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Abstract

In this paper, we show that the category Bc of bornological vector spaces
of convex type and the full subcategories

_
B c and B̂c formed by separated

and complete objects form quasi-abelian categories. This allows us to study

them from a homological point of view. In particular, we characterize acyclic
inductive systems and prove that although the categories Bc (resp.

_
B c, Ban)

and the categories Ind(Sns) (resp. Ind(N vs), Ind(Ban)) formed by the ind-
objects of the category of semi-normed vector spaces (resp. normed vector

spaces, Banach spaces) are not equivalent, there is an equivalence between
their derived categories given by a canonical triangulated functor which pre-

serves the left t-structures. In particular these categories have the same left
heart; a fact which means roughly that they have the same homological alge-

bra. As a consequence, we get a link between the theory of sheaves of complete
bornological spaces and that of sheaves with values in Ind(Ban) used in [4].

0 Introduction

In this paper, we study from the point of view of homological algebra the category

Bc of bornological vector spaces of convex type and its full subcategories
_
B c and

B̂c formed by separated and complete objects. Although these categories are not

abelian, they are quasi-abelian and so we can take advantage of the tools developed

in [5]. Our motivation for starting this work was to understand the link between

these categories and the categories of Ind (Sns) (resp. Ind(Nvs), Ind(Ban)) formed

by the ind-objects of the category Sns (resp. Nvs, Ban) of semi-normed vector

spaces (resp. normed vector spaces, Banach spaces) used in [5] and in [4] to con-

struct convenient categories of topological sheaves. Our main is being that although

the categories Bc (resp.
_
Bc, Ban) and Ind(Sns) (resp. Ind (Nvs), Ind(Ban)) are
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not equivalent, there is an equivalence between their derived categories given by a

canonical triangulated functor which preserves the left t-structures. In particular

these categories have the same left heart; a fact which means roughly that they have

the same homological algebra. Note that the left heart LH(Bc) associated to Bc

coincide with the category of “quotient bornological spaces” considered by L. Wael-

broek some years ago. Note also that among our results is the somewhat astonishing

fact that the left heart LH(
_
B c) associated to

_
B c is equivalent to LH(Bc).

Let us now describe with some details the contents of this paper.

We begin Section 1 by recalling a few basic facts about bornological vector spaces

of convex type and by establishing that they form a quasi-abelian category. We also

characterize the strict morphisms of this category and prove that direct sums and

direct products are kernel and cokernel preserving; a fact which will allow us to

apply the results of [2] to study derived inductive limits in Bc.

Section 2 is devoted to the properties of the filtering inductive systems of Bc.

Our first result is an explicit characterization of acyclic ones by means of condition

SC’ (a kind of dual Mittag-Leffler condition). We also establish that semi-normed

spaces are small as objects of Bc and that Bc has enough projective objects.

In Section 3, we consider the relation between Bc and Ind (Sns). We show

first that Bc may be identified with the full subcategory of Ind(Sns) formed by the

essentially monomorphic objects. Next, we establish that Bc and Ind (Sns) generate

equivalent derived categories and equivalent left hearts.

The study of the category
_
B c of separated objects of Bc is performed in Section 4.

We show first that this category is quasi-abelian, that it has enough projective

objects, that direct sums are cokernel preserving and that direct sums are strictly

exact. Next, we consider the inclusion of
_
Bc into Bc and its left adjoint and show

that they induce inverse equivalences at the level of derived categories. Finally,

we identify
_
B c with the full subcategory of Ind (Nvs) formed by the essentially

monomorphic objects. We conclude by showing that
_
B c and Ind(Nvs) generate

equivalent derived categories and equivalent left hearts.

Section 5 is concerned with completeness. We follow roughly the same plan as

in Section 4 and get the same type of result but of the proofs are slightly more

involved. As a bonus, we gain a rather good understanding of the derived functor

of the completion functor Ĉpl : Bc −→ B̂c.

In the Appendix, we have gathered a few facts about the essentially monomorphic

ind-objects of a quasi-abelian category which are well-known in the abelian case but

which lacked a proof in the quasi-abelian one.

To conclude, let us point out that a study of the homological algebra of the

category of locally convex topological vector spaces using similar techniques was

performed in [3].

Fabienne Prosmans — Jean-Pierre Schneiders
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1 The category Bc

Definition 1.1. We denote by Bc the category of bornological C-vector spaces of

convex type in the sense of Houzel [1].

An object E of Bc is thus a C-vector space endowed with a bornology of convex

type i.e. a family BE of subsets of E such that

(a) if B ∈ B and B ′ ⊂ B then B ′ ∈ B;

(b) if B1, B2 ∈ B then B1 ∪ B2 ∈ B;

(c) if B ∈ B and λ > 0 then λB ∈ B;

(d) if B ∈ B then the absolutely convex hull 〈B〉 of B belongs to B;

(e) for any x ∈ E, {x} ∈ B.

For short, we call the elements of BE the bounded subsets of E.

A morphism of Bc is a C-linear map

u : E −→ F

such that u(B) is bounded in F for any B bounded in E.

It is well-known that the category Bc has direct sums and direct products. Their

structure is recalled hereafter.

Proposition 1.2. Let (Ei)i∈I be a small family of objects of Bc. Then,

(a) the C-vector space ⊕

i∈I

Ei

endowed with the bornology

{B : B ⊂
⊕

i∈I

Bi, Bi bounded in Ei for any i ∈ I, {i ∈ I : Bi 6= {0}} finite}

together with the canonical morphisms

si : Ei −→
⊕

i∈I

Ei

is a direct sum of (Ei)i∈I in Bc,

Fabienne Prosmans — Jean-Pierre Schneiders
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(b) the C-vector space ∏

i∈I

Ei

endowed with the bornology

{B : B ⊂
∏

i∈I

Bi, Bi bounded in Ei for any i ∈ I}

together with the canonical morphisms

pi :
∏

i∈I

Ei −→ Ei

is a direct product of (Ei)i∈I .

Remark 1.3. The notation ⊕

i∈I

Bi

used in the preceding proposition means as usual

{
∑

i∈I

si(bi) : bi ∈ Bi for any i ∈ I};

this has a meaning since {i ∈ I : Bi 6= {0}} is finite. As for the notation

∏

i∈I

Bi,

it means of course

{x ∈
∏

i∈I

Ei : pi(x) ∈ Bi for any i ∈ I}.

Definition 1.4. Let E be an object of Bc, let F be a C-vector subspace of E. The

set

{B ∩ F : B bounded in E}

is clearly a bornology on F . We call it the induced bornology.

Similarly, if q : E −→ E/F denotes the canonical morphism, the set

{q(B) : B bounded in E}

forms a bornology on E/F called the quotient bornology.

With this definition at hand, one checks easily that

Fabienne Prosmans — Jean-Pierre Schneiders
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Proposition 1.5. The category Bc is additive. Moreover, if u : E −→ F is a

morphism of Bc, then

(a) Keru is the subspace u−1(0) of E endowed with the induced bornology;

(b) Cokeru is the quotient space F/u(E) endowed with the quotient bornology;

(c) Imu is the subspace u(E) of F endowed with the induced bornology;

(d) Coimu is the quotient space E/u−1(0) endowed with the quotient bornology.

As a consequence we have the following characterization of the strict morphisms

of Bc.

Proposition 1.6. A morphism u : E −→ F of Bc is strict if and only if for any

bounded subset B of F , there is a bounded subset B ′ of E such that

B ∩ u(E) = u(B ′).

Proof. By definition, u : E −→ F is strict if and only if the canonical morphism

ũ : Coimu −→ Imu is an isomorphism. Thanks to the preceding proposition, this

canonical morphism is the morphism

ũ : E/u−1(0) −→ u(E)

defined by

ũ([e]u−1(0)) = u(e) ∀ e ∈ E.

It is thus a bijective linear map. Therefore, it will be an isomorphism in Bc if and

only if it exchanges the quotient bornology on E/u−1(0) with the induced bornology

on u(E). Going back to the definition of these bornologies, we get the conclusion.

Corollary 1.7. Let u : E −→ F be a morphism of Bc. Then,

(a) u is a strict monomorphism if and only if u is an injective map such that

u−1(B) is a bounded subset of E for any bounded subset B of F ;

(b) u is a strict epimorphism if and only if u is a surjective map such that for any

bounded subset B of F there is a bounded subset B ′ of E with B = u(B ′).

Proposition 1.8. The category Bc is quasi-abelian.

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. We know that Bc is additive and has kernels and cokernels.

(i) Consider a cartesian square

M0
u

// N0

M1

f

OO

v
// N1

g

OO

where u is a strict epimorphism and let us show that v is a strict epimorphism.

Recall that if we set

α =
(
u −g

)
: M0 ⊕ N1 −→ N0,

then we may assume that

M1 = Kerα = {(m0, n1) : u(m0) = g(n1)}

and that

f = pM0 ◦ iα and v = pN1 ◦ iα

where iα : Kerα −→ M0 ⊕ N1 is the canonical monomorphism and pM0 , pN1 are the

canonical morphisms associated to the direct product M0 ⊕ N1.

Of course, the morphism v is surjective. Let us prove that it is strict. Consider

a bounded subset B1 of N1. Since g(B1) is a bounded subset of N0 and since u is

strict, there is a bounded subset B0 of M0 such that

g(B1) = u(B0).

Since p−1
M0

(B0) ∩ p−1
N1

(B1) is a bounded subset of M0 ⊕ N1,

α−1(0) ∩ p−1
M0

(B0) ∩ p−1
N1

(B1)

is a bounded subset of M1 and a direct computation shows that

v
(
α−1(0) ∩ p−1

M0
(B0) ∩ p−1

N1
(B1)

)
⊃ B1.

The conclusion follows.

(ii) Consider a cocartesian square

M1
v

// N1

M0

f

OO

u
// N0

g

OO

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 7

where u is a strict monomorphism. Let us show that v is a strict monomorphism.

Recall that if we set

α =

(
f

−u

)
: M0 −→M1 ⊕ N0,

then we may assume that

N1 = Cokerα = (M1 ⊕ N0)/α(M0),

and that

v = qα ◦ sM1 and g = qα ◦ sN0

where qα : M1⊕N0 −→ (M1⊕N0)/α(M0) is the canonical epimorphism and sM1, sN0

are the canonical morphisms associated to the direct sum M1 ⊕ N0.

Clearly, the morphism v is injective. Let us prove that it is strict. Let B1 be

a bounded subset of N1 and let B be a bounded subset of M1 ⊕ N0 such that

B1 = qα(B). It is sufficient to show that v−1(qα(B)) is bounded in M1. Since B is

a bounded subset of M1 ⊕ N0, there are absolutely convex bounded subsets B ′
1, B0

of M1 and N0 such that

B ⊂ B ′
1 ⊕ B0.

Since u is a strict monomorphism, B ′
0 = u−1(B0) is an absolutely convex bounded

subset of M0. A simple computation shows that

v−1(qα(B)) ⊂ B ′
1 + f(B ′

0) ⊂ 2 〈B ′
1 ∪ f(B ′

0)〉

and the conclusion follows.

Proposition 1.9. The category Bc is complete and cocomplete. Moreover, direct

sums and direct products are kernel and cokernel preserving.

Proof. Since Bc has kernels and direct products, (resp. cokernels and direct sums),

Bc has projective (resp. inductive) limits. Hence, Bc is complete (resp. cocomplete).

We know that direct sums are cokernel preserving. Let us show that they are

kernel preserving. Consider a family (ui : Ei −→ Fi)i∈I of morphisms of Bc. For any

i ∈ I, denote Ki the kernel of ui and ki : Ki −→ Ei the canonical morphism. It is

clear that

0 −→
⊕

i∈I

Ki

⊕
i∈I ki

−−−−→
⊕

i∈I

Ei

⊕
i∈I ui

−−−−→
⊕

i∈I

Fi

is an exact sequence of vector spaces. Let us show that it is strictly exact. Let B

be a bounded subset of
⊕

i∈I Ei. By Corollary 1.7, it is sufficient to show that

(
⊕

i∈I

ki)
−1(B)

Fabienne Prosmans — Jean-Pierre Schneiders
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is bounded in
⊕

i∈I Ki. We know that

B ⊂
⊕

i∈I

Bi

where Bi is a bounded subset of Ei and the set A = {i : Bi 6= {0}} is finite.

Moreover, k−1
i (Bi) is a bounded subset of Ki for any i ∈ I and k−1

i (Bi) = {0} for

i ∈ I \A since ki is injective. It follows that

⊕

i∈I

k−1
i (Bi)

is a bounded subset of
⊕

i∈I Ki. Since

(
⊕

i∈I

ki)
−1(B) ⊂

⊕

i∈I

k−1
i (Bi)

the conclusion follows.

A similar reasoning gives the result for direct products.

2 Filtering inductive limits in Bc

Let I be a small filtering preordered set. Hereafter, we will often view I as a small

category. This allows us to identify the category of inductive systems of objects of

Bc indexed by I with the category BcI of functors from I to Bc. If E is an object

of this category, we will denote by (Ei, eij) the corresponding inductive system and

we will denote ri the canonical morphism

Ei −→ lim−→
i∈I

Ei.

The following result is easily checked.

Proposition 2.1. Let I be a small filtering preordered set and let E be an object

of BcI. Then, the bornology on

lim−→
i∈I

Ei

is formed by the sets B such that

B ⊂ ri(Bi)

for some i ∈ I and some bounded subset Bi of Ei.

Fabienne Prosmans — Jean-Pierre Schneiders
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Definition 2.2. LetI be a small filtering preordered set. We say that an inductive

system E ∈ BcI satisfies condition SC’ if for any i ∈ I and any bounded subset B

of Ei, there is j ≥ i such that

B ∩ Ker ri ⊂ Ker eji

or, equivalently, if the sequence

(B ∩ Ker eji)j≥i

of subsets of Ei is stationary.

Hereafter, we will use freely the theory of the derivation of inductive limits in

quasi-abelian categories developed in [2].

Lemma 2.3. Let I be a small filtering preordered set and let

0 −→ E ′ u′

−→ E
u′′

−→ E ′′ −→ 0

be a strictly exact sequence of BcI . Assume that E ′′ satisfies condition SC’. Then,

0 −→ lim
−→
i∈I

E ′
i

lim−→
i∈I

u′i

−−−→ lim
−→
i∈I

Ei

lim−→
i∈I

u′′i

−−−→ lim
−→
i∈I

E ′′
i −→ 0

is a strictly exact sequence of Bc.

Proof. We already know that the considered sequence is an exact sequence of vector

spaces. Since inductive limits are cokernel preserving, it remains to prove that lim−→
i∈I

u′i

is strict. Let B be an arbitrary bounded subset of lim−→
i∈I

Ei. By Corollary 1.7, it is suf-

ficient to show that (lim−→
i∈I

u′i)
−1(B) is a bounded subset of lim−→

i∈I

E ′
i. By Proposition 2.1,

we know that there is i ∈ I and a bounded subset Bi of Ei such that B ⊂ ri(Bi).

Set

Ci = Bi ∩ r−1
i (Ker(lim−→

i∈I

u′′i )).

Since u′′i (Ci) is a bounded subset of E ′′
i such that

r′′i (u
′′
i (Ci)) = 0,

it follows from our assumption that there is j ≥ i such that

e′′ji(u
′′
i (Ci)) = 0.

Fabienne Prosmans — Jean-Pierre Schneiders
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Therefore,

eji(Ci) ⊂ Keru′′j

and since u′j is a strict monomorphism of Bc, there is a bounded subset B ′
j of E ′

j

such that

eji(Ci) ⊂ u′j(B
′
j).

Hence for any k ≥ j,

eki(Ci) ⊂ u′k(e
′
kj(B

′
j))

and

r′k(u
′
k

−1
(eki(Ci))) ⊂ r′j(B

′
j).

Since one checks easily that

(lim
−→
i∈I

u′i)
−1(B) ⊂

⋃

k≥j

r′k(u
′
k

−1
(eki(Ci))),

it follows that

(lim
−→
i∈I

u′i)
−1(B) ⊂ r′j(Bj).

Therefore

(lim−→
i∈I

u′i)
−1(B)

is a bounded subset of lim
−→
i∈I

E ′
i and the proof is complete.

Lemma 2.4. Let I be a small filtering preordered set. Then,

(a) any object of BcI of coproduct type satisfies condition SC’;

(b) if E −→ P is a monomorphism in BcI and if P satisfies condition SC’, then E

also satisfies condition SC’.

(c) In particular, the full subcategory of BcI formed by the objects satisfying

condition SC’ is a lim
−→
i∈I

-projective subcategory.

Proof.

(a) This follows from the fact that the transitions of an inductive system of

coproduct type are monomorphic.

(b) This is obvious.

(c) This follows from the preceding lemma combined with (a) and (b) and the

fact that any object of BcI is a strict quotient of an object of coproduct type.

Fabienne Prosmans — Jean-Pierre Schneiders
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Lemma 2.5. Let I be a small filtering preordered set and let E be an object of

BcI. If

RH1(Llim−→
i∈I

Ei) ∈ Bc,

then E satisfies condition SC’.

Proof. Since direct sums are exact in Bc, Llim−→
i∈I

Ei is represented by the negative

Roos complex R·(I,E). Our assumption means that the differential

R1(I,E)
d

// R0(I,E)

⊕

i≤j

Ei
//
⊕

i

Ei

is strict. Recall that

d ◦ sij = sj ◦ eji − si (i ≤ j)

where sij : Ei −→
⊕

i≤j Ei, si : Ei −→
⊕

i Ei denote the canonical inclusions. Recall

also that the augmentation

ε : R0(I,E) −→ lim
−→
i∈I

Ei

is defined by

ε ◦ si = ri ∀i ∈ I.

Let i0 ∈ I, let B be a bounded subset of Ei0 and consider the bounded subset

si0(B ∩ r−1
i0

(0))

of
⊕

i∈I Ei. By construction ε(si0(B ∩ r−1
i0

(0))) = 0, hence si0(B ∩ r−1
i0

(0)) ⊂ Im d.

Since d is assumed to be strict, there is a bounded subset B ′ of
⊕

i≤j Ei such that

si0(B ∩ r−1
i0

(0)) ⊂ d(B ′).

Using the structure of bornology of
⊕

i≤j Ei, we see that

B ′ ⊂
⊕

i≤j

B ′
ij

where B ′
ij is a bounded subset of Ei for any i ≤ j, the set

S = {(i, j) : i ≤ j, B ′
ij 6= {0}}

Fabienne Prosmans — Jean-Pierre Schneiders
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being finite. Since I is filtering, there is an element k of I such that k ≥ i0 and

k ≥ j for any (i, j) ∈ S. Denote

π :
⊕

i

Ei −→
⊕

i≤k

Ei

the canonical projection and

τ :
⊕

i≤k

Ei −→ Ek

the morphism defined by setting

τ ◦ σi = eki (i ≤ k)

where σi : Si −→
⊕

i≤k Si is the canonical inclusion. It follows from the definition of

d and k that

τ ◦ π ◦ d(B ′) = 0.

Hence

τ ◦ π(si0(B ∩ r−1
i0

(0))) = 0.

Since

τ ◦ π ◦ si0 = τ ◦ σi0 = eki0,

the proof is complete.

Proposition 2.6. Let I be a small filtering preordered set and let E be an object

of BcI. Then, the following conditions are equivalent:

(a) E is lim−→
i∈I

-acyclic (i.e. the canonical morphism

Llim−→
i∈I

Ei −→ lim−→
i∈I

Ei

is an isomorphism in D−(Bc));

(b) E satisfies condition SC’.

Proof.

(a) ⇒ (b). This is a direct consequence of Lemma 2.5.

(b) ⇒ (a). This follows from part (c) of Lemma 2.4.

Corollary 2.7. Let I be a small filtering preordered set and let E be an object of

BcI. Then

RHk(Llim−→
i∈I

Ei) = 0 for k ≥ 2.

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. Using Lemma 2.4, we see directly that E has a resolution of the form

0 −→ P1 −→ P0 −→ E −→ 0

where P0, P1 satisfy condition SC’. The conclusion follows easily.

Definition 2.8. For any object E of Bc, B̃E the set of absolutely convex bounded

subsets of E. Of course, the inclusion B̃E ⊂ BE is cofinal. If B ∈ B̃E, we denote EB

the semi-normed space obtained by endowing the linear hull of B with the gauge

semi-norm pB defined by setting

pB(x) = inf{λ ≥ 0 : x ∈ λB}

for any x in EB. When considered as a bornological space, EB will always be

endowed with its canonical bornology i.e.

{B ′ : B ′ ⊂ λB for some λ ≥ 0}.

Proposition 2.9. For any object E of Bc, the canonical morphism

u : lim
−→

B∈B̃E

EB −→ E

is an isomorphism.

Proof. Consider the map

v : E −→ lim−→
B∈B̃E

EB

defined by setting

v(e) = r〈{e}〉(e) ∀e ∈ E.

A direct computation shows that v is linear. Moreover, the image by v of a bounded

subset B of E is bounded since

v(B) ⊂ r〈B〉(〈B〉).

It follows that v is a morphism of Bc. By construction u ◦ v = id and one checks

easily that v ◦ u = id; hence the conclusion.

Proposition 2.10. Let I be a small filtering preordered set, let E be an object of

BcI and let F be an object of Sns. Assume E satisfies condition SC’. Then, the

canonical morphism

lim
−→
i∈I

HomBc(F,Ei) −→ HomBc(F, lim
−→
i∈I

Ei)

is an isomorphism.

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. Let ϕ be the morphism considered in the statement. Denote

ri : Ei −→ lim
−→
i∈I

Ei

and

r′i : HomBc(F,Ei) −→ lim−→
i∈I

HomBc(F,Ei)

the canonical morphisms. Recall that ϕ is characterized by the fact that

ϕ(r′i(hi)) = ri ◦ hi

for any hi ∈ HomBc(F,Ei).

Let us show that ϕ is injective. Fix hi : F −→ Ei and assume ϕ(r′i(hi)) = 0. It

follows from the formula recalled above that ri ◦ hi = 0. Denote bF the unit ball of

F . We have hi(bF ) ⊂ r−1
i (0) and, since E satisfies condition SC’, there is j ≥ i such

that hi(bF ) ⊂ e−1
ji (0). For such a j, we have by linearity eji ◦ hi = 0. So r′i(hi) = 0

as expected.

Let us now prove the surjectivity of ϕ. Fix

h : F −→ lim−→
i∈I

Ei.

Since h(bF ) is a bounded subset of the inductive limit, there is i ∈ I and an absolutely

convex bounded subset Bi of Ei such that

h(bF ) ⊂ ri(Bi).

Using our assumptions, we find j ≥ i such that

Bi ∩ r−1
i (0) ⊂ Bi ∩ e−1

ji (0).

Set Bj = eji(Bi) and Lj = (Ej)Bj
. By construction,

rj : Lj −→ lim−→
i∈I

Ei

is injective and

h(F ) ⊂ rj(Lj).

It follows that there is a unique linear map hj : F −→ Lj such that rj ◦hj = h. Since

hj(bF ) ⊂ Bj, this map is in fact a morphism of Bc. Composing hj with the inclusion

of Lj into Ej , we get a morphism h′j : F −→ Ej such that ϕ(r′j(h
′
j)) = h; hence the

conclusion.

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 15

Corollary 2.11. Any semi-normed space E is a small object of Bc. More explicitly,

for any family (Ei)i∈I of Bc the canonical morphism
⊕

i∈I

HomBc(E,Ei) −→ HomBc(E,
⊕

i∈I

Ei)

is an isomorphism.

Proof. We have only to note that
⊕

i∈I

Ei = lim−→
J∈Pf(I)

⊕

j∈J

Ej

where Pf(I) is the ordered set formed by the finite subsets of I.

Lemma 2.12. Any projective object of Sns is projective in Bc.

Proof. Let P be a projective object of Sns and let f : E −→ F be a strict epimor-

phism of Bc. For any B ∈ B̃E, f : EB −→ Ff(B) is clearly a strict epimorphism of Bc

and hence of Sns. Therefore, the sequences

HomSns(P,EB) //

�O

��

HomSns(P,Ff(B)) //

�O

��

0

HomBc(P,EB) // HomBc(P,Ff(B)) // 0

are exact. Inductive limits being exact in the category of abelian groups, the se-

quence

lim−→
B∈B̃E

HomBc(P,EB) −→ lim−→
B∈B̃E

HomBc(P,Ff(B)) −→ 0

is also exact. By Proposition 2.10 combined with Proposition 2.9, we have

lim−→
B∈B̃E

HomBc(P,EB) ' HomBc(P,E).

Since f : E −→ F is a strict epimorphism, by Corollary 1.7, the inclusion

{f(B) : B ∈ B̃E} ⊂ B̃F

is cofinal. It follows that

lim−→
B∈B̃E

HomBc(P,Ff(B)) ' lim−→
B∈B̃F

HomBc(P,FB) ' HomBc(P,F ).

Therefore, the sequence

HomBc(P,E) −→ HomBc(P,F ) −→ 0

is exact and P is projective in Bc.
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Proposition 2.13. The category Bc has enough projective objects.

Proof. Let E be an object of Bc. Consider the canonical morphism
⊕

B∈B̃E

EB −→ E

induced by the inclusions

EB −→ E.

This is clearly a strict epimorphism. Since Sns has enough projective objects ([5,

Proposition 3.2.11]), for any B ∈ B̃E, there is a strict epimorphism of the form

PB −→ EB

where PB is a projective object of Sns. By Lemma 2.12, PB is still projective in Bc.

Direct sums being cokernel preserving in Bc,
⊕

B∈B̃E

PB −→
⊕

B∈B̃E

EB

is a strict epimorphism. By composition, we get a strict epimorphism
⊕

B∈B̃E

PB −→ E

and the conclusion follows from the fact that a direct sum of projective objects is a

projective object.

3 Relations between Bc and Ind(Sns)

Definition 3.1. Let

S : Bc −→ Ind(Sns)

be the functor which associates to any object E of Bc the object

“lim−→”
B∈B̃E

EB

of Ind(Sns) and let

L : Ind(Sns) −→ Bc

be the functor defined by setting

L(“lim−→”
i∈I

Ei) = lim−→
i∈I

Ei

for any functor E : I −→ Sns.
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Remark 3.2. If E is an object of Sns, then

S(E) ' “E”.

As a matter of fact, if bE is the unit ball of E, we know that

{rbE : r > 0}.

is a cofinal subset of B̃E. Since for any r > 0, we have ErbE
' EbE

' E, the

conclusion follows.

Proposition 3.3.

(a) For any object X of Sns and any object E of Bc, we have

Hom Ind(Sns)(“X”,S(E)) ' HomBc(X,E).

(b) If (Ei)i∈I is a small family of Bc, then

S(
⊕

i∈I

Ei) '
⊕

i∈I

S(Ei).

Proof. (a) We have successively

Hom Ind(Sns)(“X”,S(E)) ' Hom Ind(Sns)(“X”, “lim
−→

”
B∈B̃E

EB)

' lim−→
B∈B̃E

HomSns(X,EB)

' HomBc(X, lim−→
B∈B̃E

EB)

where the last isomorphism comes from Proposition 2.10. Combining this with

Proposition 2.9 gives us the announced result.

(b) For any object X of Sns, we have

Hom Ind(Sns)(“X”,S(
⊕

i∈I

Ei)) ' HomBc(X,
⊕

i∈I

Ei)

'
⊕

i∈I

HomBc(X,Ei) (*)

'
⊕

i∈I

Hom Ind(Sns)(“X”,S(Ei))

' Hom Ind (Sns)(“X”,
⊕

i∈I

S(Ei))

where the isomorphism (*) follows from Corollary 2.11 and the last isomorphism

comes from [2, Proposition 7.1.9].
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Proposition 3.4. Let E be an object of Bc and let F be an object of Ind(Sns).

Then,

(a) there is a canonical isomorphism

HomBc(L(F ), E) = Hom Ind(Sns)(F,S(E));

(b) the canonical morphism

L ◦ S(E) −→ E

is an isomorphism;

(c) the following conditions are equivalent:

(i) the canonical morphism F −→ S ◦ L(F ) is an isomorphism;

(ii) F is in the essential image of S;

(iii) F is essentially monomorphic.

Proof. Assume F = “lim−→”
i∈I

Fi

(a) We have successively

HomBc(L(F ), E) ' HomBc(lim−→
i∈I

Fi, E)

' lim←−
i∈I

HomBc(Fi, E)

' lim←−
i∈I

lim−→
B∈B̃E

HomBc(Fi, EB) (*)

' Hom Ind(Sns)(“lim−→”
i∈I

Fi, “lim−→”
B∈B̃E

EB)

' Hom Ind(Sns)(F,S(E))

where the isomorphism (*) follows from Proposition 2.10 and Proposition 2.9

(b) This is another way to state Proposition 2.9.

(c) It is sufficient to prove that (i) ⇒ (ii) ⇒ (iii) ⇒ (i).

(i) ⇒ (ii). This is obvious.

(ii) ⇒ (iii). Assume F ' S(E). Then,

F ' “lim−→”
B∈B̃E

EB.

Since iB′B : EB −→ EB′ is the canonical inclusion, (EB, iB′B)B∈B̃E
is an inductive

system with injective transitions. Hence, F is essentially monomorphic.
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(iii) ⇒ (i). Assume fi′i : Fi −→ Fi′ injective for i ≤ i′. Then, for any object

X = “lim−→”
j∈J

Xj of Ind (Sns), we have

Hom Ind(Sns)(X,S(L(F ))) ' Hom Ind(Sns)(X,S(lim−→
i∈I

Fi))

' HomBc(L(X), lim
−→
i∈I

Fi)

' lim←−
j∈J

HomBc(Xj , lim−→
i∈I

Fi)

' lim
←−
j∈J

lim
−→
i∈I

HomBc(Xj , Fi) (*)

' Hom Ind(Sns)(X,F )

where the isomorphism (*) follows from Proposition 2.10. Since these isomorphisms

are functorial in X, we get (S ◦ L)(F ) ' F .

Corollary 3.5. The category Bc is equivalent to the strictly full subcategory of

Ind (Sns) formed by essentially monomorphic objects.

Remark 3.6. Let E be an infinite dimensional Banach space and let (ei)i∈N a free

sequence of E. For any n ∈ N, the linear hull 〉e0, · · · , en〈 is a finite dimensional

subspace of E. It is thus closed and

En = E/ 〉e0, · · · , en〈

is a Banach space. For n ≤ m, we get a canonical morphism

emn : En −→ Em

and it is clear that

epm ◦ emn = epn

for any n ≤ m ≤ p. Moreover since

Ker emn = 〉e0, · · · , em〈 / 〉e0, · · · , en〈

' 〉en+1, · · · , em〈

we have dimKer emn = m− n. Therefore for n ∈ N fixed, the sequence

(Ker emn)m≥n

is not stationary and the ind-object “lim−→”
n∈N

En is not essentially monomorphic. This

shows that S is not an equivalence of categories contrary to what is stated in [1].
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Proposition 3.7. The functor

S : Bc −→ Ind(Sns)

is strictly exact (i.e. transforms any strictly exact sequence

E
u
−→ F

v
−→ G

of Bc into the strictly exact sequence

S(E)
S(u)
−−→ S(F )

S(v)
−−→ S(G)

of Ind(Sns)).

Proof. Since S has a left adjoint, it is kernel preserving. It is thus sufficient to show

that S is exact. Let

0 −→ E
u
−→ F

v
−→ G −→ 0

be a strictly exact sequence of Bc and let B be an absolutely convex bounded subset

of F . Clearly u−1(B) (resp. v(B)) is an absolutely convex bounded subset of E

(resp. G). Moreover, one checks easily that the sequence

0 −→ Eu−1(B) −→ FB −→ Gv(B) −→ 0

is strictly exact in Sns. The functor “lim−→”
B∈B̃F

being exact, the sequence

0 −→ “lim
−→

”
B∈B̃F

Eu−1(B) −→ “lim
−→

”
B∈B̃F

FB −→ “lim
−→

”
B∈B̃F

Gv(B) −→ 0

is thus strictly exact in Ind(Sns). Since the inclusions

{u−1(B) : B ∈ B̃F} ⊂ B̃E and {v(B) : B ∈ B̃F} ⊂ B̃G

are cofinal, the sequence

0 −→ “lim−→”
B∈B̃E

EB −→ “lim−→”
B∈B̃F

FB −→ “lim−→”
B∈B̃G

GB −→ 0

is strictly exact in Ind(Sns) and the conclusion follows.

Lemma 3.8. Let I be a small filtering preordered set and let E be an object of BcI.

Assume Ei is a semi-normed space for any i ∈ I. Then, the following conditions are

equivalent:

(i) E satisfies condition SC’;
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(ii) “lim−→”
i∈I

Ei is essentially monomorphic.

Proof. (i) ⇒ (ii). Let i ∈ I and let bi be the unit ball of Ei. There is j ≥ i such

that

bi ∩ r−1
i (0) ⊂ e−1

ji (0).

Using the linearity of ri and eji and the fact that
⋃

r>0

rbi = Ei,

we get that Ker ri ⊂ Ker eji and the conclusion follows from Proposition A.2.

(ii) ⇒ (i). This follows from Proposition A.2.

Proposition 3.9. The functor

L : Ind(Sns) −→ Bc

is cokernel preserving and left derivable. Moreover, its cohomological dimension

with respect to the right t-structures is equal to 1. In particular, we get functors

LL : D∗(Ind (Sns)) −→ D∗(Bc) (∗ ∈ {−,+, b, ∅})

Proof. Since L has a right adjoint, it is cokernel preserving. We may factor L as

Ind (Sns)
Ind (I)
−−−−→ Ind(Bc)

LBc−−→ Bc

where I : Sns −→ Bc is the canonical inclusion functor. The first functor is kernel

and cokernel preserving and since direct sums are exact in Bc, the second one is left

derivable. Therefore, the functor L is left derivable if there are enough objects in

Ind (Sns) whose image in Ind (Bc) are acyclic for LBc. Obviously the objects of the

form
⊕

i∈I “Ei” (Ei ∈ Sns) are of the requested type and we have

LL ' LLBc ◦ Ind(I).

If E = “lim−→”
i∈I

Ei is an object of Ind(Sns), we get

LL(E) ' LLBc(“lim−→
”

i∈I

I(Ei)) ' Llim
−→
i∈I

I(Ei).

Then, by Corollary 2.7, for k ≥ 2, we have

RHk(LL(E)) ' RHk(Llim
−→
i∈I

I(Ei)) = 0.

Therefore, the cohomological dimension of L with respect to the right t-structure

is not greater than 1. The fact that it is equal to 1 comes from Proposition 2.6,

Lemma 3.8 and Remark 3.6.
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Proposition 3.10. The functors

S : D(Bc) −→ D(Ind (Sns))

LL : D(Ind (Sns)) −→ D(Bc)

are quasi-inverse equivalence of categories which induce the equivalence of categories

LH(Bc) ≈ LH(Ind (Sns)).

Proof. First, consider an object E of Bc. By Proposition 3.4,

S(E) ' “lim−→”
B∈B̃E

EB

is essentially monomorphic and by Lemma 3.8, the inductive system (EB)B∈B̃E
∈

SnsB̃E satisfies condition SC’. It follows from Proposition 2.6 that (EB)B∈B̃E
is lim−→

B∈B̃E

-

acyclic. Then, we get successively

LL ◦ S(E) ' L lim−→
B∈B̃E

EB ' lim−→
B∈B̃E

EB ' E

where the last isomorphism follows from Proposition 2.9.

Next, let E be an object of Ind (Sns). We know that E has a resolution by

L-acyclic objects of the form
⊕

i∈I “Ei”. Since

⊕

i∈I

“E”i ' lim−→
J∈Pf (I)

⊕

j∈J

“Ej” ' “lim−→”
J∈Pf(I)

⊕

j∈J

Ej ,

⊕
i∈I “E”i is an essentially monomorphic ind-object. By Proposition 3.4, we get

S(L(
⊕

i∈I

“Ei”)) '
⊕

i∈I

“Ei”.

It follows that

S ◦ LL ' id .

To conclude, we have only to note that since

S : Bc −→ Ind(Sns)

is strictly exact,

S : D(Bc) −→ D(Ind (Sns))

is exact for the left t-structures.
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4 The category
_

B c

Definition 4.1. Let E be an object of Bc. We say that a sequence (xn)n∈N converges

to a limit x ∈ E if there is an absolutely convex bounded subset B of E such that

the sequence

xn −→ x in EB.

The object E is separated if a sequence which converges in E has a unique limit.

We denote
_
Bc the full subcategory of Bc formed by separated objects.

Remark 4.2.

(a) If f : E −→ F is a morphism of Bc and xn −→ x in E, then f(xn) −→ f(x) in F .

(b) The category Nvs of normed vector spaces is a full subcategory of
_
B c.

(c) An object E of Bc is separated if and only if EB is a normed space for any

absolutely convex bounded subset B of E.

Definition 4.3. Let E be an object of Bc. A subspace F of E is closed if limits

of sequences (xn)n∈N of F which converge in E belong to F . The closure F of a

subspace F of E is the intersection of all the closed subspaces of E containing F .

It is of course a closed subspace of E.

Remark 4.4.

(a) A subspace F of E is closed if and only if F ∩ EB is closed in EB for any

absolutely convex bounded subset B of E.

(b) The closure of a subspace F of E is not always equal to the subspace formed

by the limits of the sequences of F which converge in E.

(c) An object E of Bc is separated if and only if {0} is closed in E.

(d) A subspace F of an object E of
_
B c is closed if and only if E/F is separated.

The following result is well-known.

Proposition 4.5. Let (Ei)i∈I be a family of objects of Bc. Assume each Ei is

separated. Then, both
⊕

i∈I Ei and
∏

i∈I Ei are separated. In particular, they form

the direct sum and direct product of the family (Ei)i∈I in
_
B c.

Let us now study
_
Bc from the point if view of [5].

Proposition 4.6. Let u : E −→ F be a morphism of
_
B c. Then in

_
Bc,
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(a) Keru is the subspace u−1(0) of E with the bornology induced by that of E,

(b) Cokeru is the quotient space F/u(E) with the quotient bornology,

(c) Imu is the subspace u(E) of F with the bornology induced by that of F ,

(d) Coimu is the quotient space E/u−1(0) of E with the quotient bornology,

(e) u is strict if and only if u is strict in Bc and u(E) is a closed subspace of F .

Proof. (a) We know that u−1(0) is the kernel of u in Bc. Since u−1(0) is endowed

with the induced bornology, u−1(0) is separated. Hence, u−1(0) is the kernel of u in
_
B c.

(b) Since u(E) is closed, F/u(E) is separated. Let v : F −→ G be a morphism

of
_
B c such that v ◦ u = 0. Since v−1(0) is a closed subspace of F , u(E) ⊂ v−1(0).

Then, the linear map

v′ : F/u(E) −→ G [f ]u(E) 7→ v(f)

is well-defined and is clearly a morphism of
_
Bc. Since v′ is the unique morphism

making the diagram

E
u

//

0
%%LLLLLLLLLLLLL F

q
u(E)

//

v

��

F/u(E)

v′
wwooooooooooooo

G

commutative, we see that F/u(E) is the cokernel of u in
_
Bc.

(c) follows from (a) and (b).

(d) We know that E/u−1(0) is the coimage of u in Bc. Since {0} is closed in F ,

u−1(0) is closed in E and E/u−1(0) is separated. Hence, E/u−1(0) is the coimage

of u in
_
B c.

(e) Assume that u is strict in
_
B c. This means that the canonical morphism

E/u−1(0) −→ u(E)

is an isomorphism of separated spaces. The linear map

E/u−1(0) −→ u(E)

being bijective, it follows that u(E) = u(E) and that u is strict in Bc. The converse

is obtained by reversing the preceding arguments.
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Corollary 4.7. Let u : E −→ F be a morphism of
_
B c. Then,

(i) u is a strict epimorphism of
_
B c if and only if u is a strict epimorphism of Bc;

(ii) u is a strict monomorphism of
_
Bc if and only if u is a strict monomorphism

of Bc which has a closed range.

Lemma 4.8. A sequence

E
u
−→ F

v
−→ G

of
_
B c is strictly exact if and only if it is strictly exact in Bc.

Proof. Recall first that a null sequence

E
u
−→ F

v
−→ G

in an additive category with kernels and cokernels is strictly exact if and only if u

is strict and Imu = Ker v.

Therefore, if the sequence of the statement is strictly exact in
_
B c, it follows from

Proposition 4.6 that u is a strict morphism of Bc which has a closed range and that

u(E) = v−1(0). In particular, u(E) = v−1(0) and the sequence is strictly exact in

Bc.

Conversely, assume that the sequence of the statement is strictly exact in Bc. In

this case, u is a strict morphism of Bc and u(E) = v−1(0). Since G is separated,

v−1(0) is closed in F . Hence, u(E) is closed in F and u is strict in
_
B c. The conclusion

follows.

Lemma 4.9. Let u : E −→ F and v : F −→ G be two morphisms of
_
B c. Assume

w = v ◦ u is a strict monomorphism of
_
B c, then u is a strict monomorphism of

_
B c.

Proof. By Corollary 4.7, v ◦ u is a strict monomorphism of Bc. Since Bc is quasi-

abelian, it follows that u is a strict monomorphism of Bc. So, we only have to prove

that u has a closed range. Let (xn)n∈N be a sequence of E such that u(xn) −→ y in

F . Clearly, v(u(xn)) −→ v(y) in G and since w is a strict monomorphism of Bc with

closed range, there is an x in E with w(x) = v(y) and for which xn −→ x. Since u

is a morphism of Bc, u(xn) −→ u(x) in F , and F being separated, we get u(x) = y.

Hence, y ∈ u(E) and the conclusion follows.

Proposition 4.10. The category
_
B c is quasi-abelian.

Proof. We know that
_
B c is additive and that any morphism of

_
B c has a kernel and

a cokernel.
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Consider a cartesian square

E
f

// F

T

v

OO

u
// G

g

OO

of
_
B c where f is a strict epimorphism. By Corollary 4.7, f is a strict epimorphism

of Bc. It follows that u is a strict epimorphism of Bc and hence of
_
Bc.

Consider now a cocartesian square

G
u

// T

E

g

OO

f
// F

v

OO (*)

of
_
B c where f is a strict monomorphism. Since the diagram

E

f
''PPPPPPPPPPPPPPP

( g
−f

)

// G ⊕ F

( 0 −1 )
��

F

is commutative, by Lemma 4.9,

( g
−f

)
: E −→ G ⊕ F

is a strict monomorphism of
_
Bc. The square (*) being cocartesian, it follows that

the sequence

0 // E

( g
−f

)

// G⊕ F
( u v )

// T // 0 (**)

is strictly exact in
_
B c and hence in Bc by Lemma 4.8. The square (*) is thus

cocartesian in Bc and u is a strict monomorphism of Bc. To conclude, it remains

to prove that u has closed range. The morphisms g and v induce a strict quasi-

isomorphism between the complexes

0 −→ E
f
−→ F −→ 0 and 0 −→ G

u
−→ T −→ 0

since the mapping cone of

0 // E
f

//

g

��

F //

v

��

0

0 // G u
// T // 0
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is the strictly exact complex (**). Taking the cohomology and using the fact that

f and u are strict monomorphisms of Bc, we get

Coker(f) ' Coker(u) in Bc.

Since f(E) is closed, Coker(f) = F/f(E) is separated. It follows that Coker(u) =

T/u(G) is separated and hence that u(G) is closed.

Proposition 4.11.

(a) The projective objects of Bc are separated.

(b) The category
_
B c has enough projective objects.

Proof.

(a) It follows from the proof of Proposition 2.13 that any projective object of Bc

is a direct summand of an object of the type
⊕

i∈I

Pi

where each Pi is a projective object of Sns. So we are reduced to prove that the

projective objects of Sns are separated. This follows easily from the fact these

objects are direct summands of normed spaces of the type

⊕̂

j∈J

C

(see [5, Proposition 3.2.12]).

(b) Thanks to Proposition 2.13 and Corollary 4.7, this is a direct consequence of

(a).

Proposition 4.12. The category
_
B c is complete and cocomplete. Moreover, direct

sums are kernel and cokernel preserving and direct products are strictly exact.

Proof. The result follows from Proposition 1.9 thanks to Proposition 4.5 and Propo-

sition 4.8.

Definition 4.13. We denote by

_
I :

_
B c −→ Bc

the inclusion functor and we define the functor

_
Sep : Bc −→

_
B c
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by setting
_
Sep(E) = E/{0}

E

and endowing it with the quotient bornology.

One checks easily that:

Proposition 4.14. For any object E of Bc and any object F of
_
B c, we have the

adjunction formula

Hom _
B c

(
_
Sep(E), F ) ' HomBc(E,

_
I (F )).

Moreover,
_
Sep ◦

_
I = id _

B c .

Proposition 4.15. Any object E of Bc has a presentation of the form

0 −→ S1 −→ S0 −→ E −→ 0

where S1, S0 are objects of
_
Bc.

Proof. By Proposition 2.13 Bc has enough projective objects and by Proposition 4.11

these objects are separated. It follows that for any E in Bc there is a strict epimor-

phism

u : S0 −→ E

with S0 separated. Taking S1 = Keru allows us to conclude.

Proposition 4.16. (a) The functor

_
Sep : Bc −→

_
B c

is cokernel preserving, left derivable and has bounded cohomological dimension. In

particular it has a left derived functor

L
_
Sep : D∗(Bc) −→ D∗(

_
B c) ∗ ∈ {∅,+,−, b}.

(b) The functor
_
I :

_
B c −→ Bc

is strictly exact and gives rise to a functor

_
I : D∗(

_
B c) −→ D∗(Bc) ∗ ∈ {∅,+,−, b}.

(c) Moreover,
_
I and L

_
Sep define quasi-inverse equivalence of categories. In

particular,
_
I : LH(

_
B c) −→ LH(Bc)

is an equivalence of categories.
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Proof. (a) Since
_
I is a right adjoint of

_
Sep,

_
Sep is cokernel preserving. It follows

from Proposition 4.15 and Lemma 4.8 that
_
Bc forms a

_
Sep-projective subcategory

of Bc. Hence, the functor
_
Sep is left derivable and has bounded cohomological

dimension.

(b) This follows directly from Lemma 4.8.

(c) On one hand, for any object S of D(
_
B c), we have

L
_
Sep ◦

_
I (S) = L

_
Sep(

_
I (S)) =

_
Sep(

_
I (S)) = S

where the second equality follows from the fact that the components of the complex
_
I (S) are in a

_
Sep-projective subcategory of Bc. On the other hand, any object E of

D(Bc) is quasi-isomorphic to a complex S with separated components. Therefore,

we have
_
I ◦ L

_
Sep(E) '

_
I ◦

_
Sep(S) ' S ' E.

To conclude, it is sufficient to note that, since

_
I :

_
B c −→ Bc

is strictly exact, the functor

_
I : D(

_
B c) −→ D(Bc)

is exact for the left t-structures.

Proposition 4.17. Let I be a filtering preordered set and let E be an object of

BcI. Assume that E satisfies condition SC’ and that Ei is separated for any i ∈ I.

Then lim−→
i∈I

Ei is separated.

Proof. Set L = lim−→
i∈I

Ei and let B be an absolutely convex bounded subset of L. We

know that there is i ∈ I and an absolutely convex bounded subset Bi of Ei such

that

B = ri(Bi).

Proceeding as in the proof of Proposition 2.10, we may even assume that

ri : (Ei)Bi
−→ L

is injective. It follows that LB ' (Ei)Bi
as semi-normed spaces. By assumption,

(Ei)Bi
is in fact a normed space. Hence, LB is also a normed space and the conclusion

follows.
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Proposition 4.18. Let S be a filtering inductive system of
_
B c indexed by J . Then,

_
I (Llim
−→
j∈J

Sj) ' Llim
−→
j∈J

_
I (Sj).

Proof. Since S has a left resolution by inductive systems of coproduct type, the

result will be true if it is true when S is itself of coproduct type. In this case, S and
_
I ◦ S are both Llim−→

j∈J

-acyclic. Since S has also injective transitions the conclusion

follows from Proposition 4.17.

Proposition 4.19.

(a) The functor

_
S :

_
Bc −→ Ind(Nvs)

E 7→ “lim−→”
B∈B̃E

EB

has as left adjoint the functor

_
L : Ind (Nvs) −→

_
B c

“lim
−→

”
i∈I

Ei 7→ lim
−→
i∈I

Ei

where the limit is taken in
_
B c (and may differ from the corresponding limit

in Bc).

(b) The canonical morphism
_
L ◦

_
S(E) −→ E

is an isomorphism for any E in
_
B c.

(c) For any F in Ind (Nvs), the following conditions are equivalent:

(i) the canonical morphism F −→
_
S ◦

_
L(F ) is an isomorphism;

(ii) F is in the essential image of
_
S;

(iii) F is essentially monomorphic.

Proof. Thanks to Proposition 4.17, we may proceed entirely as in the proof of Propo-

sition 3.4.

Corollary 4.20. The category
_
Bc is equivalent to the full subcategory of Ind(Nvs)

formed by essentially monomorphic objects.
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Proposition 4.21. (a) The functor

_
S :

_
Bc −→ Ind(Nvs)

is strictly exact and has bounded cohomological dimension. In particular, it induces

a functor
_
S : D∗(

_
B c) −→ D∗(Ind (Nvs)) (∗ ∈ {−,+, b, ∅}).

(b) The functor
_
L : Ind (Nvs) −→

_
B c

is cokernel preserving and has a left derived functor

L
_
L : D∗(Ind(Nvs)) −→ D∗(

_
B c).

(c) The functors
_
S and L

_
L are quasi-inverse equivalence of categories. They

induce an equivalence of categories

LH(
_
B c) ' LH(Ind (Nvs)).

Proof.

(a) Thanks to Lemma 4.8, we may proceed as in Proposition 3.7.

(b) & (c) Using Proposition 3.7, and Proposition 4.18, one can adapt easily the

proofs of Proposition 3.9 and Proposition 3.10.

5 The category B̂c

Definition 5.1. Let E be an object of Bc. We say that E is complete if for any

bounded subset B of E, there is an absolutely convex bounded subset B ′ ⊃ B of E

such that EB′ is a Banach space. We denote B̂c the full subcategory of Bc formed

by complete spaces. For any object E of B̂c, we set

B̃′E = {B ∈ B̃E : EB Banach}.

Remark 5.2.

(a) The category Ban of Banach spaces is a full subcategory of B̂c.

(b) The category B̂c is a full subcategory of
_
B c.

Proposition 5.3. Let E be an object of Bc and let F be a linear subspace of E

endowed with the induced bornology. Assume E is complete and F is closed in E.

Then, both F and E/F are complete.
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Proof. Let us prove that F is complete. Let B be an arbitrary bounded subset of F .

By definition, there is a bounded subset B ′ of E such that B = B ′ ∩ F . Since E is

complete, there is also an absolutely convex bounded subset B ′′ ⊃ B ′ of E such that

EB′′ is a Banach space. Since F is closed in E, EB′′ ∩ F is closed in EB′′. Hence,

FB′′∩F = EB′′ ∩ F

is a Banach space. Since B ′′ ∩ F ⊃ B, the conclusion follows.

Now, let us prove that E/F is complete. Denote q : E −→ E/F the canonical

morphism and let B be a bounded subset of E/F . Since q is a strict epimorphism,

by Corollary 1.7, there is a bounded subset B ′ of E such that B ⊂ q(B ′). The space

E being complete, there is an absolutely convex bounded subset B ′′ ⊃ B ′ of E such

that EB′′ is a Banach space. Therefore, q(B ′′) is an absolutely convex bounded

subset of E/F such that B ⊂ q(B ′′). Moreover, we clearly have

(E/F )q(B′′) ' EB′′/FB′′∩F ' EB′′/EB′′ ∩ F.

Since F is closed in E, EB′′ ∩ F is closed in EB′′. Hence, (E/F )q(B′′) is a Banach

space and the conclusion follows.

Remark 5.4. Let (Ei)i∈I be a family of semi-normed spaces and let pi be the

semi-norm of Ei. Following [5], we denote

∏̂

i∈I

Ei

the vector subspace of
∏

i∈I Ei formed by the families (ei)i∈I such that

p((ei)i∈I) = sup
i∈I

pi(ei) < +∞

endowed with the semi-norm p. We leave it to the reader to check that
∏̂
i∈I

Ei is a

Banach space if Ei is a Banach space for every i ∈ I.

Proposition 5.5. Let (Ei)i∈I be a family of Bc. Assume Ei is complete for i ∈ I.

Then
⊕

i∈I Ei and
∏

i∈I Ei are complete. In particular, they form the direct sum

and direct product of the family (Ei)i∈I in B̂c.

Proof. First, let us show that
⊕

i∈I Ei is complete. Let B be a bounded subset of⊕
i∈I Ei. We know that

B ⊂
⊕

i∈I

Bi
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where Bi is a bounded subset of Ei, the set N = {i ∈ I : Bi 6= {0}} being finite.

For any i ∈ N , there is an absolutely convex bounded subset B ′
i ⊃ Bi of Ei such

that (Ei)Bi
is a Banach space. For i ∈ I \N , set B ′

i = {0}. Then,

B ⊂
⊕

i∈I

B ′
i.

One checks easily that

(
⊕

i∈I

Ei

)

⊕
i∈I B′

i

'
⊕

i∈N

(Ei)B′
i
.

Since a finite direct sum of Banach spaces is a Banach space, these spaces are Banach

spaces and the conclusion follows.

Next, let us prove that
∏

i∈I Ei is complete. Let B be a bounded subset of∏
i∈I Ei. We know that

B ⊂
∏

i∈I

Bi

where Bi is a bounded subset of Ei for any i ∈ I. For each i ∈ I, one can find

an absolutely convex bounded subset B ′
i of Ei containing Bi for which (Ei)B′

i
is a

Banach space. A simple computation shows that

(
∏

i∈I

Ei

)

∏
i∈I B′

i

'
∏̂

i∈I

(Ei)B′
i
.

and the conclusion follows from Remark 5.4.

Proposition 5.6.

(a) The kernel, cokernel, image and coimage of a morphism

u : E −→ F

of B̂c are the same as those obtained by considering u as a morphism of
_
B c.

Moreover, u is strict in B̂c if and only if it is strict in
_
Bc.

(b) The category B̂c is quasi-abelian.

(c) The category B̂c is complete and co-complete. Moreover, direct sums are

kernel and cokernel preserving and direct products are strictly exact.
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Proof. (a) We know that u−1(0) is the kernel of u in
_
B c and that it is a closed

subspace of E. It follows that u−1(0) is complete and hence that it is the kernel of u

in B̂c. Recall that the cokernel of u in
_
B c is F/u(E). Since u(E) is closed, F/u(E)

is complete. Therefore, F/u(E) is also the cokernel of u in B̂c. The rest of part (a)

is now obvious.

(b) This follows from (a) combined with the fact that the category
_
Bc is quasi-

abelian.

(c) Thanks to (a), (b) and the preceding proposition, this is an easy consequence

of the similar result for
_
B c.

Corollary 5.7.

(i) A sequence

E
u
−→ F

v
−→ G

of B̂c is strictly exact if and only if it is strictly exact in Bc.

(ii) If (Ei)i∈I is an inductive system of B̂c, then its inductive limit in B̂c is equal

to its inductive limit in
_
B c (but not in general in Bc).

Proof.

(i) follows directly from Lemma 4.8 and Proposition 5.6.

(ii) Since direct sums and cokernels are the same in
_
B c and B̂c, the sequence

⊕

i≤j

Ei −→
⊕

i∈I

Ei −→ lim
−→
i∈I

Ei −→ 0

is both strictly coexact in
_
Bc or B̂c. The conclusion follows.

Proposition 5.8. The category B̂c has enough projective objects.

Proof. Let E be an object of B̂c. The inclusion B̃′E ⊂ B̃E being cofinal, the canonical

morphism ⊕

B∈B̃′E

EB −→ E

is a strict epimorphism. Since Ban has enough projective objects, we can conclude

by proceeding as for Proposition 2.13.

Lemma 5.9. Let E be a normed space and let F be an object of B̂c. Then,

Hom B̂c(Ê, F ) ' HomBc(E,F ).
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Proof. Using Proposition 2.9, Proposition 2.10 and the fact that the inclusion B̃′F ⊂

B̃F is cofinal, we get successively

HomBc(E,F ) ' HomBc(E, lim−→
B∈B̃′

F

FB)

' lim
−→

B∈B̃′
F

HomBan(E,FB)

' lim−→
B∈B̃′

F

HomBan(Ê, FB)

' HomBc(Ê, lim−→
B∈B̃′

F

FB)

' Hom B̂c(Ê, F ).

Definition 5.10. We denote by

Î : B̂c −→ Bc

the canonical inclusion functor and we define the functor

Ĉpl : Bc −→ B̂c

by setting

Ĉpl(E) = lim−→
B∈B̃E

ÊB

where the inductive limit is taken in B̂c (and may differ from the inductive limit in

Bc).

Proposition 5.11. For any object E of Bc and any object F of B̂c, we have the

adjunction formula:

Hom B̂c(Ĉpl(E), F ) ' HomBc(E, Î(F ))

Moreover,

Ĉpl ◦ Î = idB̂c .
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Proof. We have successively

Hom B̂c
(Ĉpl(E), F ) ' Hom B̂c

( lim
−→

B∈B̃E

ÊB, F )

' lim←−
B∈B̃E

Hom B̂c(ÊB, F )

' lim
←−

B∈B̃E

HomBc(EB, F )

' HomBc( lim−→
B∈B̃E

EB, F )

' HomBc(E, Î(F )).

Note that the third isomorphism follows from Lemma 5.9 and that the last one is

a consequence of Proposition 2.9. Moreover, for any object E of B̂c, we have by

cofinality:

Ĉpl ◦ Î(E) ' lim−→
B∈B̃E

ÊB ' lim−→
B∈B̃′

E

EB ' lim−→
B∈B̃E

EB ' E.

Proposition 5.12. The functor Ĉpl may be decomposed as L̂ ◦ CS where

CS : Bc −→ Ind (Ban)

E 7→ “lim−→”
B∈B̃E

ÊB

and
L̂ : Ind (Ban) −→ B̂c

“lim−→”
i∈I

Ei 7→ lim−→
i∈I

Ei.

Moreover, for any object E of B̂c and any object F of Ind(Ban), we have the

adjunction formula:

Hom B̂c(L̂(F ), E) ' Hom Ind(Ban)(F,CS(̂I(E))).

Proof. For any object E of Bc, we have

L̂ ◦ CS(E) = L̂(“lim−→”
B∈B̃E

ÊB) = lim−→
B∈B̃E

ÊB = Ĉpl(E).
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Let E be an object of B̂c and let F = “lim−→”
i∈I

Fi be an object of Ind(Ban). Then,

we have successively

Hom B̂c(L̂(F ), E) ' Hom B̂c(lim−→
i∈I

Fi, E)

' lim←−
i∈I

HomBc(Fi, E)

' lim
←−
i∈I

lim
−→

B∈B̃E

HomBc(Fi, EB)

' lim←−
i∈I

lim−→
B′∈B̃′E

HomBan(Fi, EB′)

' Hom Ind(Ban)(“lim−→”
i∈I

Ei, “lim−→”
B′∈B̃′

E

EB′)

' Hom Ind(Ban)(F,CS(̂I(E))).

Proposition 5.13.

(a) The functor CS is exact and gives rise to a functor

CS : D∗(Bc) −→ D∗(Ind (Ban)) (∗ ∈ {−,+, b, ∅}).

(b) The functor L̂ is cokernel preserving and has bounded cohomological dimen-

sion. In particular, it has a left derived functor

LL̂ : D∗(Ind (Ban)) −→ D∗(B̂c) ∗ ∈ {−,+, b, ∅}.

(c) An object of Ind (Ban) is L̂-acyclic if and only if it is essentially injective.

Proof.

(a) Since the functor ·̂ : Sns −→ Ban is exact, the functor Ind (̂·) is also exact.

By Proposition 3.7, the functor S : Bc −→ Ind(Sns) is strictly exact. Therefore, the

functor CS = Ind (̂·) ◦ S is exact.

(b) By the preceding proposition, L̂ has a right adjoint; it is thus a cokernel

preserving functor. Proceeding as in Proposition 3.9, we see easily that L̂ is left

derivable. Moreover, for any filtering preordered set J and any F ∈ BanJ , we get

LL̂(F ) ' Llim−→
j∈J

Fj
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where the derived inductive limit is taken in B̂c. By the theory of derived inductive

limits for quasi-abelian categories, we know that

Llim−→
j∈J

Fj ' R·(J, F )

where F is considered as an object of B̂cJ and R·(J, F ) is its negative Roos complex.

By Proposition 5.5,

Î(R·(J, F )) ' R·(J, Î ◦ F ).

Moreover, thanks to Proposition 3.9, we have

LHk(R·(J, Î ◦ F )) = 0

for k ≥ 1. Applying Corollary 5.7, we deduce that

LHk(R·(J, F )) = 0

for k ≥ 1. In particular, L̂ has bounded cohomological dimension and

LL̂ : D∗(Ind (Ban)) −→ D∗(B̂c) ∗ ∈ {−,+, b, ∅}.

is well-defined.

(c) Let J be a filtering preorderd set and let F be an object of BanJ .

Assume F is L̂-acyclic. Proceeding as in (b), we see that the sequence

· · · −→ R1(J, F ) −→ R0(J, F ) −→ L̂(F ) −→ 0

is strictly exact in B̂c. It follows that the sequence

· · · −→ R1(J, Î ◦ F ) −→ R0(J, Î ◦ F ) −→ Î(L̂(F )) −→ 0

is strictly exact in Bc. Hence Î ◦ F is lim−→
j∈J

-acyclic and by combining Proposition 2.6

and Lemma 3.8 we find that F is essentially monomorphic.

Conversely, assume F is essentially monomorphic. Then, by Lemma 3.8, F

satisfies condition SC’. Using Proposition 4.17, we see that the inductive limit of

F in Bc is separated and hence isomorphic to Î(L̂(F )). Combining this fact with

Proposition 2.6, we find that the sequence

· · · −→ R1(J, Î ◦ F ) −→ R0(J, Î ◦ F ) −→ Î(L̂(F )) −→ 0

is strictly exact in Bc. Now, Corollary 5.7 entails that the sequence

· · · −→ R1(J, F ) −→ R0(J, F ) −→ L̂(F ) −→ 0

is strictly exact in B̂c and hence that F is L̂ acyclic.
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Proposition 5.14. The functor

Î : B̂c −→ Bc

is strictly exact and gives rise to a functor

Î : D∗(B̂c) −→ D∗(Bc) ∗ ∈ {+,−, b, ∅}.

The functor

Ĉpl : Bc −→ B̂c

is cokernel preserving and has bounded cohomological dimension. In particular, it

has a left derived functor

LĈpl : D∗(Bc) −→ D∗(B̂c) ∗ ∈ {+,−, b, ∅}.

and

LĈpl ' LL̂ ◦ CS.

Moreover,

RHom B̂c(LĈpl(E), F ) ' RHomBc(E, Î(F )).

and

LĈpl ◦ Î ' id .

In particular, D∗(B̂c) may be identified with a full subcategory of D∗(Bc) and

LH(B̂c) may be identified with a full subcategory of LH(Bc).

Proof. The fact that Î is strictly exact follows directly from Corollary 5.7.

The functor Ĉpl having a right adjoint is clearly cokernel preserving. Since

Ĉpl ' L̂ ◦ CS and CS is exact, to prove the formula

LĈpl ' LL̂ ◦ CS

it is sufficient to show that any object E of Bc is a strict quotient of an object F

for which CS(F ) is L̂-acyclic. We claim that we can take

F =
⊕

B∈B̃E

EB.

As a matter of fact, there is a canonical strict epimorphism

⊕

B∈B̃E

EB −→ E.
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Moreover,

CS(
⊕

B∈B̃E

EB) ' Ind (̂·)(S(
⊕

B∈B̃E

EB)) '
⊕

i∈I

“Êi”

and such an object is L̂-acyclic.

Since Î is stricly exact, Proposition 5.11 entails immediately that Ĉpl(P ) is a

projective object of B̂c is P is a projective object of Bc. To prove the derived

adjunction formula it is thus sufficient to replace E by a projective resolution and

apply Proposition 5.11 once more.

For any object E of B̂c, CS(̂I(E)) is essentially monomorphic since

CS(̂I(E)) ' “lim−→”
B∈B̃′E

EB.

Thanks to part (c) of Proposition 5.13, it follows that CS(̂I(E)) is L̂-acyclic.

Therefore,

LĈpl(̂I(E)) ' LL̂(CS(̂I(E))) ' L̂(CS(̂I(E))) ' Ĉpl(̂I(E)) ' E.

Working as for Bc and B̂c, the results of this section easily entail the two following

propositions.

Proposition 5.15. The functor

Ŝ : B̂c −→ Ind (Ban)

E 7→ “lim−→”
B∈B̃E

EB

has as left adjoint the functor

L̂ : Ind(Ban) −→ B̂c

“lim
−→

”
i∈I

Ei 7→ lim
−→
i∈I

Ei.

Moreover,

L̂ ◦ Ŝ = idB̂c

and for any object F of Ind (Ban) the following conditions are equivalent:

(i) the canonical morphism F −→ Ŝ ◦ L̂(F ) is an isomorphism;

(ii) F is the essential image of Ŝ;
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(iii) F is essentially monomorphic.

In particular, B̂c is equivalent to the full subcategory of Ind (Ban) formed by essen-

tially monomorphic objects.

Proposition 5.16. (a) The functor

Ŝ : B̂c −→ Ind (Ban)

is strictly exact and induces a functor

Ŝ : D∗(B̂c) −→ D∗(Ind (Ban)) (∗ ∈ {−,+, b, ∅}).

(b) The functors Ŝ and LL̂ are quasi-inverse equivalences of categories. They

induce an equivalence of categories

LH(B̂c) ' LH(Ind(Ban)).

A Essentially monomorphic ind-objects

Definition A.1. Let E be a quasi-abelian category and let E : I −→ E be an ind-

object of E. We say that E is monomorphic (resp. strictly monomorphic) if for any

α : i −→ i′ of I the morphism

E(α) : E(i) −→ E(i′)

is a monomorphism (resp. strict monomorphism) of E. An ind-object isomorphic

to a monomorphic (resp. strictly monomorphic) ind-object is said to be essentially

monomorphic (resp. essentially strictly monomorphic).

Proposition A.2. Let E be a quasi-abelian category and let E : I −→ E be an

ind-object of E. Then,

(a) the following conditions are equivalent :

(i) E is essentially monomorphic;

(ii) for any i ∈ I, there is α : i −→ i′ such that for any α′ : i′ −→ i′′ the

canonical strict monomorphism

KerE(α) −→ KerE(α′ ◦ α)

is an epimorphism (and hence an isomorphism);

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 42

(iii) for any i ∈ I, there is α : i −→ i′ such that for any α′ : i′ −→ i′′ the

canonical strict epimorphism

CoimE(α) −→ CoimE(α′ ◦ α)

is a monomorphism (and hence an isomorphism).

(b) the following conditions are equivalent :

(i) E is essentially strictly monomorphic;

(ii) for any i ∈ I, there is α : i −→ i′ such that for any α′ : i′ −→ i′′ the

canonical epimorphism

ImE(α) −→ ImE(α′ ◦ α)

is a strict monomorphism (and hence an isomorphism).

Proof. (a) (i) =⇒ (ii). Assume u : E −→ F is an isomorphism of the ind-object

E : I −→ E with a monomorphic ind-object F : J −→ E and denote v : F −→ E its

inverse. For any i ∈ I, there is j ∈ J and a representant

E(i)
uji

−→ F (j)

of u. Since v ◦ u = idE, there is a representant vi′j : F (j) −→ E(i′) of v such

that vi′j ◦ uji = E(α) where α : i −→ i′ is a morphism of I. Consider a morphism

α′ : i′ −→ i′′ of I. Since E(α′) ◦ vi′j : F (j) −→ E(i′′) represents v and u ◦ v = idF , we

can find a representant uj′i′′ : E(i′′) −→ F (j ′) of u such that

uj′i′′ ◦ E(α′) ◦ vi′j = F (β)

where β : j −→ j ′ is a morphism of J . Now, let h : X −→ E(i) be a morphism of E

such that

E(α′ ◦ α) ◦ h = 0.

Since

uj′i′′ ◦ E(α′ ◦ α) = uj′i′′ ◦ E(α′) ◦ E(α) = uj′i′′ ◦ E(α′) ◦ vi′j ◦ uji = F (β) ◦ uji

it follows that

F (β) ◦ uji ◦ h = 0.

Using the fact F (β) is a monomorphism, we see that uji ◦ h = 0. Therefore

vi′j ◦ uji ◦ h = E(α) ◦ h = 0.
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This shows that KerE(α) ' KerE(α′ ◦ α).

(ii) =⇒ (iii). This follows from the definition of the coimage.

(iii) =⇒ (i). For any i ∈ I, select a σ(i) : i −→ s(i) such that for any σ ′ : s(i) −→ i′,

CoimE(σ(i)) ' CoimE(σ′ ◦ σ(i)).

Set C(i) = CoimE(σ(i)) and denote u(i) : E(i) −→ C(i) and v(i) : C(i) −→ E(s(i))

the canonical morphisms. Let α : i −→ i′ be a morphism of I. Using the fact that I

is filtering, it is possible to find β : s(i) −→ i′′, β ′ : s(i′) −→ i′′ such that

E(β) ◦ E(σ(i)) = E(β ′) ◦ E(σ(i′)) ◦ E(α).

Denote C and C ′ the coimages of E(β) ◦ E(σ(i)) and E(β ′) ◦ E(σ(i′)). We get the

following commutative diagram of canonical morphisms

E(i)
E(σ(i))

//

u(i)

((QQQQQQQQQQQQQ

""DD
DD

DD
DD

DD
DDD

DD
DD

D

E(α)

��

E(s(i))

E(β)

��

C(i)

v(i)
55lllllllllllll

�O
��

C

))SSSSSSSSSSSSSSS

��

E(i′′)

C ′

55kkkkkkkkkkkkkkk

C(i′)

O�

OO

v(i′) ))RRRRRRRRRRRRR

E(i′)

==zzzzzzzzzzzzzzzzzz u(i′)

66mmmmmmmmmmmm

E(σ(i′)
// E(s(i′))

E(β′)

OO

This gives us a monomorphism C(α) : C(i) −→ C(i′) which is easily seen not to

depend on β or β ′. Moreover, C(α′ ◦α) = C(α′) ◦C(α) for any α′ : i′ −→ i′′ in I and

we get a morphism of functors

u : E −→ C.

Moreover, we know that the canonical morphism

C −→ E(i′′)

is a monomorphism. It follows that the morphism C −→ C ′ is monomorphic. There-

fore, C(α) : C(i) −→ C(i′) is also a monomorphism and C is a monomorphic ind-

object.
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Applying the canonical morphism

rs(i),i : HomE(C(i), E(s(i))) −→ lim
−→
j∈I

HomE(C(i), E(j))

to v(i) for any i ∈ I, we get a family

(rs(i),i(v(i)))i∈I

of elements of

lim−→
j∈I

Hom(C(i), E(j)).

Since the commutative diagram above shows that

[lim−→
j∈I

Hom(C(α), idE(j))](rs(i′),i′(v(i′))) = rs(i),i(v(i)).

this family defines a morphism

v : C −→ E

in Ind (E). Clearly, v ◦ u = idE. Let us show that u ◦ v = idC . Using the definition

of C(α) for α = σ(i), we get the commutative diagram

E(i)
u(i)

//

''NNNNNNNNNNN

E(σ(i))

��

C(i)
v(i)

//

�O
��

E(s(i))

E(σ(s(i)))

��

C

''OOOOOOOOOO

��

E(s2(i))

C(s(i))

88ppppppppp

E(s(i))
u(s(i))

//

88qqqqqqqqq

C(s(i))
v(s(i))

// E(s2(i))

where C(σ(i)) is represented by the composition of the second column of vertical

arrows. It follows that

v(s(i)) ◦ C(σ(i)) = E(σ(s(i))) ◦ v(i) = v(s(i)) ◦ u(s(i)) ◦ v(i)

and since v(s(i)) is injective, we see that

u(s(i)) ◦ v(i) = C(σ(i)).
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Hence, u ◦ v = idC . This concludes the proof of (a).

(b) (i) =⇒ (ii). Proceeding as in (a), for any i ∈ I, we find α : i −→ i′ such that

for any α′ : i′ −→ i′′ we get a commutative diagram of the form

E(i)
uji

//

E(α)

::
F (j)

F (β)

((vi′j
// E(i′)

E(α′)
// E(i′′)

uj′i′′
// F (j ′)

where β : j −→ j ′ is a morphism of J and F (β) : F (j) −→ F (j ′) is a strict monomor-

phism. It follows that vi′j is a strict monomorphism. In the canonical commutative

diagram

ImE(α) //

$$JJJJJJJJJ
Im(vi′j)

zzuuu
uuu

uuu

E(i′)

the diagonal arrows are strict monomorphisms. Hence, there is a canonical strict

monomorphism

ImE(α) −→ F (j).

Using the commutative diagram

ImE(α) //

$$JJJJJJJJJ

��

ImE(α′)

yyttttttttt

E(i′) // E(i′′)

%%KKKKKKKKK

F (j)

::ttttttttt
// F (j ′)

one sees easily that ImE(α) −→ ImE(α′) is a strict monomorphism.

(ii) =⇒ (i). We may proceed entirely as in ((a), (iii) =⇒ (i)) replacing coimages

by images.
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