DX|Y DX)

= p−1φ−1
f charX |Y (M0)

= p−1charf |S(M)

where the third equality comes from theorem 11.3.3 of [12]. 2
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2.3 Relative elliptic pairs

We shall now define the main object of study of this paper.

Let D(X) denote the derived category of the category of sheaves of CI -vector spaces

on X and let Db(X) denote the full triangulated subcategory of complexes with bounded

amplitude.

Recall that a sheaf F of CI -vector spaces is IR-constructible if there is a subanalytic

stratification of X along the strata of which Hj(F ) is a locally constant sheaf of finite

rank for any j ∈ ZZ. Following [12], we denote by Db
IR−c(X) the full triangulated sub-

category of Db(X) consisting of complexes with IR-constructible cohomology sheaves.

We say for short that an object of Db
IR−c(X) is an IR-constructible complex. For such

an object, SS(F) is a closed subanalytic Lagrangian subset of T ∗XIR where XIR denotes

X considered with its underlying real analytic manifold structure. We shall identify

T ∗XIR with (T ∗X)IR as for example in [12] and simply denote it by T ∗X. In this pa-

per, we will have to consider most of the time the simple dual D′F of F and not its

Poincaré-Verdier dual DF . Recall that since X is an oriented topological manifold of

dimension 2dX :

D′F = RHom(F,CIX) and DF = RHom(F, ωX) ' RHom(F,CIX [2dX ])

so the two duals coincide up to shift. Since F is constructible, we have the local biduality

isomorphism F ∼−→ D′D′F .

Definition 2.14 Let f : X|S −→ Y |S be a morphism of relative analytic manifolds

over S. A pair (M,F ) is a relative f-elliptic pair if:

• M is an object of Db
coh(Dop

X |S),

• F is an object of Db
IR−c(X),

• p−1charf |S(M) ∩ SS(F ) ⊂ T ∗XX.

Such a pair is good if moreover M is an object of Db
good(Dop

X |S). Its support is the set

supp(M) ∩ supp(F ). When f is the canonical map εX : X|S −→ S|S we will say for

short that (M,F ) is a (good) relative elliptic pair on X|S. When S = {pt}, we drop

the word “relative” in the preceding definitions.

Since charf |S(M) contains charX |S(M), a relative f -elliptic pair is a relative elliptic

pair. Moreover, on a neighborhood of suppM,

SS(F ) ∩X ×S T ∗S ⊂ T ∗XX.

In particular, an elliptic pair (M,F ) on X is the data of a complex of coherent right

DX -modules M and an IR-constructible complex F such that

char(M) ∩ SS(F ) ⊂ T ∗XX.

We shall see in §8 below why this notion is a natural generalization of that of an elliptic

system on a real manifold. There, we will also explain why Theorem 2.15 below may

be considered as a generalization of the classical regularity theorem for elliptic systems.
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Theorem 2.15 Let (M,F ) be an f -elliptic pair. Then the canonical morphism

F ⊗ (M⊗LDX|S DX |S→Y |S) −→ RHom(D′F,M⊗LDX|S DX |S→Y |S),

induced by the morphism F −→ D′D′F , is an isomorphism.

Proof: By [12] Proposition 5.4.14, we know that if G belongs to Db(X) (and F is

IR-constructible as above), the natural morphism

F ⊗G −→ RHom(D′F,G)

is an isomorphism as soon as

SS(F )a ∩ SS(G) ⊂ T ∗XX.

Hence, the conclusion follows from Theorem 2.13 by applying the preceding result to

G =M⊗LDX|S DX |S→Y |S.

2

When Y = S, we get:

Corollary 2.16 Let M and F be objects of Db
coh(Dop

X |S) and Db
IR−c(X) respectively.

Assume the transversality condition

p−1charX |S(M) ∩ SS(F ) ⊂ T ∗XX

where p : T ∗X −→ T ∗X|S is the canonical projection. Then the canonical morphism

F ⊗ (M⊗LDX|S OX) −→ RHomDX|S (D′F,M⊗DX|S OX)

is an isomorphism.

Definition 2.17 The dual of a relative pair (M,F ) is the pair (DX |S(M),D′F ).

It follows from this definition that a relative pair is f -elliptic if and only if so is its

dual pair.

3 Tools

If X is a complex analytic manifold, we have already encountered XIR, the real un-

derlying analytic manifold to X. Here, we shall also make use of X, the complex

manifold with XIR as underlying space for which the holomorphic functions are the

anti-holomorphic functions on X. Recall that X × X is a natural complexification of

XIR via the diagonal embedding.
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3.1 Dolbeault complexes with parameters

Let Z and S be complex analytic manifolds and let qZ : Z × S −→ Z be the second

projection.

We will denote byAZ×S|S (resp. FZ×S|S ,DbZ×S|S) the sheaf of real analytic functions

(resp. infinitely differentiable functions, distributions) on Z×S which are holomorphic

in S.

We will also set

DZIR×S|S = (DZ×Z×S|S)|ZIR×S.

using the diagonal embedding of ZIR in Z × Z. Locally, operators in DZIR×S|S are of

the form ∑
α,β

aα,β(z, z, s)D
α
zD

β
z

where aα,β(z, z, s) is a section of AZ×S|S ; (z : U −→ CI dZ) and (s : V −→ CI dS) being

holomorphic local coordinate systems on Z and S respectively.

For any DZIR×S|S-module M we will consider the parametric Dolbeault complex

A·,·Z×S|S(M)

defined by setting

Ap,qZ×S|S(M) = q−1
Z A

p,q
Z ⊗q−1

Z AZ
M

the formulas for the differentials being given locally by

∂ : Ap,qU×S|S(M) −→ Ap+1,q
U×S|S(M) (3.1)

ap,q ⊗m 7→ ∂ap,q ⊗m +
dZ∑
i=1

dzi ∧ ap,q ⊗Dzim

and

∂ : Ap,qU×S|S(M) −→ Ap,q+1
U×S|S(M) (3.2)

ap,q ⊗m 7→ ∂ap,q ⊗m +
dZ∑
i=1

dzi ∧ ap,q ⊗Dzim

where (z : U −→ CI dZ ) is a holomorphic local coordinate system on Z. Obviously, this

definition is independent on the chosen local coordinate system.

When M is equal to AZ×S|S (resp. FZ×S|S , DbZ×S|S) we will denote the corre-

sponding parametric Dolbeault complex simply by A·,·Z×S|S (resp. F ·,·Z×S|S , Db·,·Z×S|S). Of

course, the natural maps

Ωp
Z×S|S −→ A

p,·
Z×S|S −→ F

p,·
Z×S|S −→ Db

p,·
Z×S|S

are quasi-isomorphisms.
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Let N be another DZIR×S|S-module. Using the natural structure of DZIR×S|S-module

on the sheaf N ⊗AZ×S|S M we define the parametric Dolbeault complex of M with

coefficients in N by the formula

N ·,·(M) = A·,·Z×S|S(N ⊗AZ×S|SM).

The associated simple complex is the parametric de Rham complex of M with coeffi-

cients in N . We denote it by N ·(M).

In this paper, we will only use the preceding notions when N is FZ×S|S or DbZ×S|S .

In this case, we have of course

Fp,qZ×S|S(M) = Fp,qZ×S|S ⊗AZ×S|SM
Dbp,qZ×S|S(M) = Dbp,qZ×S|S ⊗AZ×S|SM

and the differentials ∂ and ∂ are given locally by formulas similar to (3.1) and (3.2).

3.2 Realification with parameters

Let Z and S be complex analytic manifolds and set n = dZ . Consider Z × S as a

relative manifold over S through the second projection ε.

The parametric realification of a left DZ×S|S -module M is the sheaf

MIR|S = AZ×S|S ⊗OZ×SM.

In this formula, the DZIR×S|S-module structure is described locally by the formulas

Dzj (a⊗m) = Dzja⊗m + a⊗Dzjm

Dzj (a⊗m) = Dzja⊗m
f(a⊗m) = fa⊗m

where a,f and m are sections of AZ×S|S and M respectively; (z : U −→ CI n) being a

local holomorphic coordinate system on Z.

Since AZ×S|S is flat over OZ×S , parametric realification is an exact functor.

Let us consider the map

δ : Z × S −→ Z × Z × S
(z, s) 7→ (z, z, s).

It is clear that

δ−1(DZ×Z×S|S) = DZIR×S|S .

Hence the sheaf inverse image by δ of a DZ×Z×S|S-module is naturally a DZIR×S|S-

module. Moreover, one checks easily that

MIR|S = δ−1(OZ×Z×S ⊗q−1OZ×S q
−1M) = δ−1(M×OZ).
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where q : Z × Z × S −→ Z × S is the natural projection and × denotes the external

product of D-modules.

As usual, using “side changing” functors, we may also define the parametric real-

ification of a right DZ×S|S -module M. We still denote it by MIR|S and check easily

that

MIR|S = A0,n
Z×S|S ⊗OZ×SM = δ−1(M× ΩZ).

Parametric realification is a powerful tool to simplify problems dealing with DZ×S|S -

modules thanks to the following result.

Proposition 3.1 Let K be a compact subset of Z and let ∆ be a closed polydisc of S.

AssumeM is a good DZ×S|S -module. Then, in a neighborhood of K ×∆,MIR|S has a

left resolution by finite free DZIR×S|S-modules .

Proof: The assumption insures that M×OZ is a good DZ×Z×S|S-module. Hence it is

generated by a coherent OZ×Z×S-module in a neighborhood of the Stein compact subset

δ(K ×∆) of the complex analytic manifold Z × Z × S. By Cartan’s Theorem A, it is

thus finitely generated in a neighborhood of δ(K ×∆). The conclusion follows easily.

2

In order to be able to use effectively the preceding proposition in the sequel, we need

to understand the links between parametric realification and the finiteness and duality

results. These links are made explicit in the following five lemmas. Since the proofs are

just easy computational verifications we leave them to the reader. Recall that Hom·
denotes as usual the internal Hom functor of the category of complexes of sheaves.

Lemma 3.2 a) The sheaf A0,p
Z×S|S(DZIR×S|S) is naturally endowed with a structure of

left DZ×S|S-module and a structure of right DZIR×S|S-module and the differential

∂ is compatible with these two structures.

b) As a complex of (DZ×S|S , Dop
ZIR×S|S)-bimodules A0,·

Z×S|S(DZIR×S|S) is quasi-isomor-

phic to (DZ×S|S)IR|S [−n] (where the realification uses the right module structure

of DZ×S|S)

Lemma 3.3 The map

A0,·
Z×S|S(DZIR×S|S)⊗D

ZIR×S|S
FZ×S|S −→ F0,·

Z×S|S

(a0,p ⊗Q)⊗ u 7→ a0,p ∧Qu

is an isomorphism of complexes of left DZ×S|S -modules. Combined with the Dolbeault

quasi-isomorphism

OZ×S −→ F0,·
Z×S|S ,

it induces in the derived category the isomorphism

M⊗LDZ×S|S OZ×S
∼−→MIR|S[−n]⊗LD

ZIR×S|S
FZ×S|S
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for any complex of right DZ×S|S-modules M. We have also similar results with F
replaced by Db or A.

Lemma 3.4 The map

Dbn,·Z×S|S [−n] −→ Hom·D
ZIR×S|S

(A0,·
Z×S|S(DZIR×S|S),Dbn,nZ×S|S)

ϕn,r+n 7→ [ω0,−r ⊗Q 7→ (ϕn,r+n ∧ ω0,−r) ·Q]

is an isomorphism of complexes of right DZ×S|S-modules. Combined with the Dolbeault

quasi-isomorphism

Ωn
Z×S|S −→ Db

n,·
Z×S|S ,

it induces in the derived category the isomorphism

RHomDZ×S|S (M,Ωn
Z×S|S [n]) ∼−→ RHomD

ZIR×S|S
(MIR|S[−n],Dbn,nZ×S|S)

for any complex of right DZ×S|S -modules M. We have also similar results with Db
replaced by A or F .

Lemma 3.5 The natural arrow

Ω·Z×S|S(DZ×S|S) −→ Ωn
Z×S|S [−n]

(resp. Db·Z×S|S(DZIR×S|S) −→ Db2n
Z×S|S [−2n] )

of complexes of rightDY ×S|S (resp. DY IR×S|S) modules is a quasi-isomorphism. Together

with the relative de Rham quasi-isomorphism

ε−1OS ∼−→ Ω·Z×S|S

(resp. ε−1OS ∼−→ Db·Z×S|S )

it induces the ε−1OS linear pairing

Ωn
Z×S|S [n]⊗LDZ×S|S OZ×S −→ ε−1OS[2n]

(resp. Db2n
Z×S|S ⊗LDZIR×S|S

FZ×S|S −→ ε−1OS[2n] ).

Lemma 3.6 Assume M is an object of Db
coh(Dop

Z×S|S). We have the commutative

diagram

(M⊗LDZ×S|S OZ×S)⊗L
ε−1OS

RHomDZ×S|S (M,Ωn
Z×S [n]) −→ε−1OS[2n]y y

(MIR|S ⊗LDZIR×S|S
FZ×S|S) ⊗L

ε−1OS
RHomD

ZIR×S|S
(MIR|S,Db2n

Z×S|S)−→ε−1OS[2n]

where the horizontal arrows are constructed by contraction followed by the pairings of

the preceding lemma, the first vertical arrow being the tensor product of the isomor-

phisms of Lemma 3.3 and 3.4 while the second vertical arrow is the identity.
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3.3 Trivialization of IR-constructible sheaves

In this section, we follow the notations of [12, Ch. VIII]. As in the classical theory of

simplicial complexes, the sets U(x) of [loc. cit.] are called open stars. Let us first point

out some basic facts about the topology of polyhedra.

Lemma 3.7 Let (S,Σ) be a simplicial set and let x ∈ |S|. Then

(a) y ∈ U(x) ⇒ [x, y] ⊂ U(x)

(b) y ∈ ∂U(x) ⇒ [x, y[ ⊂ U(x)

where U(x) denotes the open star of x in |S|.

Proof: (a) One knows that

U(x) =
⋃

σ⊃σ(x)

|σ|.

Thus, if y ∈ U(x), there is a σ ⊃ σ(x) such that y ∈ |σ|. Since it is clear that ]x, y] ⊂ |σ|
and that x ∈ U(x), one gets that [x, y] ⊂ U(x).

(b) The set {σ ∈ Σ : σ ⊃ σ(x)} being finite, one has the equality

U(x) =
⋃

σ⊃σ(x)

|σ|.

Hence, since y ∈ ∂U(x), there is a simplex σ ⊃ σ(x) such that y ∈ |σ| \ |σ|. Let σ′

be a simplex included in σ such that y ∈ |σ′|. If σ′ ⊃ σ(x) then ]x, y[ ⊂ |σ′| ⊂ U(x)

as requested. If σ′ 6⊃ σ(x) then σ′′ = σ′ ∪ σ(x) is a simplex of Σ included in σ and

]x, y[ ⊂ |σ′′| ⊂ U(x) and the conclusion follows. 2

Lemma 3.8 If (S,Σ) is a simplicial set and if x ∈ |S| then one has the following

commutative diagram

∂U(x)× ]0, 1] /∂U(x)× {1} ∼−→ U(x)

↓ ↓
∂U(x)× [0, 1] /∂U(x)× {1} ∼−→ U(x)

where the horizontal arrows are homeomorphisms, the vertical arrows being the natural

inclusions.

Proof: Let us define the continuous application

f : ∂U(x)× [0, 1] −→ U(x)

by setting f(u, t) = (1− t)u+ tx. The preceding lemma shows that f(u, t) = f(u′, t′) if

either t = t′ = 1 or (u, t) = (u′, t′). Moreover, it is clear that for every u ∈ U(x) there

is v ∈ ∂U(x) such that u ∈ [x, v]. From these facts, one deduces that the continuous

map

g : ∂U(x)× [0, 1] /∂U(x)× {1} −→ U(x)

associated to f is bijective. Since ∂U(x)× [0, 1] is a compact space, g is an homeomor-

phism. To conclude, it remains to note that f−1(U(x)) = ∂U(x)× ]0, 1]. 2
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Proposition 3.9 If (S,Σ) is a simplicial set, then for every open star U(x) of x ∈ |S|
one has

D′|S|(CI U (x)) = CI U (x)

Proof: It is clear that

D′|S|(CIU (x)) = RHom(CI U (x),CI |S|)

= RjU (x)∗(CI U (x)).

It remains to prove that the canonical arrow

CI U (x) −→ RjU (x)∗(CI U (x))

is a quasi-isomorphism on U(x). Thanks to the preceding lemma, there is a neighbor-

hood ω of ∂U(x) in U(x) and an homeomorphism

φ : ω −→ ∂U(x)× [0, ε[

such that φ(ω∩U(x)) = ∂U(x)× ]0, ε[. We are thus reduced to show that the canonical

arrows

CI −→ lim
−→

V ∈V ,η>0

H0(V × ]0, η[ ; CI )

0 −→ lim
−→

V ∈V ,η>0

Hk(V × ]0, η[ ; CI ) (k ≥ 1)

are isomorphisms when V is a fundamental system of neighborhoods of y ∈ ∂U(x). But,

using homotopy, it is clear that

Hk(V × ]0, η[ ; CI ) ∼−→ Hk(V ; CI )

and the proof is complete. 2

The following proposition is the main result of this section and will be used as a

basic tool in the sequel.

Proposition 3.10 An IR-constructible sheaf F on a real analytic manifold M is quasi-

isomorphic to a bounded complex T · of the form

· · · 0 −→ · · · ⊕
ia∈Ia

CIWa,ia
−→ · · · ⊕

ik∈Ik
CIWk,ik

−→ · · · ⊕
ib∈Ib

CIWb,ib
−→ 0 · · ·

where each family (Wk,ik)ik∈Ik is locally finite, the open subsets Wk,ik being subanalytic,

relatively compact, connected and such that

D′M (CIWk,ik
) ' CIWk,ik

,
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the differential dkT · being such that the induced map

(dkT ·)ji : CIWk,i
−→ CIWk+1,j

is either 0 if Wk,i 6⊂ Wk+1,j or a complex multiple ckjiIWk+1,jWk,i
of the canonical inclusion

map if Wk,i ⊂ Wk+1,j.

Moreover, if F has compact support, we may assume that the set Ik is finite for

every k ∈ ZZ.

Proof: From the theory of IR-constructible sheaves, one knows that there is a simpli-

cial set (S,Σ) and an homeomorphism i : |S| −→ M such that i−1F is a simplicialy

constructible sheaf. From a construction due to M. Kashiwara [11] one knows that such

a sheaf is quasi-isomorphic to a bounded complex T · such that each T k is a locally finite

direct sum of the sheaves CI U (σ) associated to the open stars of the simplexes of Σ where

F is non zero. Since we have just proven in the preceding lemma that for such a sheaf

one has

D′(CI U (σ)) ' CIU (σ)

the first part of the proposition is clear.

Concerning the differential of the complex, we note that if σ, σ′ are two simplexes

of Σ then

Hom(CIU (σ),CIU (σ′)) ' Γ(U(σ); CI U (σ)∩U (σ′))

hence the conclusion since U(σ) is a connected open set.

In case F has compact support K, the open stars U(σ) meeting K are in finite

number and since only these stars appear in the components of T ·, the sets Ik are finite.

2

3.4 Topological OS-modules

Let S be a complex analytic manifold. Recall that the sheaf OS of holomorphic functions

on S is a multiplicatively convex sheaf of Fréchet algebras over S (see [7, 25]). Also

recall that if V is a relatively compact open subset of a Stein open subset U of X then

the restriction map

Γ(U ;OS) −→ Γ(V ;OS)

is CI -nuclear. From this it follows easily that Γ(U ;OU ) is a Fréchet nuclear (FN) space

and that Γ(V ,OS) is a dual Fréchet nuclear (DFN) space.

As in [7], we will consider OS as a sheaf of complete bornological algebras and

deal with the category Born(OS) of complete bornological modules over OS. Recall

that Houzel has shown that Born(OS) has a natural internal hom functor denoted by

LOS (·, ·) and an associated tensor product functor denoted by · ⊗̂OS ·. They are linked

by the adjunction formula

Hom Born(OS)(M⊗̂OS N ,P) = Hom Born(OS)(M,LOS(N ,P)).
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We denote by LOS (·, ·) the global sections of LOS(·, ·) considered as a bornological

vector space. For any M in Born(OS), the functor LOS (M, ·) has a left adjoint. We

denote it by · ⊗̂M.

Following [15], an FN-free (resp. a DFN-free) OS-module is a module isomorphic to

E ⊗̂OS for some Fréchet nuclear (resp. dual Fréchet nuclear) space E. It is easily shown

that the OS topological dual LOS(M,OS) of an FN-free (resp. a DFN-free)OS-module

M is DFN-free (resp. FN-free). Moreover both FN-free and DFN-free OS-modules are

OS reflexive.

The results needed for the proof of the finiteness, duality and base change theorems

for relative elliptic pairs are summarized in the three following propositions. The first

one is Corollary 5.1 of [25] and the next two ones are easily deduced from the results

in §1–2 of [15] (see also [16]).

Proposition 3.11 Let M· (resp. N ·) be a complex of DFN-free (resp. FN-free) OS-

modules. Assume M· and N · are bounded from above and

u· :M· −→ N ·

is a continuous OS-linear morphism. Assume moreover that u· is a quasi-isomorphism

forgetting the topology. Then M· and N · have OS-coherent cohomology.

Proposition 3.12 Let M· be a complex of FN-free OS-modules and let N be a DFN

OS-module. Assume M· is bounded from above and has OS-coherent cohomology.

Then the natural morphism of D+(OS)

LOS(M·,N ) −→ RHomOS(M·,N )

is an isomorphism.

Proposition 3.13 LetM· be a complex of FN-free (resp. DFN-free) OS-modules and

let N be an FN (resp. DFN) OS-module. Assume M· is bounded from above and has

OS-coherent cohomology. Then the natural morphism of D−(OS)

M· ⊗LOS N −→M
· ⊗̂OS N

is an isomorphism.

In the sequel, when applying the preceding propositions, we will use the following

well-known result.

Proposition 3.14 Assume Z, S are complex manifolds. Denote by ε : Z × S −→ S

the second projection. Then, we have the following isomorphisms:

ε∗FZ×S|S ' Γ(Z;FZ) ⊗̂ OS
ε!DbdZ ,dZZ×S|S ' Γc(Z;DbdZ ,dZ ) ⊗̂ OS = LOS (ε∗FZ×S|S ,OS).
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Hence, ε!DbdZ ,dZZ×S|S is a DFN-free OS-module which is the topological dual over OS of the

FN-free OS-module ε∗FZ×S|S . Moreover,

ε∗OZ×S = Γ(Z;OZ) ⊗̂ OS.

Hence, if K is a compact subset of Z, we have

ε∗[(AZ×S|S)K×S ] ' Γ(K;AZ) ⊗̂ OS

and ε∗[(AZ×S|S)K×S ] is a DFN-free topological OS-module. Finally, if T is another

complex manifold and p : Z × T × S −→ S and q : T × S −→ S denotes the canonical

projections, we have

p∗FZ×T×S|T×S ' ε∗FZ×S|S ⊗̂OS q∗OT×S.

4 Finiteness

4.1 The case of a projection

Proposition 4.1 Let Z, S be complex analytic manifolds. Consider Z×S as a relative

analytic manifold over S through the second projection ε. Let G be an object of

Db
IR−c(Z) and set F = G×CI S. Assume that (M,F ) is a good relative elliptic pair with

ε-proper support on Z × S|S. Then

Rε!(F ⊗M⊗LDZ×S|S OZ×S)

is an object of Db
coh(OS).

Proof: By “dévissage”, it is obviously sufficient to prove the result when M is a

DZ×S|S -module which admits a good filtration on a neighborhood of any compact subset

of Z × S.

It follows from the relative regularity theorem (Theorem 2.15) that the canonical

map

F ⊗M⊗LDZ×S|S OZ×S −→ RHom(D′F,M⊗LDZ×S|S OZ×S)

is an isomorphism. Using Lemma 3.3, we get the isomorphism

Rε∗(F ⊗MIR|S ⊗LD
ZIR×S|S

AZ×S|S) (4.1)

−→ Rε∗RHom(D′F,MIR|S ⊗LD
ZIR×S|S

FZ×S|S).

Let V be the interior of a closed polydisc ∆ of S. Since supp(M)∩supp(F )∩ε−1(∆)

is compact, we can find a compact subset K in Z such that K × V is a neighborhood

of supp(M) ∩ supp(F ) ∩ ε−1(V ). Replacing S by V and G by GK shows that we may

assume from the beginning that G has compact support. Moreover, by Proposition 3.1

we may also assume that MIR|S is quasi-isomorphic to complex L· whose components
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are free DZIR×S|S-modules of finite rank. Since MIR|S has bounded amplitude, we may

even assume Lk = 0 for k � 0.

We know by Proposition 3.10 that D′G is isomorphic to a bounded complex T · of

the form

· · · −→ ⊕
i∈Ik

CIWk,i
−→ · · ·

where Wk,i is relatively compact subanalytic subset of Z such that D′(CIWk,i
) = CIWk,i

.

Thus G ' D′D′G is quasi-isomorphic to a complex C · of the form

· · · −→ ⊕
i∈Ik

CIWk,i
−→ · · ·

It is clear that the sheaf (AZ×S)|K×S (resp. (FZ×S)|U×S) is acyclic for the the functor

ε|K×S∗ (resp. ε|U×S∗) for any compact subset K (resp. any open subset U) of Z. Hence

we may view isomorphism (4.1) more explicitly as the morphism

ε∗((C
· × CI S)⊗ L· ⊗D

ZIR×S|S
AZ×S|S) (4.2)

−→ ε∗Hom(T · × CI S,L· ⊗D
ZIR×S|S

FZ×S|S)

in the category of complexes of OS-modules (not the derived category). Let us denote

by R·1 (resp. R·2) the source (resp. target) of the preceding arrow.

The components of R·1 (resp. R·2) are easily seen to be finite sums of the sheaves

ε|Wk,i×S∗
(AZ×S|S |Wk,i×S

) (resp. ε|Wk,i×S∗(FZ×S|S |Wk,i×S
) ).

Hence, R·1 (resp. R·2) is naturally a complex of DFN-free (resp. FN-free) topological

OS-modules. For these natural topologies, the regularity quasi-isomorphism is clearly

continuous. Applying Proposition 3.11 we conclude that R·2 has OS-coherent cohomol-

ogy and the proof is complete. 2

4.2 The general case

Theorem 4.2 Let f : X|S −→ Y |S be a morphism of relative analytic manifolds over

S. Assume (M, F ) is a good relative f -elliptic pair with f -proper support; i.e.

• M is an object of Db
good(Dop

X |S),

• F is an object of Db
IR−c(X),

• φ−1charf |S(M) ∩ SS(F ) ⊂ T ∗XX,

• supp(M) ∩ supp(F ) is f -proper.

Then f |S!
(M⊗ F ) is an object of Db

good(Dop
Y |S).
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Proof: By “dévissage”, it is obviously sufficient to prove the result whenM is a DX |S-

module which admits a good filtration on a neighborhood of any compact subset of

X.

Decomposing f through its graph embedding

i : X −→ X × Y

shows that it is sufficient to prove the finiteness theorem for the second projection

p2 : X × Y |S −→ Y |S

and the pair i|S!(M) ∈ Ob(Db
good(Dop

X×Y |S)), F ×CI Y ∈ Ob(Db
IR−c(X × Y )) since by the

projection formula we have

i|S!(M)⊗ (F × CI Y ) ' i|S!(M⊗ F ).

From the definition of charf |S(M), it is clear that

charp2|S(i|S!(M)) ∩ SS(F × CI Y )

is contained in the zero section of T ∗(X × Y |S). So if Y = S, the theorem is a

consequence of the results obtained in the case of a projection.

To conclude, we will show that if f is a relative submersion and the theorem is true

for f : X|Y −→ Y |Y then it is also true for f : X|S −→ Y |S.

We will use a device introduced in [8] and extended in Lemma 2.10.

Let ∆ be a polydisc in Y and denote by K the compact subset of X defined by

K = supp(M) ∩ SS(F ) ∩ f−1(∆).

Using Lemma 2.10, it is easy to see that, in a neighborhood of K,M is isomorphic

to a complex of right DX |S-modules of the form R⊗DX|Y DX |S where R is a coherent

right DX |Y -submodule which admits a good filtration and is such that

φ−1charX |Y (R) ⊂ charf |S(M).

Moreover, this complex may be assumed to be bounded from above.

Since the functor f |S!
has finite cohomological dimension, it is thus sufficient to

prove the coherence on ∆ of the cohomology of f |S!
(F ⊗M) when M has the special

form M =M0⊗DX|Y DX |S where M0 is a coherent DX |Y -module which admits a good

filtration.

In this case, one knows that the complex f |Y !
(F⊗M0) has OY -coherent cohomology,

and the chain of isomorphisms

Rf!(F ⊗M⊗LDX|S DX |S→Y |S)

= Rf!(F ⊗ (M0 ⊗LDX|Y DX |S)⊗LDX|S DX |S→Y |S)

∼−→ Rf!(F ⊗M0 ⊗LDX|Y DX |S→Y |S)

∼−→ Rf!(F ⊗M0 ⊗LDX|Y OX)⊗LOY DY |S

shows that f |S!
(F ⊗M) belongs to Db

good(DY |S). 2
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Corollary 4.3 In the situation of the preceding theorem, the well known formula:

f |S!
(F ⊗M)⊗LDY |S OY

∼−→ Rf!(F ⊗M⊗LDX|S OX)

gives the inclusion:

charY |S(f |S!
(F ⊗M)) ⊂ fπ

tf ′
−1

charX |S(M)

Proof: By Theorem 2.13 and Proposition 5.4.4 and 5.4.14 of [12], we know that

p−1
Y |ScharY |S(f |S!

(F ⊗M)) = SS(f |S!
(F ⊗M)⊗LDY |S OY )

= SS(Rf!(F ⊗M⊗LDX|S OX))

⊂ fπ
tf ′
−1
SS(F ⊗M⊗LDX|S OX)

⊂ fπ
tf ′
−1

(SS(F ) + p−1
X |ScharX |S(M)).

Note that by hypothesis:

p−1
X |Scharf |S(M) ∩ SS(F ) ⊂ T ∗XX.

Moreover, one has:

p−1
X |ScharX |S(M) + tf ′(X ×Y T ∗Y ) ⊂ p−1

X |Scharf |S(M).

Hence,[
p−1
X |ScharX |S(M) + SS(F )

]
∩ tf ′(X ×Y T ∗Y ) ⊂ p−1

X |ScharX |S(M) ∩ tf ′(X ×Y T ∗Y )

so
tf ′
−1

(SS(F ) + p−1
X |ScharX |S(M)) ⊂ tf ′

−1
(p−1
X |ScharX |S(M))

and the proof is complete. 2

5 Duality

Let f : X|S −→ Y |S be a morphism of relative complex manifolds. Our aim in this

section is to prove that, under suitable hypotheses, duality commutes with direct images

(see Theorem 5.15 for a precise statement). The proof will use the graph decomposition

of f and various “dévissages”. Hence, it is necessary to construct first the natural

transformation:

f |S!
◦DX |S −→ DY |S ◦ f |S!

and to check its compatibility with respect to composition in f . This will be a conse-

quence of the explicit construction of the trace morphism for D-modules given in the

next section. We follow the lines of [24] (see also [11, 17]).
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5.1 The relative duality morphism

Recall that if f : X −→ Y is a holomorphic map then it induces integration maps

fp,q∗ : f!Dbp+dX ,q+dXX −→ Dbp+dY ,q+dYY

commuting with the Dolbeault operators. We will use this fact and the machinery of

distributional Dolbeault complexes of §3.1 to construct canonically the duality map for

right D-modules.

Let M be a left DX -module. To simplify notations, we will set

Db·,·X (M) = Db·,·X×{pt}|{pt}(MIR|{pt}).

Hence, the components are

Dbp,qX (M) = Dbp,qX ⊗OXM

and the differentials are given in a local coordinate system z : U −→ CI dZ by

∂p,q : Dbp,qX ⊗OXM −→ Dbp+1,q
X ⊗OXM

u⊗ P 7→ ∂p,qu⊗ P +
dX∑
i=1

dzi ∧ u⊗DziP

and

∂
p,q

: Dbp,qX ⊗OXM −→ Dbp,q+1
X ⊗OXM

u⊗ P −→ ∂
p,q
u⊗ P

respectively. Also recall that we denote by Db·X(M) the simple complex associated

with Db·,·X (M).

Lemma 5.1 The differential of Db·X(DX) is compatible with the right DX -module

structure of its components and, in Db(Dop
X ), one has a canonical isomorphism:

Db·X (DX)[dX] ∼−→ ΩX .

Proof: The compatibility of the differential of Db·X(DX) with the right DX -module

structure of its components is a direct consequence of the local forms of ∂ and ∂ recalled

above.

Using the fact that DX is flat over OX and the Dolbeault resolution of Ωp
X, we get

the quasi-isomorphisms

Ωp
X ⊗OX DX ∼−→ Dbp,·X ⊗OX DX ∼−→ Dbp,·X (DX).

Hence, Weil’s lemma shows that the natural morphism

DR·X (DX) −→ Db·X(DX)
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from the holomorphic to the distributional de Rham complex of DX is a quasi-isomorph-

ism of complexes of right DX -modules and the conclusion follows from the Spencer

quasi-isomorphism

DR·X (DX) ' ΩX [−dX].

2

Lemma 5.2 To any morphism f : X −→ Y of analytic manifolds one can associate a

canonical integration morphism

f∗ : f!Db·X(DX→Y )[2dX ] −→ Db·Y (DY )[2dY ].

in the category of bounded complexes of right DY -modules.

Proof: At the level of components the integration morphism is obtained as the follow-

ing chain of morphisms:

f!Dbp+dX ,q+dX (DX→Y ) ∼−→ f!(Dbp+dX ,q+dXX ⊗f−1OY f
−1DY )

∼−→ f!Dbp+dX ,q+dXX ⊗OY DY
−→ Dbp+dY ,q+dYY ⊗OY DY
∼−→ Dbp+dY ,q+dYY (DY ).

To get the second morphism one has used the projection formula, the fact that DbX is

a soft sheaf and the fact that DY is locally free over OY . The third arrow is deduced

from the integration of distributions along the fibers of f .

To conclude, we need to show that the integration morphism is compatible with the

differentials of the complexes involved. Thanks to the local forms of the differentials,

this is an easy computational verification and we leave it to the reader. 2

Lemma 5.3 If f : X −→ Y and g : Y −→ Z are morphisms of complex analytic

manifolds, one has the following commutative diagram:

g!(f!Db·X(DX→Y )[2dX ]⊗DY DY→Z)
1−→ g!(Db·Y (DY )[2dY ]⊗DY DY→Z)y2

y3

g!f!Db·X(DX→Z)[2dX ]
4−→ Db·Z(DZ)[2dZ ].

In this diagram, arrow (1) is deduced by tensor product and proper direct image from

f∗, arrow (2) is an isomorphism deduced from the projection formula, arrow (3) is g∗
and arrow (4) is equal to (g ◦ f)∗.

Proof: Going back to the definition of the various morphisms, one sees easily that the

commutativity of the preceding diagram is a consequence of the Fubini theorem for

distributions, that is, the formula

(g ◦ f)∗(u) = g∗(f∗(u))

where g∗ and f∗ denotes the push-forward of distributions along g and f respectively,

u being a distribution with g ◦ f proper support. 2
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Proposition 5.4 If f : X −→ Y is a morphism of complex analytic manifolds then

there is a canonical integration arrow∫
f : f

!
(ΩX [dX ]) −→ ΩY [dY ]

in Db(Dop
Y ). Moreover, if g : Y −→ Z is a second morphism of complex analytic

manifolds then ∫
g◦f =

∫
g ◦ g!

(
∫
f )

Proof: One gets the arrow
∫
f by composing the morphisms:

f
!
(ΩX [dX]) ∼−→ Rf!(ΩX [dX]⊗LDX DX→Y )

∼−→ Rf!(Db·X(DX→Y )[2dX ])

∼−→ f!(Db·X(DX→Y )[2dX ])

−→ Db·Y (DY )[2dY ]

∼−→ ΩY [dY ]

Let us point out that the second and last isomorphisms come from Lemma 5.1, that

the third one is deduced from the fact that Dbp,qX (DX→Y ) is c-soft and that the fourth

arrow is given by Lemma 5.2.

The compatibility of integration with composition is then a direct consequence of

Lemma 5.3. 2

Corollary 5.5 If f : X|S −→ Y |S is a morphism of relative analytic manifolds over S

then there is a canonical arrow∫
f |S : f |S!

(ΩX |S[dX |S]) −→ ΩY |S[dY |S].

Moreover, if g : Y |S −→ Z|S is another morphism of relative analytic manifolds over

S then ∫
g◦f |S =

∫
g|S ◦ g|S!

(
∫
f |S)

Proof: Using the canonical morphism

ΩX [dX]⊗LDX|S DX→Y −→ ΩX[dX ]⊗LDX DX→Y

and the integration morphism∫
f : Rf!(ΩX[dX ]⊗LDX DX→Y ) −→ ΩY [dY ]

we get the morphism

Rf!(ΩX [dX ]⊗LDX|S DX→Y ) −→ ΩY [dY ].

Since

DX→Y ' DX |S→Y |S ⊗f−1DY |S f
−1DY
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as a (DX |S,f−1Dop
Y )-bimodule and ΩY is a right DY -module, we get a DY |S-linear mor-

phism:

Rf!(ΩX [dX ]⊗LDX|S DX |S→Y |S) −→ ΩY [dY ].

Tensoring on both sides by ε−1
Y Ω⊗−1

S [−dS] and using the projection formula, we get the

requested relative integration map:

Rf!(ΩX |S[dX |S]⊗LDX|S DX |S→Y |S) −→ ΩY |S [dY |S].

The last part of the corollary is then an easy consequence of the similar result for

S = {pt}. 2

Definition 5.6 One defines the direct image of a right (DX |S,DX |S)-bimodule M by

setting:

f
|S!

(M) = Rf!((M⊗LDX|S DX |S→Y |S)⊗LDX|S DX |S→Y |S)

Lemma 5.7 There is a canonical isomorphism

[(DX |S ⊗OX DX |S)⊗LDX|S DX |S→Y |S]⊗LDX|S DX |S→Y |S
∼−→ DX |S→Y |S ⊗f−1OY f

−1DY |S
compatible both with the structure of left DX |S-module and the structure of right

(f−1DY |S , f−1DY |S)-bimodule.

Proof: One has the chain of isomorphisms

[(DX |S ⊗OX DX |S)⊗LDX|S DX |S→Y |S]⊗LDX|S DX |S→Y |S
∼−→ [DX |S ⊗OX DX |S→Y |S]⊗LDX|S DX |S→Y |S
∼−→ DX |S→Y |S ⊗LOX DX |S→Y |S
∼−→ DX |S→Y |S ⊗f−1OY f

−1DY |S
∼−→ DX |S→Y |S ⊗f−1DY |S (f−1DY |S ⊗f−1OY f

−1DY |S)

∼−→ DX |S→Y |S ⊗f−1DY |S (f−1DY |S ⊗f−1OY f
−1DY |S)

In the second isomorphism we have used the exchange lemma. In the fourth line, the

last tensor product uses the structure of left f−1OY -module of f−1DY |S. In the fifth

isomorphism the last tensor product uses the structure of right f−1OY -module of the

first factor and the structure of left f−1OY -module of the second one. Finally, in the

last line, we have used the exchange lemma again. 2

Proposition 5.8 LetM be a right DX |S-module and letM⊗OXDX |S be the associated

right DX |S-bimodule. If f : X −→ Y is a morphism of relative analytic manifolds over

S then one has the following canonical isomorphism

f
|S!

(M⊗LOX DX |S) ∼−→ f |S!
(M)⊗LOY DY |S

in the derived category D(Dop
Y |S ⊗D

op
Y |S).
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Proof: This is a direct consequence of the preceding lemma. 2

Definition 5.9 The differential trace map associated to a morphism

f : X|S −→ Y |S

of relative analytic manifolds over S is defined to be the arrow

trf : f
|S!
KX |S −→ KY |S

in the derived category D(Dop
Y |S ⊗D

op
Y |S) obtained by composing the following arrows:

f
|S!
KX |S = f

|S!
(ΩX |S[dX |S]⊗LOX DX |S)

∼−→ (f |S!
ΩX |S[dX |S])⊗LOY DY |S

∼−→ ΩY |S[dY |S]⊗LOY DY |S

where the first arrow comes from the definition of KX |S (see p. 11), the second one

being a consequence of the preceding proposition and the third one being constructed

by tensor product with the integration arrow of Corollary 5.5. By construction, trf is

compatible with the composition of maps.

Proposition 5.10 Assume f : X|S −→ Y |S is a morphism of relative analytic mani-

folds over S. Then the differential trace map

trf : f
|S!
K ·X |S −→ K ·Y |S

induces a morphism

duf : f |S!
DX |S(M) −→ DY |S(f |S!

M)

for any object M of Db(Dop
X |S). Moreover, this morphism is functorial in M and

compatible with composition in f .

Proof: Since, by definition,

DX |S(M) = RHomDX|S (M,KX |S)

we have a canonical morphism

f |S!
DX |S(M) −→ RHomDY |S (f |S!

M, f
|S!
KX |S)

in D(Dop
Y |S). Composing this morphism with the morphism

RHomDY |S (f |S!
M, f

|S!
KX |S) −→ RHomDY |S (f |S!

M,KY |S)

associated to trf gives the requested duality morphism. The construction shows that it

is natural inM. The compatibility with composition in f comes from the corresponding

property of trf . 2

34



To conclude this section, we will show that the differential duality morphism is

compatible with the duality morphism of complex analytic geometry.

Recall that since DX |S is an OX -module, we have a well defined scalar extension

functor

EX |S : Mod(OX) −→ Mod(Dop
X |S)

F 7→ F ⊗OX DX |S .

The image by this functor of an OX -module F is coherent as a right DX |S-module if

and only if F is coherent as an OX-module. For a coherent OX-module F , one sets

DX |S(F) = RHomOX (F ,ΩX |S[dX |S])

hence, we have the canonical isomorphism:

DX |S(F)⊗OX DX |S ∼−→ DX |S(F ⊗OX DX |S).

Moreover, if f : X|S −→ Y |S is a morphism of relative analytic manifolds and F is a

coherent OX-module we have the canonical isomorphism:

(Rf!F)⊗OY DY |S ∼−→ f |S!
(F ⊗OX DX |S).

With these facts in mind, we can now state:

Proposition 5.11 Let f : X|S −→ Y |S be a morphism of relative analytic manifolds.

Assume F is a coherent OX-module. Then we have the commutative diagram:

Rf!DX |S(F)⊗OY DY |S −→ DY |S(Rf!F)⊗OY DY |Sy y
f |S!

DX |S(F ⊗OX DX |S) −→ DY |S(f |S!
(F ⊗OX DX |S))

where the first and second horizontal arrows come respectively from the geometric and

differential duality morphisms, and the vertical arrows isomorphisms are deduced from

the compatibility with direct image and duality of the scalar extensions functors EX |S
and EY |S .

Proof: Consider the morphism

ΩX |S[dX |S] −→ KX |S (5.1)

ω 7→ ω ⊗ 1X |S.

It follows easily from the definition of the differential integration map that we have

the following commutative diagram:

Rf!ΩX |S[dX |S] −→ ΩY |S[dY |S ]y y
f
|S!
KX |S −→ KY |S .
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In the preceding diagram the horizontal arrows are the geometric and differential trace

maps, the first vertical arrow is deduced from (5.1) by using the canonical section

1X |S→Y |S of DX |S→Y |S and the second vertical arrow is (5.1) with X replaced by Y .

Since the geometric and differential duality morphisms are directly constructed from

the corresponding trace maps the result is easily reduced to the commutativity of the

preceding diagram. 2

5.2 The case of a closed embedding

Proposition 5.12 Let i : X|S −→ Y |S be a closed relative embedding. Then, for

every coherent right DX |S-module M, the canonical morphism

i|S!DX |S(M) −→ DY |S(i|S∗M)

is an isomorphism.

Proof: Since the problem is local on X, we may assume M has a bounded resolution

by finite free right DX |S-modules. Thus it is sufficient to prove the result forM = DX |S .

Since we have

DX |S = OX ⊗DX|S DX |S
it follows from Proposition 5.11 that the result is a direct consequence of the corre-

sponding result for O-modules. Since we do not have a precise direct reference for this

well known result we recall it in the following lemma. 2

Lemma 5.13 If i : Z −→ X is a closed embedding of analytic manifolds, then for any

object F of Db
coh(OZ) the complex Ri!F is an object of Db

coh(OX) and the geometric

duality morphism

Ri!RHomOZ(F ,ΩZ [dZ ]) −→ RHomOX (Ri!F ,ΩX [dX])

is an isomorphism.

Proof: Since the result is of local nature and the duality morphism is compatible with

composition, it sufficient to consider the case when F = OZ and

i : U ′ −→ U ′ × U ′′

z′ 7→ (z′, 0)

where U ′ (resp. U ′′) is an open neighborhood of 0 in CI dZ (resp. CI ).

In this case, the arrow

i!ΩZ [dZ ] −→ RHomOX(i!OZ ,ΩX [dX])

corresponds up to shift to the arrow

i!ΩZ −→ RHomOX (i!OZ ,ΩX [1])
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deduced from the arrow

i!ΩZ −→ HomOX (i!OZ ,DbdX ,·X [1]) (5.2)

i!ω 7→ (i!h 7→ i∗(hω))

by using the natural map from HomOX to RHomOX and the Dolbeault resolution

ΩX
∼−→ DbdX ,·X . Using the negative Koszul complex K·(z

′′,OX) as a free resolution of

i!OZ , the map (5.2) corresponds to the morphism of complexes

i!ΩZ −→ HomOX
(K·(z

′′,OX),DbdX ,·X ) (5.3)

which associates to i!ω the morphism of complexes which sends h to i∗(h|Zω) in degree

zero and is zero in other degrees.

The target of the preceding arrow is the simple complex associated to the double

complex K ·,· below

DbdX ,0X −→ DbdX ,1X · · · −→ DbdX ,dXXxz′′ xz′′ · · ·
xz′′

DbdX ,0X −→ DbdX ,1X · · · −→ DbdX ,dXX

where the horizontal maps are the ∂ Dolbeault operators, the vertical ones being mul-

tiplication by z′′. In the preceding diagram the term of bidegree (0, 0) is in the upper

left corner and the image of i!ω by the arrow (5.3) corresponds to the section i∗ω of

DbdX ,1X in bidegree (−1, 1).

Since the canonical inclusion of K·(z
′′,ΩX) in the simple complex sK ·,· is a quasi-

isomorphism, it follows that the cohomology of sK ·,· is concentrated in degree zero and

that H0(sK ·,·) is isomorphic to ΩX/z
′′ΩX .

Now we have successively

i∗ω = ω(z′) ∧ δ(z′′)dx′′ ∧ dy′′

= ω(z′) ∧ ∂
(
dz′′

2iπz′′

)

= ∂

(
ω(z′) ∧ dz′′

2iπz′′

)

and this shows that i∗ω has the same cohomology class in H0(sK ·,·) as the section

ω(z′) ∧ (dz′′/2iπ) of K0,0. Hence the arrow (**) corresponds at the level of H0 to the

isomorphism

i!ΩZ −→ ΩX/z
′′ΩX

i!ω 7→
[
ω(z′) ∧ dz

′′

2iπ

]
z′′ΩX

and the conclusion follows. 2

37



5.3 The case of a projection

As for the finiteness theorem our starting point will be the case of a projection.

Proposition 5.14 Let Z, S be complex analytic manifolds and denote by n the com-

plex dimension of Z. Consider Z × S as a relative analytic manifold over S through

the second projection ε. Let G be an object of Db
IR−c(Z) and set F = G× CIS . Assume

that (M,F ) is a good relative elliptic pair with ε-proper support on Z×S|S. Then the

natural pairing

Rε∗(M⊗ F ⊗LDZ×S|S OZ×S)⊗LOS Rε!(D
′F ⊗RHomDZ×S|S(M,Ωn

Z×S|S [n])) −→ OS

identifies each complex with the OS dual of the other.

Proof: Since the dual of a relative elliptic pair is a relative elliptic pair, we need only

to show that the map

Rε!(D
′F ⊗ RHomDZ×S|S (M,Ωn

Z×S|S [n])

−→ RHomOS(Rε∗(F ⊗M⊗LDZ×S|S OZ×S),OS)

deduced from the duality pairing is an isomorphism in the derived category.

Using Lemmas 3.3, 3.4 and 3.6 and the regularity quasi-isomorphism, it is equivalent

to prove that the canonical map

Rε!(D
′F ⊗ RHomD

ZIR×S|S
(MIR|S,Dbn,nZ×S|S)) (5.4)

−→ RHomOS(Rε∗RHom(D′F,MIR|S ⊗LD
ZIR×S|S

FZ×S),OS))

is an isomorphism in the derived category.

We will work as in the proof of Proposition 4.1 and use the notations introduced

there. Using the resolution L· of MIR|S and the resolution T · of D′G, we will compute

explicitly the preceding morphism. We already know that

Rε∗RHom(D′F,MIR|S ⊗LD
ZIR×S|S

FZ×S)

∼−→ ε∗Hom(T · × CI S,L· ⊗D
ZIR×S|S

FZ×S) = R·2.

Since DbWk,i×S is acyclic for the functor ε|Wk,i×S !
, we get

Rε!(D
′F ⊗ RHomD

ZIR×S|S
(MIR|S,Dbn,nZ×S|S))

∼−→ ε!((T
· × CI S)⊗HomD

ZIR×S|S
(L·,Dbn,nZ×S|S)).

We denote by R·3 this last complex.

The components of R·2 (resp. R·3) are finite sums of the sheaves

ε|Wk,i×S∗(FWk,i×S) (resp. ε|Wk,i×S !
(Dbn,nWk,i×S) )
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which are FN-free (resp. DFN-free) OS-modules. Hence, R·2 and R·3 are naturally

complexes of topological OS-modules.

For any open subset U of Z, we know that

εU×S|S !
Dbn,nU×S|S = LOS(ε|U×S|S∗FU×S|S,OS)

where the second member of the preceding equality is the sheaf of continuous OS-linear

homomorphisms between the FN-free OS-module ε|U×S|S∗FU×S|S and OS. Hence we get

the canonical isomorphism

Rk
3
∼−→ LOS(R−k2 ,OS)

for any integer k. One checks easily that these maps define an isomorphism of complexes

R·3 ∼−→ LOS(R·2,OS).

Moreover, the composition of this morphism with the natural morphism

LOS(R·2,OS) −→ RHomOS(R·2,OS) (5.5)

gives the map (5.4).

Since R·2 has OS-coherent cohomology, Proposition 3.12 shows that (5.5) is a quasi-

isomorphism and the proof is complete. 2

5.4 The general case

Theorem 5.15 Let f : X|S −→ Y |S be a morphism of relative analytic manifolds

over S. Assume (M, F ) is a good relative f -elliptic pair with f -proper support; i.e.

• M is an object of Db
good(Dop

X |S),

• F is an object of Db
IR−c(X),

• φ−1charf |S(M) ∩ SS(F ) ⊂ T ∗XX,

• supp(M) ∩ supp(F ) is f -proper.

Then the duality morphism

f |S!
(D′F ⊗DX |S(M)) −→ DY |S(f |S!

(F ⊗M))

is an isomorphism.

Proof: Using the factorization of f through its graph embedding

i : X −→ X × Y

we deduce from the results obtained for closed embeddings that the theorem will be

true if it is true for the second projection

q : X × Y |S −→ Y |S
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and the pair

(i|S!(M), F × CI Y ) ∈ Ob(Db
good(Dop

X×Y |S)×Db
IR−c(X × Y )).

From the definition of charf |S(M), it is clear that

charq|S(i|S!(M)) ∩ SS(F × CI Y )

is in the zero section of T ∗(X ×Y |S). So if Y = S, the theorem is a consequence of the

results obtained in the product case.

To conclude, we will show that if f is a relative submersion and the theorem is true

for f : X|Y −→ Y |Y then it is also true for f : X|S −→ Y |S.

Let us assume first that there is a coherent right DX |Y -module M0 such that

M =M0 ⊗DX|Y DX |S.

One get successively:

DY |S(f
!
(F ⊗M))

∼−→ RHomDY |S ([Rf!(F ⊗M0 ⊗LDX|Y OX)]⊗LOY DY |S ,KY |S)

∼−→ RHomOY (f |Y !
(F ⊗M0),OY )⊗OY KY |S

∼−→ f |Y !
(D′F ⊗DX |Y (M0))⊗OY KY |S

∼−→ Rf!(D
′F ⊗ RHomDX|Y (M0,KX |Y )⊗LDX|Y OX ⊗f−1OY f

−1KY |S)

∼−→ Rf!(D
′F ⊗ RHomDX|Y (M0,KX |S)⊗LDX|S DX |S→Y |S)

∼−→ f |S!
(D′F ⊗RHomDX|S(M0 ⊗DX|Y DX |S ,KX |S))

∼−→ f |S!
(D′F ⊗DX |S(M))

and the theorem is proved.

The general case is reduced to the preceding case by using Lemma 2.10 as in the

proof of Theorem 4.2.

2

6 Base change and Künneth formula

6.1 Base change

Recall that to any morphism b : Sb −→ S of complex manifolds is associated a base

change functor

(·)b : Man(S) −→ Man(Sb)

X|S −→ X ×S Sb|Sb
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which transforms relative manifolds over S into relative manifolds over Sb. The aim of

this section is to study the behavior of relative elliptic pairs under this functor. The

main result is Theorem 6.5.

Let us fix a base change map b : Sb −→ S. For any relative manifold X|S, we denote

by Xb|Sb its image by the base change functor (·)b and by bX the projection from Xb to

X. By construction, we have the cartesian square:

X
εX−→ SxbX 2

xb
Xb −→

εXb
Sb.

Hence, there is a canonical ring morphism

b−1
X DX |S −→ DXb|Sb

and we may introduce the following definition.

Definition 6.1 The base change functor for relative right D-modules is the functor

D(Dop
X |S) −→ D(Dop

Xb|Sb)

M 7→ b−1
XM⊗Lb−1

X
DX|S
DXb|Sb .

This functor clearly induces a functor from Db
good(Dop

X |S) to Db
good(Dop

Xb|Sb).

The base change functor for sheaves of CI -vector spaces is the functor

D(X) −→ D(Xb)

F 7→ b−1
X F.

This functor clearly induces a functor from Db
IR−c(X) to Db

IR−c(Xb). Since the context

will avoid any possible confusion, we denote all these functors by (·)b.

Let us consider now a morphism f : X|S −→ Y |S of relative manifolds. We denote

by fb : Xb|Sb −→ Yb|Sb the image of f by the base change associated with b. One checks

easily that the square:

X
f−→ YxbX xbY

Xb −→
fb

Yb

(6.1)

is cartesian.

Proposition 6.2 Using the notations introduced above:

a) There is a canonical morphism

b−1
X DX |S→Y |S ⊗Lf−1

b
b−1
Y DY |S

f−1
b DYb|Sb −→ DXb|Sb→Yb|Sb

in Db(b−1
X DX |S ⊗ f−1

b D
op
Yb |Sb).
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b) The preceding morphism induces a natural morphism

(f |S!
(M))b −→ fb|Sb!

(Mb)

for M in D(Dop
X |S).

c) The morphisms in (a) and (b) are isomorphisms if either f or b is a closed em-

bedding.

Proof: Since

b−1
X DX |S→Y |S ⊗Lf−1

b b−1
Y DY |S

f−1
b DYb|Sb ∼−→ b−1

X OX ⊗Lb−1
X f−1OY

f−1
b DYb |Sb

and

DXb|Sb→Yb|Sb ∼−→ OXb ⊗f−1
b OYb

f−1
b DYb|Sb

the canonical morphism b−1
X OX −→ OXb induces the morphism in (a).

For anyM in D(Dop
X |S), we construct the morphism in (b) as the chain of morphisms:

(f |S!
M)b = b−1

Y Rf!(M⊗LDX|S DX |S→Y |S)⊗L
b−1
Y DY |S

DYb|Sb
∼−→ Rfb!b

−1
X (M⊗LDX|S DX |S→Y |S)⊗L

b−1
Y
DY |S
DYb |Sb

∼−→ Rfb!(b
−1
X M⊗Lb−1

X DX|S
b−1
X DX |S→Y |S ⊗Lf−1

b b−1
Y DY |S

f−1
b DYb|Sb)

−→ Rfb!(b
−1
X M⊗Lb−1

X DX|S
DXb |Sb→Yb|Sb)

∼−→ fb|Sb!
(Mb).

This chain of morphisms is obtained using the definition of the base change functor, the

fact that the square (6.1) is cartesian, the projection formula, the morphism constructed

in (a) and again the definition of the base change functor.

To conclude the proof, it is sufficient to show that if either f or b is a closed embed-

ding then the morphism constructed in (a) is an isomorphism.

Assume f is a closed embedding. The problem being local, we may assume there

are open neighborhoods U and V of zero in CI n and CIm respectively with X = U × S,

Y = U × V × S and

f : U × S −→ U × V × S
(u, s) −→ (u, 0, s).

Then, we get Xb = U × Sb, Yb = U × V × Sb and

fb : U × Sb −→ U × V × Sb
(u, sb) −→ (u, 0, sb).

Moreover, bX(u, sb) = (u, b(sb)) and bY (u, v, sb) = (u, v, b(sb)). In this simple geometric

situation, we have the Koszul quasi-isomorphisms:

K·(OY ; v1, . . . , vn) ∼−→ f∗OX
K·(OYb ; v1 ◦ bY , . . . , vn ◦ bY ) ∼−→ fb∗OXb
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where v1, . . . , vn denotes the functions on Y induced by the standard coordinates on V .

Hence, we get the isomorphisms:

b−1
X OX ⊗Lb−1

X f−1OY
f−1
b DYb|Sb ' f−1

b K·(DYb |Sb ; v1 ◦ bY , . . . , vn ◦ bY )

OXb ⊗Lf−1
b OYb

f−1
b DYb|Sb ' f−1

b K·(DYb |Sb ; v1 ◦ bY , . . . , vn ◦ bY )

and the conclusion follows.

The case where b is a closed embedding is treated in a similar way. 2

The following easy lemma will be useful in the sequel. We leave its proof to the

reader.

Lemma 6.3 Let f : X|S −→ Y |S be a relative submersion and let b : Sb −→ S be a

base map. Consider X as a relative manifold over Y through the map f and assume

N is an object of D(Dop
X |Y ). Then

fb : Xb|Yb −→ Yb|Yb

is the image of f : X|Y −→ Y |Y by the base change associated with bY and

(N ⊗DX|Y DX |S)b ' NbY ⊗DXb|Yb DXb|Sb .

The behavior of the characteristic variety under base change is given by the following

result.

Proposition 6.4 Let f : X|S −→ Y |S be a morphism of relative manifolds. In the

diagram

T ∗Xb|Sb ←−
t(bX)′

Xb ×X T ∗X|S −→
(bX)π

T ∗X|S

the first arrow is an isomorphism and for any object M of Db
coh(Dop

X |S) we have

charfb|Sb(Mb) ⊂ t(bX)′(bX)−1
π charf |S(M).

Proof: Using the graph factorization of f and part (c) of Proposition 6.2 we are reduced

to the case where f is a relative submersion. In this case, assume M is generated as

a right DX |S-module by a coherent right DX |Y -module M0. Thanks to Lemma 6.3 the

epimorphism

M0 ⊗DX|Y DX |S −→M −→ 0

induces the epimorphism

(M0)bY ⊗DXb|Yb DXb|Sb −→Mb −→ 0.

Hence,

charfb|Sb(Mb) ⊂ φ−1
f charXb|Yb((M0)bY )

and the result will be true for f : X|S −→ Y |S and the base change by b if it is true

for f : X|Y −→ Y |Y and the base change by bY . In other words, we are reduced to the

obvious case where Y = S. 2
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Theorem 6.5 Let f : X|S −→ Y |S be a morphism of relative manifolds and let

b : Sb −→ S be a base map. Denote by fb : Xb|Sb −→ Yb|Sb the image of f by the base

change associated to b. Assume (M,F ) is a good relative f -elliptic pair. Then

a) (Mb,Fb) is an fb-elliptic pair in some neighborhood of suppMb,

b) the canonical morphism

[f |S!
(F ⊗M)]b −→ fb|Sb!

(Fb ⊗Mb)

is an isomorphism.

Proof: Since (M,F ) is a relative elliptic pair, F is non characteristic for bX in a

neighborhood of suppM and [12, Proposition 5.4.13] gives us an estimate of the micro-

support of Fb which together with the preceding proposition gives us (a).

To prove part (b), we will use the graph factorization of f and part (c) of Propo-

sition 6.2 to reduce the problem to the case where f : X|S −→ Y |S is a relative

submersion.

As in the preceding proposition, it is sufficient to treat the case Y = S. Assume

M0 is a right DX |Y -module and set M =M0 ⊗DX|Y DX |S . We have successively:

[f |S!
(M)]b ' [f |Y !

(M0)⊗OY DY |S]b

' [f |Y !
(M0)]bY ⊗OYb DYb|Sb

and

fb|Sb!
(Mb) ' fb|Sb!

[(M0)bY ⊗DXb|Yb DXb |Sb ]
' fb|Yb!

[(M0)bY ]⊗OYb DYb |Sb .

Hence, using Lemma 2.10, we see that the theorem will be true for f : X|S −→ Y |S
and the base change by b if it is true for f : X|Y −→ Y |Y and the base change by bY .

Finally, factorizing f and b through their graphs and using once more part (c) of

Proposition 6.2, we see that it is sufficient to treat the case where f : Z × S|S −→ S|S
is the second projection. We may also assume that the corresponding f -elliptic pair is

of the form (M,G × CI S) where G and M are objects of Db
IR−c(Z) and Db

good(Dop
Z×S|S)

respectively, and that b : T × S −→ S is the first projection. This product case is

treated in Proposition 6.6 below. 2

Proposition 6.6 Let Z, S, T be complex analytic manifolds. Consider Z × S as a

relative analytic manifold over S through the second projection ε. Let G be an object

of Db
IR−c(Z) and set F = G × CI S . Consider the cartesian square

Z × S ε−→ Sxp 2
xb

Z × T × S η−→ T × S
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where the maps are the canonical projections. Assume that (M,F ) is a relative elliptic

pair with ε-proper support on Z × S|S. Then the canonical map

b−1Rε∗(F ⊗M⊗LDZ×S|S OZ×S)⊗b−1OS OT×S
−→ Rη∗(p

−1F ⊗ p−1M⊗L
p−1DZ×S|S

OZ×T×S)

is an isomorphism.

Proof: Thanks to the regularity theorem 2.15 and Lemma 3.3, it is equivalent to prove

that the canonical morphism:

b−1Rε∗RHom(D′F,MIR ⊗LD
ZIR×S|S

FZ×S)⊗b−1OS OT×S

−→ Rη∗RHom(p−1D′F, p−1MIR ⊗Lp−1D
ZIR×S|S

FZ×T×S|T×S)

is an isomorphism. For short, let us denote by S ·1 (resp. S ·2) the source (resp. target)

of the preceding arrow. Clearly, it is sufficient to prove that for any open polydisc ∆

of T , the induced morphism

Rb∗(S ·1|∆×S) −→ Rb∗(S ·2|∆×S) (6.2)

is an isomorphism. We will compute this morphism explicitly as in the proof of Propo-

sition 4.1. Using the notations introduced there, we already know that

Rε∗RHom(D′F,MIR|S ⊗LD
ZIR×S|S

FZ×S)

∼−→ ε∗Hom(T · × CI S,L· ⊗D
ZIR×S|S

FZ×S) = R·2.

Since R·2 has OS-coherent cohomology,

Rb∗(S ·1|∆×S) ' Rb∗(b
−1R·2 ⊗Lb−1OS

O∆×S)

' R·2 ⊗LOS b∗O∆×S .

Moreover, we have:

Rb∗(S ·2|∆×S) ' Rε∗RHom(D′F,MIR ⊗LD
ZIR×S|S

p∗FZ×∆×S|∆×S)

' ε∗Hom(T · × CI S,L· ⊗DZIR×S|S
p∗FZ×∆×S|∆×S ).

Let us denote R·4 this last complex. Since we have the isomorphism

ε∗p∗iW×∆×S ∗i
−1
W×∆×SFZ×∆×S|∆×S ' Γ(W ;FW ) ⊗̂ Γ(∆;O∆) ⊗̂ OS

for any open subset W of Z, a direct computation shows that

R·4 ∼−→ R·2 ⊗̂OS b∗O∆×S .

Clearly, the morphism (6.2) corresponds to the canonical morphism

R·2 ⊗LOS b∗O∆×S −→ R·2 ⊗̂OS b∗O∆×S.

SinceR·2 has OS-coherent cohomology, Proposition 3.13 shows that it is an isomorphism

and the conclusion follows. 2
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6.2 Künneth formula

Theorem 6.7 Let f1 : X1|S −→ Y1|S and f2 : X2|S −→ Y2|S be two morphisms of

relative manifolds. Assume

i) (M1,F1) is a good relative f1-elliptic pair with f1-proper support,

ii) (M2,F2) is a good relative f2-elliptic pair with f2-proper support.

Then:

a) (M1×SM2,F1× SF2) is a good relative f1×S f2-elliptic pair with f1×S f2-proper

support,

b) the natural morphism

f1|S!
(F1 ⊗M1) ×S f2|S!

(F2 ⊗M2) −→ f1 ×S f2|S!
[(F1 × SF2)⊗ (M1 ×SM2)]

is an isomorphism.

Proof: Part (a) being obvious, we skip directly to part (b). Since

f1|S!
(F1 ⊗M1)

has DY1|S-coherent cohomology, the formula

f1 ×S f2 = (idX1 ×S f2) ◦ (f1 ×S idX2)

allows us to restrict to the case f2 = idX2. So, we need only to prove that the canonical

map

f1|S!
(F1 ⊗M1) ×S (F2 ⊗M2) −→ f1 ×S idX2 |S!

(F1 × SF2)⊗ (M1 ×SM2)

is an isomorphism. Using the projection formula, we may get rid of F2. So we assume

F2 = CIX2. The problem being local on Y1 ×S X2, we may further assume that M2 is

equal to DX2|S.

The image of f1 : X1|S −→ Y1|S under the base change associated with ε2 : X2 −→
S is

f1 ×S idX2 : X1 ×S X2|X2 −→ Y1 ×S X2|X2.

Hence, by Theorem 6.5, we have the isomorphism:

[f1|S!
(F1 ⊗M1)]ε2

∼−→ (f1 ×S idX2)|X2!
[(F1 ⊗M1)ε2 ].

By scalar extension, we get the isomorphism:

f1|S!
(F1 ⊗M1) ×S DX2|S

∼−→ f1 ×S idX2 |S!
[(F1 × SCIX2)⊗ (M1 ×S DX2|S)]

and the conclusion follows. 2
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7 Microlocalization

Here, we shall prove that direct image commutes with microlocalization. More precisely,

denote by EX the sheaf of (finite order) microdifferential operators on T ∗X (see [18]

or [19] for a detailed exposition).

Consider a morphism f : X −→ Y of complex analytic manifolds and the associated

diagram:

T ∗X X ×Y T ∗Yu

tf ′
w

fπ
T ∗Y

and recall that the microlocal proper direct image of a right EX -module M is defined

through the formula

f
!
(M) = Rfπ !(

tf ′−1M⊗Ltf ′−1EX
EX→Y ),

where EX→Y denotes the micro-differential transfer module associated to f .

Also recall that the microlocalization of a right DX -module M is the right EX -

module ME defined on T ∗X by setting

ME = π−1
X M⊗π−1

X DX
EX .

In this section, we prove that, under the hypothesis of the finiteness theorem, we

have

[f
!
(M⊗ F )]E ' f

!
[(M⊗ F )E].

This result was established by Kashiwara [9] when F = CIX and f is projective. It was

also announced in a non proper case in [8].

7.1 The topology of the sheaf CY |X(0)

Let us show that the sheaf CY |X(0) of [18] is naturally a sheaf of topological vector

spaces and that its sections on a compact subset of T ∗YX form a DFN space.

Proposition 7.1 Let X be a complex analytic manifold. Assume Y is a complex

submanifold of X and denote by CY |X(0) the sheaf of holomorphic microfunctions of

order 0 on T ∗YX. Then, for any compact subset K ⊂ T ∗YX, the space

Γ(K; CY |X(0))

has a canonical DFN topology.

Proof: Locally, we may use a coordinate system (x1, . . . , xd, y1, . . . , yn−d) where Y is

defined by the equations

x1 = 0, · · · , xd = 0.

Denote by (y1, · · · , yn−d, ξ1, . . . , ξd) the corresponding coordinates on T ∗YX. It follows

from [18, Theorem 1.4.5] that, for any open subset U of T ∗YX, the formula∫
δ(p− 〈x, ξ〉)u(x, y)dx =

0∑
j=−∞

aj(y, ξ)δ
(j)(p) (7.1)
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establishes a one to one correspondence between holomorphic microfunctions

u(x, y) ∈ Γ(U ; CY |X(0))

and sequences of homogeneous holomorphic functions

aj(x, ξ) ∈ Γ(U ;OT ∗Y X(j)) (j ≤ 0)

such that for any compact subset K ⊂ U

0∑
j=−∞

|aj(x, ξ)|K
ε−j

(−j)! < +∞

for some ε > 0.

Let us first construct the requested DFN topology in two special cases.

Case a. Assume K is a convex compact subset of T ∗YX on which ξk 6= 0. Denote by

p : Ṫ ∗YX −→ P ∗YX the canonical projection. The preceding discussion shows that the

map

Γ(K; CY |X(0)) −→ Γ(p(K) × {0};OP∗
Y
X×CI )

u(x, y) 7→ fk(y, ξ, τ ) =
+∞∑
j=0

a−j(y, ξ/ξk)
τ j

j!

is an isomorphism. Using this isomorphism, we endow Γ(K; CY |X(0)) with the usual

DFN topology of Γ(p(K) × {0};OP∗Y X×CI ). If, moreover, ξ` 6= 0 on K, one has

fk(y, ξ, τ ) = f`(y, ξ, τξk/ξ`).

Hence, the DFN topology of Γ(K; CY |X(0)) does not depend on k.

Case b. Let π denote the canonical projection of the bundle T ∗YX on its base Y

identified to the zero section. Assume K is a convex compact subset of T ∗YX such that

π(K) ⊂ K. It follows from (7.1) that

Γ(K; CY |X(0)) −→ Γ(π(K);OY )

u(x, y) 7→ a0(y, 0)

is an isomorphism. We use this isomorphism to transport on Γ(K; CY |X(0)) the usual

DFN topology of Γ(π(K);OY ).

One checks easily that, if K1 ⊂ K2 are two compact subsets of T ∗YX of the kind

treated in case (a) or (b) above, then the restriction map

Γ(K2; CY |X(0)) −→ Γ(K1; CY |X(0))

is continuous.
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Let K be an arbitrary compact subset of T ∗YX. The preceding discussion shows that

we can find a finite covering (Ki)i∈I of K by compact subsets such that Γ(Ki; CY |X(0))

and Γ(Ki ∩Kj ; CY |X(0)) are DFN spaces. Thanks to the exact sequence

0 −→ Γ(K; CY |X(0))
α−→

∏
i∈I

Γ(Ki; CY |X(0))
β−→

∏
i,j∈I

Γ(Ki ∩Kj ; CY |X(0)),

we may use α to transport on Γ(K; CY |X(0)) the DFN topology of kerβ. To show

that this topology is independent of the chosen covering, it is sufficient to show that

it is equivalent to the topology induced by a finer covering. Since such a topology is

obviously weaker, the conclusion follows from the closed graph theorem.

Since a direct computation shows that the above defined topology is independent of

the chosen coordinate systems, the conclusion follows easily. 2

Corollary 7.2 Let X be a complex analytic manifold. Assume K is a compact subset

of T ∗X. Then

Γ(K; EX(0))

has a canonical DFN topology.

Proof: Apply the preceding proposition to C∆X |X×X(0). 2

Proposition 7.3 Let X, Z be complex analytic manifolds and let Y be a complex

submanifold of X. We identify T ∗(Z×Y )(Z × X) and Z × T ∗YX. We denote by q :

Z ×T ∗YX −→ T ∗YX the second projection. Then, for any Stein compact subset K ⊂ Z,

one has

Rq![(CZ×Y |Z×X (0))K×T ∗
Y
X] ' Γ(K;OZ) ⊗̂ CY |X.

Proof: Let S be a complex manifold. Denote by pS : Z×S −→ S the second projection.

By classical results of analytic geometry, we know that

RpS ![(OZ×S)K×S ] ' Γ(K;OZ) ⊗̂ OS.

Using the explicit isomorphisms constructed in the proof of the preceding proposition,

the conclusion follows easily. 2

Corollary 7.4 Let Z, Y be complex analytic manifolds and denote by

f : Z × Y −→ Y

the second projection. Assume K is a Stein compact subset of Z. Then

Rfπ ![(EZ×Y→Y (0))K×T ∗Y ] ' Γ(K;OZ) ⊗̂ EY (0).

Proof: Apply the preceding proposition to CZ×∆Y |Z×(Y×Y )(0). 2
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7.2 Direct image and microlocalization

Theorem 7.5 Assume f : X −→ Y is a morphism of complex analytic manifolds and

(M, F ) is an f -elliptic pair on X with f -proper support. Then the canonical map

[f
!
(M⊗ F )]E −→ f

!
([M⊗ F ]E)

is an isomorphism in Db
coh(EY ).

Proof: Recall that we have the commutative diagram

T ∗X

u

πX

X ×Y T ∗Yu

tf ′
w

fπ

u

π

T ∗Y

u

πY

X Xu

∼
w

f
Y

Hence, we have successively

π−1
Y [f

!
(M⊗ F )]⊗π−1

Y DY
EY

= Rfπ ![π
−1(M⊗ F ⊗LDX DX→Y )]⊗π−1

Y DY
EY

= Rfπ ![π
−1(M⊗ F ⊗LDX DX→Y )⊗f−1

π π−1
Y DY

f−1
π EY ]

= Rfπ ![π
−1(M⊗ F )⊗L

π−1DX
(π−1DX→Y ⊗f−1

π π−1
Y DY

f−1
π EY )].

Note that there is a canonical map

π−1DX→Y ⊗f−1
π π−1

Y DY
f−1
π EY −→ EX→Y . (7.2)

Hence, we get a canonical morphism

π−1
Y [f

!
(M⊗ F )]⊗π−1

Y
DY EY −→ f

!
[π−1
X (M⊗ F )⊗π−1

X
DX EX ]. (7.3)

When f is a closed embedding, (7.2) is an isomorphism. Hence (7.3) is an isomor-

phism for any M∈ Db
coh(DX) and any F ∈ Db

IR−c(X).

In the general case, consider the graph embedding

i : X −→ X × Y

and the projection

p : X × Y −→ Y.

Since (M,F ) is an f -elliptic pair, the pair (i!M,F × CI Y ) is p-elliptic. Since our result

holds for closed embeddings and

i!M⊗ (F × CI Y ) ' i!(M⊗ F ),

we are reduced to prove the theorem for the pair (i!M,F × CI Y ) and the map p.
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We may thus assume that f is the second projection from X = Z × Y to Y and

that F = G × CI Y where G is an object of Db
IR−c(Z). Moreover, working as in §4, we

may also assume that M = N ⊗DX|Y DX where N is a coherent DX |Y -module. In this

case,

π−1
Y [f

!
(M⊗ F )]⊗π−1

Y DY
EY

= Rfπ ![π
−1(M⊗ F )⊗L

π−1DX
(π−1DX→Y ⊗f−1

π π−1
Y DY

f−1
π EY )]

= Rfπ ![π
−1(N ⊗ (G × CI Y ))⊗L

π−1DX|Y
(π−1OX ⊗f−1

π π−1
Y OY

f−1
π EY )]

and

f
!
[π−1
X (M⊗ F )⊗π−1

X
DX EX ] = Rfπ ![π

−1(N ⊗ (G × CI Y ))⊗π−1DX|Y EX→Y ].

Hence, we are reduced to show that the canonical arrow

π−1OX ⊗f−1
π π−1

Y OY
f−1
π EY (0) −→ EX→Y (0)

induces an isomorphism

Rfπ ![π
−1(N ⊗ (G × CI Y ))⊗L

π−1DX|Y
(π−1OX ⊗f−1

π π−1
Y OY

f−1
π EY (0))] (7.4)

∼−→ Rfπ ![π
−1(N ⊗ (G × CI Y ))⊗π−1DX|Y EX→Y (0)]

As a matter of fact, EX→Y ' EX→Y (0) ⊗f−1
π EY (0) f

−1
π EY as a (DX |Y ,EY )-bimodule and a

scalar extension of (7.4) gives the theorem.

Using the realification process as in §4, we may assume from the beginning that Z

is a complexification of a real analytic manifold M and that G is supported by M .

Since the result is local on T ∗Y (hence on Y ), we may assume also that N has a

projective resolution L· by finite free DX |Y -modules (see Proposition 3.1).

As for G, we may assume it is isomorphic to a bounded complex T · of the type

0 −→ · · · ⊕
ia∈Ia

CIKa,ia −→ · · · ⊕
ik∈Ik

CIKk,ik −→ · · · ⊕ib∈Ib
CIKb,ib −→ 0

where the sets Ik are finite and Kk,ik is a subanalytic compact subset of M (see Propo-

sition 3.10).

Hence,

N ⊗ (F × CI Y ) ' L· ⊗ (T · × CI Y )

and the components of this last complex are finite direct sums of sheaves of the type

DX |Y ⊗ CIK×Y

where K is a subanalytic compact subset of M .

Note that

π−1(DX |Y ⊗ CIK×Y )⊗L
π−1DX|Y

(π−1OX ⊗f−1
π π−1

Y OY
f−1
π EY (0)) (7.5)

∼−→ π−1(OX)K×Y ⊗f−1
π π−1

Y OY
f−1
π EY (0)

π−1(DX |Y ⊗ CIK×Y )⊗π−1DX|Y EX→Y (0) (7.6)

∼−→ (EX→Y (0))K×T ∗Y
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The right hand side of (7.5) is acyclic for fπ ! thanks to usual properties of Stein

compact subsets. Moreover, Corollary 7.4 shows that the right hand side of (7.6) is also

acyclic for fπ!. Hence, the morphism (7.4) of Db(EY (0)) is represented in Cb(EY (0)) by

the morphism

fπ![π
−1(L· ⊗ (T · × CI Y ))⊗π−1DX|Y (π−1OX ⊗f−1

π π−1
Y OY

f−1
π EY (0))] (7.7)

−→ fπ ![π
−1(L· ⊗ (T · × CI Y ))⊗π−1DX|Y EX→Y (0)]

Let us denote by R· the complex

f![L· ⊗ (T · ⊗ CI Y )⊗DX|Y OX].

Its components are direct sums of sheaves of the type

f![(OX)K×Y ] ' Γ(K;OZ) ⊗̂ OY
which are DFN-free OY -modules. It is easy to check that the OY -linear differential of

R· is continuous with respect to the these natural topologies. Hence, we may consider

R· as a topological complex of DFN-free OY -modules. Using Corollary 7.4, we have

successively

Rfπ ![(EX→Y (0))K×T ∗Y ] ' Γ(K;OZ) ⊗̂ EY (0)

' [Γ(K;OZ) ⊗̂ π−1
Y OY ] ⊗̂π−1

Y OY
EY (0)

' π−1
Y f![(OX)K×Y ] ⊗̂π−1

Y OY
EY (0)

and (7.7) is represented as the canonical morphism

π−1R· ⊗π−1OY EY (0) −→ π−1R· ⊗̂π−1OY EY (0).

Since R· has OY -coherent cohomology, Proposition 3.13 allows us to conclude the proof.

2

Corollary 7.6 Let M be a coherent DX -module endowed with a good filtration. As-

sume:

(i) f is proper on suppM,

(ii) fπ is finite on tf ′−1(charM) ∩ (X ×Y Ṫ ∗Y ), where Ṫ ∗Y = T ∗Y \ T ∗Y Y .

Then, for j 6= 0, Hj(f
!
M) is a flat connection (i.e. its characteristic variety is contained

in the zero section).

Proof: The second hypothesis implies that f
!
(ME) is concentrated in degree zero on

Ṫ ∗Y . The first hypothesis and Theorem 7.5 imply that

(f
!
M)E ' f

!
(ME).

Hence, for j 6= 0, suppHj[(f
!
M)E] is contained in the zero section. Since E is flat over

π−1D, the conclusion follows easily. 2

This Corollary has important applications when studying correspondences of D-

modules, such as, for example, the Penrose correspondence. We refer the interested

reader to [5] for more details.
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8 Main corollaries

8.1 Extension to the non proper case

In this subsection, we shall generalize Theorems 4.2 and 5.15 to a non proper situation,

using the techniques of [8, 12].

Let f : X|S −→ Y |S be a morphism of complex manifolds over S and let ϕ : X −→
IR be a real analytic function. Set

Λϕ = {(x, dϕ(x)) : x ∈ X}.

This is a Lagrangian submanifold of T ∗X (which is not conic for a non locally constant

ϕ). We also associate to ϕ the following subsets of X:

Zt = {x ∈ X : ϕ(x) ≤ t},
Ut = {x ∈ X : ϕ(x) < t},

and denote by jt : Ut −→ X the open embedding. Recall finally that the image of a

subset S of T ∗X by the antipodal map is denoted by Sa.

Corollary 8.1 Let M and F be objects of Db
good(Dop

X |S) and Db
IR−c(X) respectively

and assume:

i) for each t ∈ IR, f is proper on suppM∩ suppF ∩ Zt,

ii) p−1charf |S(M) ∩ SS(F ) ⊂ T ∗XX,

iii) there is t0 ∈ IR such that

Λϕ ∩ (p−1charf |S(M) + SS(F )a) ⊂ π−1(Zt0).

Then:

a) setting

Ft = jt!j
−1
t F ' FUt ,

the canonical morphisms:

f |S!
(Ft ⊗M) −→ f |S!

(F ⊗M)

f |S∗(D
′Ft ⊗DX |S(M)) ←− f |S∗(D

′F ⊗DX |SM)

are isomorphisms for t > t0,

b) both

f |S!
(F ⊗M) and f |S∗(D

′F ⊗DX |S(M))

are objects of Db
good(Dop

Y |S),
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c) the natural duality morphism:

f |S∗(D
′F ⊗DX |S(M)) −→ DY |Sf |S!

(F ⊗M)

is an isomorphism.

Note that replacing SS(F ) by SS(F )a in hypothesis (iii), we get a similar conclusion

after interchanging f |S!
and f |S∗. Also note that it would be possible to generalize to

a non proper situation the results of §6 but for the sake of brevity, we leave it to the

reader.

Proof: Let x ∈ X. If x ∈ suppM∩ suppF and x 6∈ Zt0, then dϕ(x) 6∈ char(M) +

SS(F )a by hypothesis (iii) and in particular dϕ(x) 6= 0. Applying Proposition 5.4.8

of [12], we find for t > t0:

SS(Ft) ⊂ SS(F ) + IR+Λϕ

where IR+Λϕ = {(x;λdϕ(x)) : x ∈ X, λ > 0}. Since:

p−1charf |S(M) ∩ (SS(F ) + IR+Λϕ) ⊂ T ∗XX ∪ π−1(Zt0),

again by hypothesis (iii), we obtain that (M, Ft) satisfies the hypothesis of Theorems 4.2

and 5.15 for t > t0. Hence, the conclusions of these theorems apply to the pair (M, Ft)

and part (b) and (c) are consequences of part (a) which we shall now prove.

First, we consider the morphism

f |S!
(Ft ⊗M) −→ f |S!

(F ⊗M). (8.1)

SetG = F⊗M⊗LDX|SDX |S→Y |S. By Theorem 2.15, hypothesis (ii) and Proposition 5.4.14

of [12] we have:

SS(G) ⊂ SS(F ) + p−1charf |S(M).

Since

p−1charf |S(M) = p−1charf |S(M) + tf ′(X ×Y T ∗Y ),

the above morphism (8.1) is an isomorphism by Proposition 5.4.17 of [12].

To prove the second isomorphism in (a), consider the chain of isomorphisms which

follows from the regularity theorem applied first to Ft, then to F :

Rf∗(D
′Ft ⊗DX |SM⊗LDX|S DX |S→Y |S)

' Rf∗RHom(Ft, DX |SM⊗LDX|S DX |S→Y |S)

' Rf∗Rjt∗j
−1
t RHom(F,DX |SM⊗LDX|S DX |S→Y |S)

' Rf∗Rjt∗j
−1
t (D′F ⊗DX |SM⊗LDX|S DX |S→Y |S).

Set

G = D′F ⊗DX |SM⊗LDX|S DX |S→Y |S .
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Isomorphism (8.1) applied to (D′Ft, DX |SM) tells us in particular that the projective

system

Rf∗(D
′Ft ⊗DX |SM⊗LDX|S DX |S→Y |S)

is essentially constant for t > t0. Hence, the projective system Rf∗Rjt∗j
−1
t G is also

essentially constant for t > t0 and using the Mittag-Leffler theorem we get the isomor-

phism

Rf∗G ∼−→ Rf∗Rjt∗j
−1
t G

which completes the proof. 2

8.2 Special cases and examples

In this subsection, we will consider various special situations and give the corresponding

form of Theorem 4.2 and 5.15 leaving the reader do the same thing for Theorem 6.7.

First, let us specialize our results to the non relative case taking S = {pt}.

Corollary 8.2 Let f : X −→ Y be a morphism of complex analytic manifolds. Assume

(M,F ) is a good f -elliptic pair with f -proper support i.e.:

• M is an object of Db
good(Dop

X ),

• F is an object of Db
IR−c(X),

• charf (M) ∩ SS(F ) ⊂ T ∗XX,

• supp(M) ∩ supp(F ) is f -proper.

Then

• f
!
(M⊗ F ) is an object of Db

good(Dop
Y ),

• f
!
[DX(M)⊗D′F ] ∼−→ DY [f

!
(M⊗ F )].

When we take F = CIX in the preceding corollary we recover the coherence theorem

for D-modules of Kashiwara [9] (who treated only projective morphisms). Moreover,

using Corollary 8.1, we also recover the finiteness theorem for non proper morphisms

of [8] and the corresponding duality result of [24].

It is well known that an OX-module F is coherent if and only if the induced DX -

module F ⊗OX DX is itself coherent. Moreover, this scalar extension process is com-

patible with direct images and duality (see Proposition 5.11). Applying the preceding

corollary to the pair (F ⊗OX DX ,CIX) we recover Grauert’s coherence theorem [6] and

Ramis-Ruget-Verdier’s relative duality theorem [15, 16] in the important special case

of analytic manifolds.

Taking Y = {pt} in the preceding corollary, we get the following absolute result:

Corollary 8.3 Let X be a complex analytic manifold. Assume (M,F ) is a good elliptic

pair with compact support i.e.:
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• M is an object of Db
good(Dop

X ),

• F is an object of Db
IR−c(X),

• char(M) ∩ SS(F ) ⊂ T ∗XX,

• supp(M) ∩ supp(F ) is compact.

Then the complexes

RΓ(X;M⊗ F ⊗LDX OX) and RΓ(X;RHomDX (M⊗ F,ΩX[dX ]))

have finite dimensional cohomology and are dual one to each other.

In the special case where F = CIX , we get an absolute finiteness and duality result

for good DX -modules which was considered by Mebkhout in [14]. For coherent analytic

sheaves, the preceding corollary corresponds to the very classical Cartan-Serre [4] and

Serre [26]’s theorems.

In the case Y = S, Theorem 4.2 and 5.15 give information on analytic families of

absolute elliptic pairs.

Corollary 8.4 Let X|S be a relative analytic manifold and let (M, F ) be a relative

elliptic pair on X|S i.e.:

• M is an object of Db
good(Dop

X |S),

• F is an object of Db
IR−c(X),

• p−1charX |S(M) ∩ SS(F ) ⊂ T ∗XX,

• supp(M) ∩ supp(F ) is εX-proper,

where p : T ∗X −→ T ∗X|S is the canonical projection. Then

Rf!(F ⊗M⊗LDX|S OX) and Rf!RHomDX|S (F ⊗M,ΩX |S[dX |S])

are objects of Db
coh(OS), dual one to each other, i.e. the canonical morphism:

Rf!RHomDX|S (F ⊗M,ΩX |S[dX |S]) −→ RHomOS(Rf!(F ⊗M⊗LDX|S OX),OS)

is an isomorphism.

Combining the preceding corollary with the base change formula, we get:

Corollary 8.5 Let X|S be a relative analytic manifold. For any s ∈ S, denote by bs
the canonical inclusion of {s} in S. Assume (M,F ) is a good relative elliptic pair with

ε-proper support on X|S. Then for any s ∈ S, (Mbs,Fbs) is a good elliptic pair with

compact support (on a neighborhood of suppMbs in Xbs , the fiber of X over s) and

the Euler-Poincaré index:

χ(RΓ(Xbs ;Mbs ⊗ Fbs ⊗LDXbs
OXbs))

is a locally constant function on S.
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Proof: Let us denote by I the ideal of holomorphic functions vanishing at s. The base

change Theorem 6.5 tells us that:

RΓ(Xbs ;Mbs ⊗ Fbs ⊗LDXbs
OXbs) = [OS/I ⊗LOS Rε∗(M⊗ F ⊗

L
DX|S
OX)]s.

We know by the finiteness theorem that

Rε∗(M⊗ F ⊗LDX|S OX)

has OS coherent cohomology. Hence, it is locally quasi-isomorphic to a bounded com-

plex of finite free OS-modules. The conclusion follows easily since [OS/I]s = CI .

2

Remark 8.6 Let P0 : E −→ F , P1 : E −→ F be two complex analytic linear differen-

tial operators between holomorphic vector bundles on X. Assume that their principal

symbols induce the same morphism of fiber bundles

σ : π−1E −→ π−1F.

Then, Pλ = (1 − λ)P0 + λP1 is a one parameter analytic family of operators with

principal symbols equal to σ. Combining this remark with the preceding corollary, we

recover, for example, the fact that the index of an elliptic operator on a compact real

analytic manifold depends only on its principal symbol.

Let us now consider a few explicit examples. For the sake of brevity, we only consider

non-relative situations.

Example 8.7 Let M be a real analytic manifold with X as a complexification andM
a good DX -module. Then, as we have already noticed in the introduction,M is elliptic

on M in the classical sense if and only if (M,CIM ) is elliptic. In fact, SS(CIM ) = T ∗MX.

Since CIM ⊗OX = AM , the sheaf of real analytic functions on M and

RHom(D′CIM ,OX) = BM

the sheaf of Sato’s hyperfunctions, the regularity theorem 2.15 entails the isomorphism:

RHomDX (M,AM) ' RHomDX (M,BM). (8.2)

This is the Petrowski theorem for D-modules which is often proved using micro-diffe-

rential equations as in [18]. Moreover, if M is compact and M is good, Corollary 8.3

asserts that the spaces

Hj(RΓ(M ;RHomDM (M,BM))) = ExtjDM
(M ;M,BM)

and

Hn−j(RΓ(M ; ΩM ⊗LDM M)) = TorDM
j−n(M ; ΩM ,M),

are finite dimensional and dual to each other. Note that for solutions of elliptic operators

the duality and finiteness theorems are well-known results.
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Example 8.8 Let X be a complex manifold, U an open subset with real analytic

boundary. Then (M,CI U) is an elliptic pair if and only if the boundary ∂U is non

characteristic for M, that is, char(M) ∩ T ∗∂UX ⊂ T ∗XX. The regularity theorem yields

the isomorphism:

RHomDX (M, (OX)U ) ∼−→ RHomDX (M,RΓU (OX)). (8.3)

In other words, the holomorphic solutions on U of the systemM extend holomorphically

through the boundary. If U is relatively compact, andM is good, we get that the spaces

ExtjDX
(U,M,OX) and TorDX

j−n(U ; ΩX ,M) are finite dimensional and dual to each other.

Note that the regularity theorem is due to Zerner [27] (for the 0-th cohomology)

and [2], both in case of one equation with one unknown, then to Kashiwara [10] for

systems. The finiteness theorem is due to [2], this last result being extended in various

directions by Kawai [13].

Example 8.9 One can generalize both preceding examples as follows. Let M be a real

analytic manifold, X being a complexification of M and let U be an open subset of

M with real analytic boundary. Then (M,CIU ) is an elliptic pair if and only if M is

elliptic on M on a neighborhood of U and moreover the conormal vectors to ∂U in M

are hyperbolic with respect to M. Then we get the isomorphism:

RHomDX (M, (AM)U) ∼−→ RHomDX (M,ΓU(BM)).

(i.e.: the hyperfunction solutions of M on U are real analytic and extend analytically

through the boundary), and we also get finiteness and duality results that we do not

develop here.

Example 8.10 A general situation including the preceding examples is the following.

Let X =
⊔
αXα be a subanalytic µ-stratification (cf. [12, Chap. VIII]) and assume:{

SS(F ) ⊂ ⊔
α T
∗
Xα
X,

char(M) ∩ T ∗XαX ⊂ T ∗XX ∀α. (8.4)

(In other words, F is locally constant on the strata Xα and these strata are non

characteristic for M.)

Then of course, the pair (M, F ) is elliptic. If, moreover, supp(M) ∩ supp(F ) is

compact we may apply Theorem 4.2 and Theorem 5.15 and we obtain new finiteness

and duality results.

Example 8.11 For any F ∈ Ob(Db
IR−c(X)), the pair (OX, F ) is elliptic. Since F '

ΩX ⊗LDX OX ⊗ F [−n] and D′F ' RHomDX (F ⊗ OX,OX), one recovers the classical

finiteness and duality theorem on constructible sheaves. In fact if M is a real analytic

manifold and i : M ↪→ X denote a complexification of M , to G ∈ Ob(Db
IR−c(M)) one

associates the elliptic pair (OX, i∗G).
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Example 8.12 LetM be a holonomic DX -module and let x0 ∈ X. Let B(x0, ε) denote

the open ball with center x0 and radius ε > 0 in some local chart at x0. By a result of

Kashiwara [10], the pair (M,CIB(x0,ε)) is elliptic for 0 < ε� 1. If X is open in CI n and

F ∈ Ob(Db
IR−c(X)) has compact support, one proves similarly that (M, F ∗ CIB(0,ε)) is

elliptic for 0 < ε � 1. (Here “∗” denotes the convolution of sheaves; cf. [12] Exercise

2.20.)
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Sci. Paris 303 (1986), 235–238.
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