/ A Prépublications Mathématiques
AA de I’Université Paris 13

A Homological Study of
Bornological Spaces

by

Fabienne Prosmans
Jean-Pierre Schneiders

00-21 December 2000

% CENTRE NATIONAL

DE LA RECHERCHE

/ SCIENTIFIQUE
]

Laboratoire Analyse, Géométrie et Applications, UMR 7539
Institut Galilée, Université Paris 13
93430 Villetaneuse (France)



A Homological Study of Bornological Spaces

FABIENNE PROSMANS JEAN-PIERRE SCHNEIDERS

December 15, 2000

Abstract

In this paper, we show that the category £ Bc of bornological vector spaces
of convex type and the full subcategories Be and Be formed by separated
and complete objects form quasi-abelian categories. This allows us to study
them from a homological point of view. In particular, we characterize acyclic
inductive systems and prove that although the categories Bc (resp. B ¢, Ban)
and the categories Znd(Sns) (resp. Znd(Nwvs), Ind(Ban)) formed by the ind-
objects of the category of semi-normed vector spaces (resp. normed vector
spaces, Banach spaces) are not equivalent, there is an equivalence between
their derived categories given by a canonical triangulated functor which pre-
serves the left t-structures. In particular these categories have the same left
heart; a fact which means roughly that they have the same homological alge-
bra. As a consequence, we get a link between the theory of sheaves of complete
bornological spaces and that of sheaves with values in Znd(Ban) used in [4].

0 Introduction

In this paper, we study from the point of view of homological algebra the category
Be of bornological vector spaces of convex type and its full subcategories Be and
Be formed by separated and complete objects. Although these categories are not
abelian, they are quasi-abelian and so we can take advantage of the tools developed
in [5]. Our motivation for starting this work was to understand the link between
these categories and the categories of Znd(Sns) (resp. Znd(Nwvs), Ind(Ban)) formed
by the ind-objects of the category Sns (resp. Nvs, Ban) of semi-normed vector
spaces (resp. normed vector spaces, Banach spaces) used in [5] and in [4] to con-
struct convenient categories of topological sheaves. Our main is being that although
the categories Be (resp. Be, Ban) and Znd(Sns) (resp. Ind(Nwvs), Ind(Ban)) are
1991 AMS Mathematics Subject Classification. 46M20, 46M40, 18G50.
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not equivalent, there is an equivalence between their derived categories given by a
canonical triangulated functor which preserves the left t-structures. In particular
these categories have the same left heart; a fact which means roughly that they have
the same homological algebra. Note that the left heart LH(Bc) associated to Be
coincide with the category of “quotient bornological spaces” considered by L. Wael-
broek some years ago. Note also that among our results is the somewhat astonishing
fact that the left heart £LH(Be) associated to Be is equivalent to LH(Bc).

Let us now describe with some details the contents of this paper.

We begin Section 1 by recalling a few basic facts about bornological vector spaces
of convex type and by establishing that they form a quasi-abelian category. We also
characterize the strict morphisms of this category and prove that direct sums and
direct products are kernel and cokernel preserving; a fact which will allow us to
apply the results of [2] to study derived inductive limits in Be.

Section 2 is devoted to the properties of the filtering inductive systems of Bc.
Our first result is an explicit characterization of acyclic ones by means of condition
SC’ (a kind of dual Mittag-Leffler condition). We also establish that semi-normed
spaces are small as objects of Bc and that Bc has enough projective objects.

In Section 3, we consider the relation between Bc and Znd(Sns). We show
first that Bc may be identified with the full subcategory of Znd(Sns) formed by the
essentially monomorphic objects. Next, we establish that Bec and Znd(Sns) generate
equivalent derived categories and equivalent left hearts.

The study of the category B of separated objects of Bc is performed in Section 4.
We show first that this category is quasi-abelian, that it has enough projective
objects, that direct sums are cokernel preserving and that direct sums are strictly
exact. Next, we consider the inclusion of Be into Be and its left adjoint and show
that they induce inverse equivalences at the level of derived categories. Finally,
we identify Be with the full subcategory of Znd(Nwvs) formed by the essentially
monomorphic objects. We conclude by showing that Be and Znd (Nwvs) generate
equivalent derived categories and equivalent left hearts.

Section 5 is concerned with completeness. We follow roughly the same plan as
in Section 4 and get the same type of result but of the proofs are slightly more
involved. As a bonus, we gain a rather good understanding of the derived functor
of the completion functor apl : Be — Be.

In the Appendix, we have gathered a few facts about the essentially monomorphic
ind-objects of a quasi-abelian category which are well-known in the abelian case but
which lacked a proof in the quasi-abelian one.

To conclude, let us point out that a study of the homological algebra of the
category of locally convex topological vector spaces using similar techniques was
performed in [3].

Fabienne Prosmans — Jean-Pierre Schneiders
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1 The category Bc

Definition 1.1. We denote by Bc the category of bornological C-vector spaces of
convex type in the sense of Houzel [1].

An object E of Bc is thus a C-vector space endowed with a bornology of convex
type i.e. a family By of subsets of E such that

(a) if B€ Band B’ C B then B’ € B;
(

b ifBl, BQEBthenBluBQEB;

)
)
(c) if B € B and A > 0 then A\B € B;
(d) if B € B then the absolutely convex hull (B) of B belongs to B;
)

(e) for any x € E, {x} € B.

For short, we call the elements of Bg the bounded subsets of E.
A morphism of Bc is a C-linear map

u: B —F

such that u(B) is bounded in F' for any B bounded in E.

It is well-known that the category Bc has direct sums and direct products. Their
structure is recalled hereafter.

Proposition 1.2. Let (E;);e; be a small family of objects of Be. Then,

(a) the C-vector space

DE

el

endowed with the bornology

{B:B C @ B, B; bounded in E; for any i € I,{i € I : B; # {0}} finite}

el

together with the canonical morphisms
sit B — PE;

is a direct sum of (E;);er in Be,

Fabienne Prosmans — Jean-Pierre Schneiders
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(b) the C-vector space

NG

il
endowed with the bornology
{B:BC HBi,Bi bounded in E; for any i € I}
il
together with the canonical morphisms
il
is a direct product of (E;)cy.

Remark 1.3. The notation

Dz

el

used in the preceding proposition means as usual
{Z si(b;) : b; € B; for any i € 1};
el

this has a meaning since {i € I : B; # {0}} is finite. As for the notation

H Bi7

el
it means of course

{z € HE, :pi(x) € B; for any i € I}.
il

Definition 1.4. Let E be an object of Bc, let F' be a C-vector subspace of E. The
set
{BNF : B bounded in E}

is clearly a bornology on F'. We call it the induced bornology.
Similarly, if ¢ : E — E/F denotes the canonical morphism, the set

{q¢(B) : B bounded in E}

forms a bornology on E/F called the quotient bornology.

With this definition at hand, one checks easily that

Fabienne Prosmans — Jean-Pierre Schneiders
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Proposition 1.5. The category Bc is additive. Moreover, if u : E — F is a
morphism of Be, then

(a) Keru is the subspace u='(0) of E endowed with the induced bornology;

(b) Cokerw is the quotient space F'/u(FE) endowed with the quotient bornology;
(¢) Imu is the subspace u(FE) of F' endowed with the induced bornology;

(d) Coimu is the quotient space E/u=t(0) endowed with the quotient bornology.

As a consequence we have the following characterization of the strict morphisms
of Be.

Proposition 1.6. A morphism u : E — F of Bc is strict if and only if for any
bounded subset B of F', there is a bounded subset B" of E such that

Bnu(E) = uB).

Proof. By definition, v : F — F is strict if and only if the canonical morphism
4 : Coimu — Imuwu is an isomorphism. Thanks to the preceding proposition, this
canonical morphism is the morphism

@ E/u(0) — u(E)

defined by
a([e]u-1(0)) = ule) VeeE.

It is thus a bijective linear map. Therefore, it will be an isomorphism in Bc if and
only if it exchanges the quotient bornology on E/u~!(0) with the induced bornology
on u(E). Going back to the definition of these bornologies, we get the conclusion. [

Corollary 1.7. Let u : E — F be a morphism of Bc. Then,

(a) w is a strict monomorphism if and only if u is an injective map such that
u~Y(B) is a bounded subset of E for any bounded subset B of F’;

(b) w is a strict epimorphism if and only if u is a surjective map such that for any
bounded subset B of F' there is a bounded subset B" of E with B = u(B’).

Proposition 1.8. The category Bc is quasi-abelian.

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. We know that Bc is additive and has kernels and cokernels.
(i) Consider a cartesian square

My —— No

fT };

MlT>N1

where u is a strict epimorphism and let us show that v is a strict epimorphism.
Recall that if we set
a = (u —g) IMQEBN1—>N0,

then we may assume that
M, = Kera = {(mo,n1) : u(mo) = g(n1)}

and that
f=pm, 0% and v =pp, 0i,

where i, : Keraw — My @ N; is the canonical monomorphism and py,, pn, are the
canonical morphisms associated to the direct product My @ N;.

Of course, the morphism v is surjective. Let us prove that it is strict. Consider
a bounded subset By of N;j. Since g(B;) is a bounded subset of Ny and since u is
strict, there is a bounded subset By of My such that

9(B1) = u(Bo).
Since pX/}O(BO) Npy (Bi) is a bounded subset of My & Ny,
a”(0) N piy, (Bo) N oy, (Br)
is a bounded subset of M; and a direct computation shows that
v (ofl(O) ﬂpﬁO(Bo) ﬂp]_\,}(Bl)) D By.

The conclusion follows.
(i) Consider a cocartesian square

M, — N,

fT };

MOT>NO

Fabienne Prosmans — Jean-Pierre Schneiders
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where u is a strict monomorphism. Let us show that v is a strict monomorphism.
Recall that if we set

Oé:<f)2M0—>M1€BNQ,

then we may assume that
Ny = Cokerav = (M @ Ny)/a( M),

and that

UV = (o O Si, and g = qa O SN,

where ¢, : M1 ® Ny — (M;® Noy)/a(Mp) is the canonical epimorphism and sy, , sn,
are the canonical morphisms associated to the direct sum M; & Nj.

Clearly, the morphism v is injective. Let us prove that it is strict. Let B; be
a bounded subset of N; and let B be a bounded subset of M; @& Ny such that
Bi = qo(B). Tt is sufficient to show that v=!(g.(B)) is bounded in M;. Since B is
a bounded subset of M; & Ny, there are absolutely convex bounded subsets B, By
of My and Ny such that

B C B} & By.

Since u is a strict monomorphism, Bj) = u~!(By) is an absolutely convex bounded
subset of My. A simple computation shows that

v (¢a(B)) C By + f(Bg) C 2(By U f(By))
and the conclusion follows. O

Proposition 1.9. The category Bc is complete and cocomplete. Moreover, direct
sums and direct products are kernel and cokernel preserving.

Proof. Since Be has kernels and direct products, (resp. cokernels and direct sums),
Bc has projective (resp. inductive) limits. Hence, Be is complete (resp. cocomplete).

We know that direct sums are cokernel preserving. Let us show that they are
kernel preserving. Consider a family (u; : E; — F;);er of morphisms of Be. For any
1 € I, denote K; the kernel of u; and k; : K; — E; the canonical morphism. It is

clear that
0P 2 De S P
iel iel iel
is an exact sequence of vector spaces. Let us show that it is strictly exact. Let B
be a bounded subset of @, ; F;. By Corollary 1.7, it is sufficient to show that

(B r)(B)

el

el

Fabienne Prosmans — Jean-Pierre Schneiders
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is bounded in €, ; K;. We know that
Bc P B
el

where B; is a bounded subset of E; and the set A = {i : B, # {0}} is finite.
Moreover, k; '(B;) is a bounded subset of K; for any i € I and k;*(B;) = {0} for
i € I\ A since k; is injective. It follows that

Bk (B)
€l
is a bounded subset of &, ; K;. Since
(Br)(B) cPr(B)
iel el

the conclusion follows.
A similar reasoning gives the result for direct products. O

2 Filtering inductive limits in Bc

Let I be a small filtering preordered set. Hereafter, we will often view I as a small
category. This allows us to identify the category of inductive systems of objects of
Bc indexed by I with the category Be! of functors from I to Be. If E is an object
of this category, we will denote by (E;, e;;) the corresponding inductive system and
we will denote r; the canonical morphism

—
el

The following result is easily checked.

Proposition 2.1. Let I be a small filtering preordered set and let E be an object
of Bc!. Then, the bornology on

H

il
is formed by the sets B such that

B C T’Z(Bz)

for some i € I and some bounded subset B; of E;.

Fabienne Prosmans — Jean-Pierre Schneiders
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Definition 2.2. Let] be a small filtering preordered set. We say that an inductive
system E € Bc! satisfies condition SC” if for any i € I and any bounded subset B
of E;, there is 7 > 4 such that

BnNKerr; C Kerej;
or, equivalently, if the sequence
(BN Kerej;);>
of subsets of Fj; is stationary.

Hereafter, we will use freely the theory of the derivation of inductive limits in
quasi-abelian categories developed in [2].

Lemma 2.3. Let I be a small filtering preordered set and let
0-E S E B 0

be a strictly exact sequence of Bc!. Assume that E" satisfies condition SC’. Then,

Lim v Limg o1
. iel . iel .
0 —=lmPF — limE, —— limE/’ — 0
et iy et
el el el

is a strictly exact sequence of Bc.

Proof. We already know that the considered sequence is an exact sequence of vector
spaces. Since inductive limits are cokernel preserving, it remains to prove that lim u
iel
is strict. Let B be an arbitrary bounded subset of lim E;. By Corollary 1.7, it is suf-
iel
ficient to show that (limu})~*(B) is a bounded subset of lim E!. By Proposition 2.1,
we know that there is ¢ € I and a bounded subset B; of E; such that B C r;(B;).
Set
C; = B;Nr; H(Ker(limuf)).

—

iel
Since u/(C;) is a bounded subset of E! such that

i (4 (Cy) = 0,

,r’l K3

it follows from our assumption that there is j > ¢ such that

"
Ji

(€)= 0.

e

Fabienne Prosmans — Jean-Pierre Schneiders
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Therefore,
eji(Cy) C Keruj

and since u} is a strict monomorphism of Be, there is a bounded subset Bj of E]
such that
€ji((j§) - 1L;(Z3;).

Hence for any k > 7,
eri(Ci) C uy(ey;(B)))

and
ri(u " (eri(Ch))) C 7(BY).

Since one checks easily that
(lim u) ™ (B) < [ ik (exi(C))),
il k>j

it follows that
(limw;) ™ (B) C r(B)).

el
Therefore
(limu}) " (B)
il
is a bounded subset of h_n>1EZ’ and the proof is complete. O

el
Lemma 2.4. Let I be a small filtering preordered set. Then,
(a) any object of Be! of coproduct type satisfies condition SC’;

(b) if E — P is a monomorphism in Bc! and if P satisfies condition SC’, then E
also satisfies condition SC".

(c) In particular, the full subcategory of Bc! formed by the objects satisfying
condition SC” is a lim-projective subcategory.
iel
Proof.
(a) This follows from the fact that the transitions of an inductive system of
coproduct type are monomorphic.
(b) This is obvious.
(c) This follows from the preceding lemma combined with (a) and (b) and the
fact that any object of Be! is a strict quotient of an object of coproduct type.
U

Fabienne Prosmans — Jean-Pierre Schneiders
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Lemma 2.5. Let I be a small filtering preordered set and let E be an object of
Bl If
RHl(Lli_1>nEi) € Be,

el
then E satisfies condition SC".
Proof. Since direct sums are exact in Be, Llim E; is represented by the negative

el
Roos complex R.(I, F). Our assumption means that the differential

is strict. Recall that
dosij:sjoeji—si (ZS])

where s;; : E; — @, < Bi, st B — D, E; denote the canonical inclusions. Recall
also that the augmentation

€:Ro(I,E) —>h_n>1EZ

el

is defined by
€08 =1y Viel.

Let ig € I, let B be a bounded subset of E;, and consider the bounded subset
sio (BN (0))

of @,c; Ei. By construction €(s;, (B Nr;.'(0))) = 0, hence s;,(BNr;'(0)) C Imd.
Since d is assumed to be strict, there is a bounded subset B’ of €p, <; Ei such that

si (B N1 (0)) C d(B").

Using the structure of bornology of &P, <; Ei, we see that

B c P Bj;

1<j
where Bj; is a bounded subset of E; for any i < j, the set

S=A{Gj4):i<j, Bj#{0}}

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 12

being finite. Since [ is filtering, there is an element k of [ such that k£ > ¢y and
k > j for any (i,j) € S. Denote

W:@EiH@EZ‘
i i<k

the canonical projection and
T . Ez — Ek
i<k

the morphism defined by setting
T OO0; = €k (i <k)

where o; : S; — @igk S; is the canonical inclusion. It follows from the definition of
d and k that
Tomod(B')=0.

Hence
T om(8(B N fri_ol(O))) =0.
Since
TOTOS;, =T OO0 = €kig,
the proof is complete. O

Proposition 2.6. Let I be a small filtering preordered set and let E be an object
of Bc!. Then, the following conditions are equivalent:

(a) E is H_n;—acyclic (i.e. the canonical morphism
1€

Llim FE; — lim E;
- —
el il

is an isomorphism in D~ (Bc));
(b) E satisfies condition SC’.

Proof.
(a) = (b). This is a direct consequence of Lemma 2.5.
(b) = (a). This follows from part (c) of Lemma 2.4. O

Corollary 2.7. Let I be a small filtering preordered set and let E be an object of
Bc!. Then
RHk(LliLQEi) =0 for k > 2.

el

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. Using Lemma 2.4, we see directly that F has a resolution of the form
00— P —-F—F—0
where Py, P, satisfy condition SC’. The conclusion follows easily. O

Definition 2.8. For any object E of Be, By the set of absolutely convex bounded
subsets of . Of course, the inclusion By C By is cofinal. If B € BE, we denote Ep
the semi-normed space obtained by endowing the linear hull of B with the gauge
semi-norm pp defined by setting

pp(x) =inf{\ > 0:2 € AB}

for any = in Fg. When considered as a bornological space, Ep will always be
endowed with its canonical bornology i.e.

{B': B’ C AB for some \ > 0}.
Proposition 2.9. For any object E of Bc, the canonical morphism
u: lim EB — F
H
BEBE
is an isomorphism.
Proof. Consider the map
v:FE — lim Ep
H
BEBE
defined by setting
v(e) = ryep(e) Ve e E.

A direct computation shows that v is linear. Moreover, the image by v of a bounded
subset B of E' is bounded since

v(B) Crm((B)).

It follows that v is a morphism of Be. By construction v o v = id and one checks
easily that v o u = id; hence the conclusion. O

Proposition 2.10. Let I be a small filtering preordered set, let E be an object of
Bc! and let F' be an object of Sns. Assume E satisfies condition SC’. Then, the
canonical morphism

H_I>nHoch(F, E;) — Hom g (F, h_r)nE,)

el el

is an isomorphism.

Fabienne Prosmans — Jean-Pierre Schneiders
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Proof. Let ¢ be the morphism considered in the statement. Denote

—
el

and
r; : Hom g (F, E;) — lim Hom  (F, E;)

el

the canonical morphisms. Recall that ¢ is characterized by the fact that
o(ri(hi)) =rioh;

for any h; € Hom 4 (F, E;).

Let us show that ¢ is injective. Fix h; : F' — E; and assume o(ri(h;)) = 0. It
follows from the formula recalled above that r; o h; = 0. Denote by the unit ball of
F. We have h;(br) C r;*(0) and, since E satisfies condition SC’, there is j > i such
that h;(br) C ej_il(O). For such a j, we have by linearity ej; o h; = 0. So 7;(h;) =0
as expected.

Let us now prove the surjectivity of ¢. Fix

—

el

Since h(bp) is a bounded subset of the inductive limit, thereis i € I and an absolutely
convex bounded subset B; of E; such that

Using our assumptions, we find 7 > ¢ such that
Binr;1(0) € B;ne;'(0).
Set Bj = e;;(B;) and L; = (E})p,. By construction,

rj:Lj — h_n)lE,
il

is injective and

h(F) C r;(L;).
It follows that there is a unique linear map h; : F' — L; such that r;0h; = h. Since
h;(br) C Bj, this map is in fact a morphism of Be. Composing h; with the inclusion
of L; into Ej;, we get a morphism b : F' — Ej; such that o(r)(h})) = h; hence the
conclusion. 0

Fabienne Prosmans — Jean-Pierre Schneiders
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Corollary 2.11. Any semi-normed space E is a small object of Be. More explicitly,
for any family (E;);e; of Be the canonical morphism

P Hom  (E. E;) — Hom , (E, P E;)
iel el
is an isomorphism.

Proof. We have only to note that
Bri- i B
i€l JePi(I) jeJ

where Py(I) is the ordered set formed by the finite subsets of I. O
Lemma 2.12. Any projective object of Sns is projective in Bc.

Proof. Let P be a projective object of Sns and let f : E — F' be a strict epimor-
phism of Be. For any B € Bg, f: Ep — Fyp) is clearly a strict epimorphism of Be
and hence of Sns. Therefore, the sequences

HomSns(P7 EB) HomSns(P7 Ff(B)> 0

k k
Hom 4 (P, Eg) —— Hom (P, Fyp)) ——0
are exact. Inductive limits being exact in the category of abelian groups, the se-
quence
li_I>n Hoch<P7 EB) - ll_H)l Hoch<P7 Ff(B)) —0
BeBp BeBg

is also exact. By Proposition 2.10 combined with Proposition 2.9, we have
lim Hom g (P, Ep) ~ Hom g (P, E).
BEBE
Since f : E — F'is a strict epimorphism, by Corollary 1.7, the inclusion
{f(B): B € Bg} C By
is cofinal. It follows that
lim Hom g (P, Fy(p)) ~ lim Hompy (P, F5) ~ Homy (P, F).

BeBg BeBp

Therefore, the sequence
Hom 4, (P, E) — Hom (P, F) — 0

is exact and P is projective in Bec. O

Fabienne Prosmans — Jean-Pierre Schneiders
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Proposition 2.13. The category Bc has enough projective objects.

Proof. Let E be an object of Be. Consider the canonical morphism

induced by the inclusions
EB — .

This is clearly a strict epimorphism. Since Sns has enough projective objects (][5,
Proposition 3.2.11]), for any B € B, there is a strict epimorphism of the form

PB_>EB

where Pg is a projective object of Sns. By Lemma 2.12, Pg is still projective in Be.
Direct sums being cokernel preserving in Bc,

is a strict epimorphism. By composition, we get a strict epimorphism
P prs—E
BEBE

and the conclusion follows from the fact that a direct sum of projective objects is a
projective object. O

3 Relations between Bc and Znd(Sns)
Definition 3.1. Let
S : Be — Ind(Sns)
be the functor which associates to any object E of Bc the object
“li_r)n” EB
BEBE

of Znd(Sns) and let
L :Znd(Sns) — Be

be the functor defined by setting

L(“lim” F;) = lim E;
[ —
el el

for any functor £ : I — Sns.

Fabienne Prosmans — Jean-Pierre Schneiders
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Remark 3.2. If E is an object of Sns, then
S(E) ~ “E”.

As a matter of fact, if bg is the unit ball of F, we know that
{rbg : > 0}.

is a cofinal subset of Bp. Since for any v > 0, we have E,, ~ L, ~ E, the
conclusion follows.

Proposition 3.3.
(a) For any object X of Sns and any object E of Be, we have
Hom Ind(sns)(“X”, S(E)) ~ Hom, (X, E).

(b) If (E;)ies is a small family of Be, then

S(EP E:) ~ P S(E.

i€l 1€l
Proof. (a) We have successively
Hom (5,5 (“X7, S(E)) & Hom 7,55, (“X7, “lim” Ep)
BEBE
~ h_r)n Homg, (X, E)
BEBE
~ Hom 4z (X, lim Ep)
BEBE

where the last isomorphism comes from Proposition 2.10. Combining this with

Proposition 2.9 gives us the announced result.
(b) For any object X of Sns, we have

Hom Ind(sns)(“X”, S(@ E;)) ~ Hom g (X, @ E;)

el el
~ P Hom (X, E;) (*)
el
~ @ Hom Ind(sns)(“X”, S(E;))
el
~ Hom 7,450y (“X 7, ED S(E2))

1€l
where the isomorphism (*) follows from Corollary 2.11 and the last isomorphism
comes from [2, Proposition 7.1.9]. O

Fabienne Prosmans — Jean-Pierre Schneiders
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Proposition 3.4. Let E be an object of B¢ and let F' be an object of Ind(Sns).
Then,

(a) there is a canonical isomorphism

Hoch(L(F>7 E> = Hom Ind(Sns) (F7 S(E>>7

(b) the canonical morphism
LoS(E)— FE

is an isomorphism;
(c) the following conditions are equivalent:

(i) the canonical morphism F — S o L(F) is an isomorphism;
(ii) F' is in the essential image of S;

(iii) F' is essentially monomorphic.

Proof. Assume F = “lim” F;
iel
(a) We have successively
Hom . (L(F), E) ~ Hom g (lim F, E)
el
~ lim Hom,(F, )
el
~ lim lim Hom g (F;, E) (*)
1€l BeBg
~ Hom Ind(sns)(“li—n}?? E’ “l‘l}n” EB)
el BeBg

~ Hom Ind(Sns)(F7 S(E))

where the isomorphism (*) follows from Proposition 2.10 and Proposition 2.9
(b) This is another way to state Proposition 2.9.

(c) It is sufficient to prove that (i) = (ii) = (iii) = (i).

(i) = (ii). This is obvious.

(ii) = (iii). Assume F' ~ S(F). Then,

F~ “lim” Ep.

BEBE

Since igp : Ep — FEp is the canonical inclusion, (EB,Z'B/B)BEBE is an inductive
system with injective transitions. Hence, F'is essentially monomorphic.
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(iii) = (i). Assume fy; : F; — Fy injective for ¢ < ¢’. Then, for any object

X = “lim” X; of Ind(Sns), we have
—_

JjeJ

Hom 7,45, (X, S(L(F))) ~ Hom 7,5, (X, S(lim F}))

iel
~ Hom 5, (L(X), lim F;)

iel
~ lim Hom (X, lim F7)

jedJ el
~ liLnli_rgHoch(Xj,F})

jeJ il

~ Hom Ind(Sns) (X7 F)

()

where the isomorphism (*) follows from Proposition 2.10. Since these isomorphisms

are functorial in X, we get (SoL)(F) ~ F.

Corollary 3.5. The category Bc is equivalent to the strictly full subcategory of

Ind(Sns) formed by essentially monomorphic objects.

O

Remark 3.6. Let E be an infinite dimensional Banach space and let (e;);en a free
sequence of E. For any n € N, the linear hull )eg,--- ,e,( is a finite dimensional

subspace of E. It is thus closed and
E,=FE/)ey, - ,en
is a Banach space. For n < m, we get a canonical morphism
Cmn - En — En,

and it is clear that
€pm © Emn = €Epn

for any n < m < p. Moreover since

Keremn = >€07'” ,€m</>€0,"' 76”(

>~ Veni1, s Eml

we have dim Ker e,,,, = m — n. Therefore for n € N fixed, the sequence

(Ker €mn)m>n

is not stationary and the ind-object “lim” £, is not essentially monomorphic. This

neN

shows that S is not an equivalence of categories contrary to what is stated in [1].
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Proposition 3.7. The functor
S : Be — Ind(Sns)
is strictly exact (i.e. transforms any strictly exact sequence
ESLSFL G
of Be into the strictly exact sequence

S(w) S(v)
— —5

S(E) — S(F) = S(G)

of Ind(Sns)).

Proof. Since S has a left adjoint, it is kernel preserving. It is thus sufficient to show
that S is exact. Let
0-FELF3LG—=0

be a strictly exact sequence of Bc and let B be an absolutely convex bounded subset
of F. Clearly u™'(B) (resp. v(B)) is an absolutely convex bounded subset of F
(resp. GG). Moreover, one checks easily that the sequence

0— Eu—l(B) — FB — G’U(B) —0

is strictly exact in Sns. The functor “@” being exact, the sequence
BEBF

O s “h—n>177 Eu—l(B) N “h—n>177 FB s Mlim” G,U(B) — 0
BEBF BEBF BEBF

is thus strictly exact in Znd(Sns). Since the inclusions
{uY(B): BeBr}CBr and {v(B):Be€Br}CBg
are cofinal, the sequence

0 — “lim” Fg — “lim” Fg — “lim” Gg — 0
— — —
BEBE BEBF BEBG

is strictly exact in Znd(Sns) and the conclusion follows. O

Lemma 3.8. Let I be a small filtering preordered set and let E be an object of Bc!.
Assume FE; is a semi-normed space for any ¢ € I. Then, the following conditions are
equivalent:

(i) E satisfies condition SC’;
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(ii) “lim” E; is essentially monomorphic.
iel

Proof. (i) = (ii). Let ¢ € I and let b; be the unit ball of E;. There is j > i such
that
b N1 (0) C e;;1(0).
Using the linearity of r; and e;; and the fact that
U Tbi = Ei7
r>0
we get that Kerr; C Kerej; and the conclusion follows from Proposition A.2.
(ii) = (i). This follows from Proposition A.2. O
Proposition 3.9. The functor
L :Znd(Sns) — Be

is cokernel preserving and left derivable. Moreover, its cohomological dimension
with respect to the right t-structures is equal to 1. In particular, we get functors

LL : D*(Znd(Sns)) — D*(Bc) (x € {—,+,b,0})

Proof. Since L has a right adjoint, it is cokernel preserving. We may factor L as
Ind(Sns) Tnd(d), Tnd(Bc) 22 Be

where I : Sns — Bc is the canonical inclusion functor. The first functor is kernel

and cokernel preserving and since direct sums are exact in Be, the second one is left

derivable. Therefore, the functor L is left derivable if there are enough objects in

Ind(Sns) whose image in Znd(Bc) are acyclic for Lg.. Obviously the objects of the

form @, , “Ei” (E; € Sns) are of the requested type and we have

LL ~ LLg, o Znd(I).
If £ = “lim” E; is an object of Znd(Sns), we get
iel
LL(E) ~ LLg.(“lim” I(E;)) ~ Llim I(E;).
i€l €l
Then, by Corollary 2.7, for k > 2, we have
RH(LL(E)) ~ RH(Llim I(E;)) = 0.

el

Therefore, the cohomological dimension of L with respect to the right t-structure
is not greater than 1. The fact that it is equal to 1 comes from Proposition 2.6,
Lemma 3.8 and Remark 3.6. 0

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 22

Proposition 3.10. The functors
S: D(Bc) — D(Znd(Sns))
LL : D(Znd(Sns)) — D(Bc)

are quasi-inverse equivalence of categories which induce the equivalence of categories
LH(Bc) = LH(Ind(Sns)).

Proof. First, consider an object E of Bc. By Proposition 3.4,

S(El) ~ LLh—n>177 EB

BEBE

is essentially monomorphic and by Lemma 3.8, the inductive system (Ep)gzcp, €

SnsPe satisfies condition SC’. It follows from Proposition 2.6 that (Ep) Befy 18 lim -
BEBE
acyclic. Then, we get successively

LLoS(E) ~Llim Ep~ lim Ep~ E

BeBg BeBg

where the last isomorphism follows from Proposition 2.9.
Next, let E be an object of Znd(Sns). We know that E has a resolution by
L-acyclic objects of the form @, , “E;”. Since

72 n BN : 173 nIRL RT3 FNR )
D~ i @E =~ i BF,
iel JEPs(I) jeJ JePs(I) jeJ

@.c; “E”i is an essentially monomorphic ind-object. By Proposition 3.4, we get

S(LEP “E")) ~ EP “E".

i€l el

It follows that
SoLL ~id.

To conclude, we have only to note that since
S : Be — Ind(Sns)

is strictly exact,
S: D(Bc) — D(Znd(Sns))

is exact for the left t-structures. O
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4 The category Be

Definition 4.1. Let F be an object of Be. We say that a sequence (x,,)nen converges
to a limit x € E if there is an absolutely convex bounded subset B of E such that
the sequence

T, — x in Ep.

The object E is separated if a sequence which converges in E has a unique limit.
We denote Bec the full subcategory of Be formed by separated objects.

Remark 4.2.
(a) If f: E — F is a morphism of B¢ and z,, — x in E, then f(z,) — f(z) in F.
(b) The category Nvs of normed vector spaces is a full subcategory of Be.

(c) An object E of Bc is separated if and only if Ep is a normed space for any
absolutely convex bounded subset B of E.

Definition 4.3. Let E be an object of Be. A subspace F of E is closed if limits
of sequences (z,)neny of F' which converge in E belong to F'. The closure F of a
subspace F' of E is the intersection of all the closed subspaces of F containing F'.
It is of course a closed subspace of E.

Remark 4.4.

(a) A subspace F of F is closed if and only if F'N Ep is closed in Ep for any
absolutely convex bounded subset B of E.

(b) The closure of a subspace F' of E is not always equal to the subspace formed
by the limits of the sequences of F' which converge in E.

(c) An object E of Be is separated if and only if {0} is closed in FE.
(d) A subspace F of an object E of Be is closed if and only if E/Fis separated.

The following result is well-known.

Proposition 4.5. Let (E;);c; be a family of objects of Bc. Assume each E; is
separated. Then, both @, ; E; and [[,.; E; are separated. In particular, they form
the direct sum and direct product of the family (E;)ic; in Be.

Let us now study B¢ from the point if view of [5].

Proposition 4.6. Let u : E — F be a morphism of Be. Then in gc,
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(a) Keru is the subspace u~'(0) of E with the bornology induced by that of E,

(b) Cokerw is the quotient space F'/u(FE) with the quotient bornology,

(c) Imw is the subspace u(FE) of F' with the bornology induced by that of F
(d) Coimu is the quotient space E/u~*(0) of E with the quotient bornology,
(e) w is strict if and only if u is strict in Be and u(E) is a closed subspace of F.

Proof. (a) We know that u~'(0) is the kernel of u in Be. Since u=*(0) is endowed
with the induced bornology, u~!(0) is separated. Hence, u~1(0) is the kernel of u in
Be.

(b) Since u(E) is closed, F/u(E) is separated. Let v : F' — G be a morphism
of Be such that vowu = 0. Since v=(0) is a closed subspace of F, u(E) C v=(0).
Then, the linear map

v F/u(E)— G [ﬂu(E) = v(f)

is well-defined and is clearly a morphism of Be. Since v’ is the unique morphism
making the diagram

E—" F F/u(E)

commutative, we see that F/u(E) is the cokernel of u in Be.

(c) follows from (a) and (b).

(d) We know that E/u~1(0) is the coimage of u in Be. Since {0} is closed in F,
u~1(0) is closed in E and E/u~'(0) is separated. Hence, F/u~'(0) is the coimage
of u in Be.

(e) Assume that u is strict in Be. This means that the canonical morphism

E/u(0) — u(E)
is an isomorphism of separated spaces. The linear map
E/u™'(0) — u(E)

being bijective, it follows that u(E) = w(F) and that u is strict in Be. The converse
is obtained by reversing the preceding arguments. 0
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Corollary 4.7. Let u : E — F be a morphism of Be. Then,
(i) w is a strict epimorphism of Be if and only if u is a strict epimorphism of Be;

(ii) w is a strict monomorphism of Be if and only if u is a strict monomorphism
of Bc which has a closed range.

Lemma 4.8. A sequence
ELFSG

of Be is strictly exact if and only if it is strictly exact in Bc.

Proof. Recall first that a null sequence
ELFS@E

in an additive category with kernels and cokernels is strictly exact if and only if u
is strict and Imu = Kerwv.

Therefore, if the sequence of the statement is strictly exact in B ¢, it follows from
Proposition 4.6 that u is a strict morphism of B¢ which has a closed range and that
uw(E) = v71(0). In particular, u(F) = v='(0) and the sequence is strictly exact in
Be.

Conversely, assume that the sequence of the statement is strictly exact in Be. In
this case, u is a strict morphism of Bc and u(FE) = v~1(0). Since G is separated,
v~1(0) is closed in F. Hence, u(E) is closed in F and w is strict in Be. The conclusion
follows. O

Lemma 4.9. Let u : £ — F and v : ' — G be two morphisms of Be. Assume
w = vou is a strict monomorphism of B¢, then u is a strict monomorphism of Bc.

Proof. By Corollary 4.7, v o u is a strict monomorphism of Be. Since Bc is quasi-
abelian, it follows that v is a strict monomorphism of Be. So, we only have to prove
that u has a closed range. Let (z,)nen be a sequence of E such that u(x,) — y in
F. Clearly, v(u(z,)) — v(y) in G and since w is a strict monomorphism of Bec with
closed range, there is an = in F' with w(z) = v(y) and for which z,, — z. Since u
is a morphism of Be, u(x,) — u(x) in F, and F being separated, we get u(z) = y.
Hence, y € u(E) and the conclusion follows. O

Proposition 4.10. The category Be is quasi-abelian.

Proof. We know that Bec is additive and that any morphism of Be has a kernel and
a cokernel.
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Consider a cartesian square
Jopy
T g
T'——G

of Be where f is a strict epimorphism. By Corollary 4.7, f is a strict epimorphism
of Be. It follows that u is a strict epimorphism of B¢ and hence of Be.
Consider now a cocartesian square

G—>T (*)
4 }
ET>F

of B¢ where f is a strict monomorphism. Since the diagram

(%)

E——GoF

\\fp\\ywn

F

is commutative, by Lemma 4.9,
() E—~GaF

is a strict monomorphism of Be. The square (*) being cocartesian, it follows that
the sequence
g9
(%) (u0)

0— E GorFr T—0 (**)

is strictly exact in Be and hence in Be by Lemma 4.8. The square (*) is thus
cocartesian in Be and w is a strict monomorphism of Be. To conclude, it remains
to prove that u has closed range. The morphisms g and v induce a strict quasi-
isomorphism between the complexes

O—>EL>F—>O and 0—-G5T -0

since the mapping cone of
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is the strictly exact complex (**). Taking the cohomology and using the fact that
f and wu are strict monomorphisms of Bec, we get

Coker(f) ~ Coker(u) in Be.

Since f(FE) is closed, Coker(f) = F/f(E) is separated. It follows that Coker(u) =
T /u(Q) is separated and hence that u(G) is closed. O

Proposition 4.11.
(a) The projective objects of Be are separated.

(b) The category Be has enough projective objects.

Proof.
(a) It follows from the proof of Proposition 2.13 that any projective object of Be
is a direct summand of an object of the type

Dr
il
where each P; is a projective object of Sns. So we are reduced to prove that the

projective objects of Sns are separated. This follows easily from the fact these
objects are direct summands of normed spaces of the type

De
JjeJ

(see [5, Proposition 3.2.12]).
(b) Thanks to Proposition 2.13 and Corollary 4.7, this is a direct consequence of

(a).
U

Proposition 4.12. The category Be is complete and cocomplete. Moreover, direct
sums are kernel and cokernel preserving and direct products are strictly exact.

Proof. The result follows from Proposition 1.9 thanks to Proposition 4.5 and Propo-
sition 4.8. m

Definition 4.13. We denote by
1: Bc— Be
the inclusion functor and we define the functor

gep:Bc—> Be
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by setting
= —F
Sep(E) = E/{0}
and endowing it with the quotient bornology.

One checks easily that:

Proposition 4.14. For any object E of Bc and any object F' of gc, we have the
adjunction formula

Hom g, (Sep(E), F) ~ Hom 4 (E, T(F)).
Moreover, R R
Sepo I =idg,.
Proposition 4.15. Any object E of Bc has a presentation of the form
0—S —Sy—F—0
where Sy, Sy are objects of Be.

Proof. By Proposition 2.13 Bc has enough projective objects and by Proposition 4.11
these objects are separated. It follows that for any E in Bc there is a strict epimor-
phism

u:Sy— F

with Sy separated. Taking S; = Keru allows us to conclude. U
Proposition 4.16. (a) The functor
§ep : Be — Be

is cokernel preserving, left derivable and has bounded cohomological dimension. In
particular it has a left derived functor

LSep : D*(Bc) — D*(Bc) * € {0,+,—,b}.

(b) The functor
[:Bc— Be

is strictly exact and gives rise to a functor
1:D*(Be¢)— D*(Be)  * e {0,+,—,b}.

(c) Moreover, T and Lgep define quasi-inverse equivalence of categories. In
particular,

1:LH(Be) — LH(Be)

is an equivalence of categories.
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Proof. (a) Since T is a right adjoint of Sep, Sep is cokernel preserving. It follows
from Proposition 4.15 and Lemma 4.8 that Be forms a §ep—projective subcategory
of Be. Hence, the functor §ep is left derivable and has bounded cohomological
dimension.

(b) This follows directly from Lemma 4.8.

(¢) On one hand, for any object S of D(Bc), we have

—~

LSepo 1(S) =LSep(1(S)) = Sep(1(S)) =S

where the second equality follows from the fact that the components of the complex
[(S) are in a Sep-projective subcategory of Be. On the other hand, any object E of
D(Bc) is quasi-isomorphic to a complex S with separated components. Therefore,
we have

ToLSep(E)~1oSep(S)~S ~E.

To conclude, it is sufficient to note that, since
1:Bec— Be

is strictly exact, the functor

—~ —~

I : D(Bc¢)— D(Bc)
is exact for the left t-structures. O

Proposition 4.17. Let I be a filtering preordered set and let E be an object of
Bc!. Assume that E satisfies condition SC” and that E; is separated for any i € I.
Then lim F; is separated.

H

el
Proof. Set L = lim [; and let B be an absolutely convex bounded subset of L. We

el

know that there is ¢ € I and an absolutely convex bounded subset B; of E; such
that

Proceeding as in the proof of Proposition 2.10, we may even assume that
T . (EIZ)Bz — L

is injective. It follows that Lp ~ (E;)p, as semi-normed spaces. By assumption,
(E;)p, is in fact a normed space. Hence, Lp is also a normed space and the conclusion
follows. u
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Proposition 4.18. Let S be a filtering inductive system of Be indexed by J. Then,
jed jed

Proof. Since S has a left resolution by inductive systems of coproduct type, the

result will be true if it is true when S is itself of coproduct type. In this case, S and

I oS are both Llim-acyclic. Since S has also injective transitions the conclusion
jed

follows from Proposition 4.17. O

Proposition 4.19.

(a) The functor
S : Be — Ind(Ns)

E+— “1im” Ep
7
BeBg

has as left adjoint the functor
L : Znd(Nvs) — Be

“im” B; — lim F;
— —
i€l el

where the limit is taken in Be (and may differ from the corresponding limit

in Be).

(b) The canonical morphism
LoS(F)—FE

is an isomorphism for any E in Bec.

(¢) For any F' in Ind(Nwvs), the following conditions are equivalent:

(i) the canonical morphism F — S o L(F) is an isomorphism;
(ii) F is in the essential image of S;

(iii) F' is essentially monomorphic.

Proof. Thanks to Proposition 4.17, we may proceed entirely as in the proof of Propo-
sition 3.4. ]

Corollary 4.20. The category Beis equivalent to the full subcategory of Znd(Nvs)
formed by essentially monomorphic objects.
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Proposition 4.21. (a) The functor
S : Be — Ind(Nws)

is strictly exact and has bounded cohomological dimension. In particular, it induces
a functor

S : D*(Bc) — D*(Ind(Nvs))  (x € {—,+,b,0}).

(b) The functor
L :Znd(Nvs) — Be

is cokernel preserving and has a left derived functor
LL : D*(Znd(Nvs)) — D*(Be).

(c) The functors S and LL are quasi-inverse equivalence of categories. They
induce an equivalence of categories

LH(Bc) ~ LH(Ind(Nvs)).

Proof.

(a) Thanks to Lemma 4.8, we may proceed as in Proposition 3.7.

(b) & (c¢) Using Proposition 3.7, and Proposition 4.18, one can adapt easily the
proofs of Proposition 3.9 and Proposition 3.10. O

5 The category Be

Definition 5.1. Let F be an object of Be. We say that E is complete if for any
bounded subset B of E, there is an absolutely convex bounded subset B’ D B of F
such that Fp is a Banach space. We denote Be the full subcategory of Bc¢ formed
by complete spaces. For any object E of gc, we set

ng ={B ¢ Bg: Ep Banach}.

Remark 5.2.
(a) The category Ban of Banach spaces is a full subcategory of Be.
(b) The category Bc is a full subcategory of Be.

Proposition 5.3. Let E be an object of Bc and let F' be a linear subspace of E
endowed with the induced bornology. Assume E is complete and F' is closed in E.
Then, both F' and E/F are complete.
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Proof. Let us prove that F' is complete. Let B be an arbitrary bounded subset of F'.
By definition, there is a bounded subset B’ of E such that B = B’N F. Since F is
complete, there is also an absolutely convex bounded subset B” D B’ of E such that
Epr is a Banach space. Since F is closed in E, Eg» N F'is closed in Eg». Hence,

Fpinp = Epn N F

is a Banach space. Since B” N F' D B, the conclusion follows.

Now, let us prove that F/F is complete. Denote ¢ : F — E/F the canonical
morphism and let B be a bounded subset of E/F'. Since ¢ is a strict epimorphism,
by Corollary 1.7, there is a bounded subset B’ of E such that B C ¢(B’). The space
E being complete, there is an absolutely convex bounded subset B” D B’ of F such
that Eps is a Banach space. Therefore, ¢(B”) is an absolutely convex bounded
subset of E//F such that B C q(B"). Moreover, we clearly have

(E/F>q(B”) ~ EB”/FB”HF ~ EB///EB// m F

Since F'is closed in £, Egs N F is closed in Egv. Hence, (E/F)ypr) is a Banach
space and the conclusion follows. O

Remark 5.4. Let (E;);e; be a family of semi-normed spaces and let p; be the
semi-norm of F;. Following [5], we denote

1=
el

the vector subspace of [[,.; E; formed by the families (e;);c; such that

el

p((ei)ier) = S}l?pz‘(ei) < +00
1€

endowed with the semi-norm p. We leave it to the reader to check that [ E; is a
iel
Banach space if FE; is a Banach space for every i € I.

Proposition 5.5. Let (E;);c; be a family of Be. Assume E; is complete for i € 1.
Then @,.; E; and [[,.; E; are complete. In particular, they form the direct sum
and direct product of the family (E;);c; in Be.

Proof. First, let us show that @,.; E; is complete. Let B be a bounded subset of
@.c; Ei. We know that
Bc P B

el
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where B; is a bounded subset of E;, the set N = {i € [ : B; # {0}} being finite.
For any i € N, there is an absolutely convex bounded subset B D B; of E; such
that (E;)p, is a Banach space. Fori € I\ N, set B/ = {0}. Then,

Bc PB.
el

One checks easily that

(@ E) ~ P(E)s:
@ie] Bz/

el

Since a finite direct sum of Banach spaces is a Banach space, these spaces are Banach
spaces and the conclusion follows.

Next, let us prove that []
[I;c; Ei- We know that

E; is complete. Let B be a bounded subset of

Bc[]B

el

el

where B; is a bounded subset of E; for any ¢ € I. For each ¢ € I, one can find
an absolutely convex bounded subset B! of E; containing B; for which (F;) B s a
Banach space. A simple computation shows that

(H E) ~ [[(E)s:
iel e, B,
and the conclusion follows from Remark 5.4. O
Proposition 5.6.
(a) The kernel, cokernel, image and coimage of a morphism

u: B —F

of Be are the same as those obtained by considering u as a morphism of Be.
Moreover, u is strict in Be if and only if it is strict in Be.

(b) The category Be is quasi-abelian.

(c) The category Be is complete and co-complete. Moreover, direct sums are
kernel and cokernel preserving and direct products are strictly exact.
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Proof. (a) We know that u~'(0) is the kernel of u in Be and that it is a closed
subspace of E. It follows that " (0) is complete and hence that it is the kernel of u
in Be. Recall that the cokernel of u in Be is F/u(E). Since u(E) is closed, F/u(E)
is complete. Therefore, F/u(E) is also the cokernel of u in Be. The rest of part (a)

is now obvious.

(b) This follows from (a) combined with the fact that the category Be is quasi-
abelian.

(¢) Thanks to (a), (b) and the preceding proposition, this is an easy consequence

—~

of the similar result for Be. O

Corollary 5.7.
(i) A sequence
ELFLQG

of Be is strictly exact if and only if it is strictly exact in Bec.
(ii) If (E;);er is an inductive system of Be, then its inductive limit in Be is equal
to its inductive limit in Be (but not in general in Bc).

Proof.
(i) follows directly from Lemma 4.8 and Proposition 5.6.
(ii) Since direct sums and cokernels are the same in B¢ and Be, the sequence

i<j iel i€l
is both strictly coexact in Be or Be. The conclusion follows. O
Proposition 5.8. The category Be has enough projective objects.
Proof. Let E be an object of Be. The inclusion B}, C Bg being cofinal, the canonical
morphism
P Es—E
BeB,

is a strict epimorphism. Since Ban has enough projective objects, we can conclude
by proceeding as for Proposition 2.13. O

Lemma 5.9. Let E be a normed space and let F' be an object of Be. Then,

Homgc(E, F)~Hom, (E, F).
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Proof. Using Proposition 2.9, Proposition 2.10 and the fact that the inclusion 5’% C
Br is cofinal, we get successively
Hom 4, (E, F) ~ Hom 4 (F, lim Fg)
BeB,,
~ h_r)n Hom ,, (F, Fp)
BeB,

~

~ h_r)n Hom ., (F, Fp)
BeB,
~ Hoch(E, lim Fp)
BeB,,

~ Homgc(ﬁ, F).

Definition 5.10. We denote by
1:Bc— Be
the canonical inclusion functor and we define the functor
apl : Be — Be
by setting R
Cpl(E) = lim Ep
BEBE

where the inductive limit is taken in Be (and may differ from the inductive limit in

Be).

Proposition 5.11. For any object E of Bc and any object F' of gc, we have the
adjunction formula:

Hom g, (Cpl(E), F) ~ Hom 4 (E, 1(F))

Moreover,
Cpl ol = idgc .
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Proof. We have successively

Homgc(apl(E),F) ~ Hom g, ( lim Eg, F)
BEBE
~ lim Homg, (E5, F)
BEBE
~ lim Hom g (Eg, F)
BEBE
~ Hom, ( lim Eg, F)
BEBE

~

~ Hom 4 (E,I(F)).

Note that the third isomorphism follows from Lemma 5.9 and that the last one is
a consequence of Proposition 2.9. Moreover, for any object E of Bc, we have by

cofinality:
Cplo [(F) ~ h_n>1 Ep~ h_r)n Ep~ h_r)n Ep~FE.
BeBg BeBy, BeBg

Proposition 5.12. The functor apl may be decomposed as L o CS where
CS: Be — ZInd(Ban)

E — “im” Ep
—

BEBE

and R _
L: ZInd(Ban) —  Bc
9m” E; +— limFE;.
- -
iel el

Moreover, for any object E of Be and any object F of Ind(Ban), we have the
adjunction formula:

Hom g, (L(F), E) 2 Hom 5 5,,,,(F, CS(I(E))).

Proof. For any object E of Be, we have
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Let E be an object of Bc and let F = “lim” F; be an object of Znd(Ban). Then,
el
we have successively

Homgc(i(F),E) ~ Hom g, (lim F, E)
il
~ liLnHoch(Fi, E)
iel
~ lim lim Hom g (F;, Ep)
i€l BeBg
= lin 11_1)1’1 HomBan(E’EB/)
i€l Blefl,
~ Hom Ind(Ban)(“li—n}” EZ’ “lii)n” EB/)
iel BIeB,

o~

~ Hom 7,4 p.n) (F, CS(I(E))).

Proposition 5.13.

(a) The functor CS is exact and gives rise to a functor

CS: D*(Bc) — D*(Ind(Ban))  (x € {—,+,b,0}).

(b) The functor L is cokernel preserving and has bounded cohomological dimen-
sion. In particular, it has a left derived functor

LL : D*(Ind(Ban)) — D*(Be)  * € {—,+,b,0}.

(c) An object of Ind(Ban) is L-acyclic if and only if it is essentially injective.

Proof.

(a) Since the functor = : Sns — Ban is exact, the functor Znd(%) is also exact.
By Proposition 3.7, the functor S : Be — Znd(Sns) is strictly exact. Therefore, the
functor CS =Znd (") o S is exact.

(b) By the preceding proposition, L has a right adjoint; it is thus a cokernel
preserving functor. Proceeding as in Proposition 3.9, we see easily that L is left
derivable. Moreover, for any filtering preordered set J and any F € Ban’, we get

LL(F) ~ Llin F;

JjeJ

Fabienne Prosmans — Jean-Pierre Schneiders



A Homological Study of Bornological Spaces 38

where the derived inductive limit is taken in Be. By the theory of derived inductive
limits for quasi-abelian categories, we know that

Llim F; ~ R.(J, F)

JjeJ

where F'is considered as an object of Be’ and R.(J, F) is its negative Roos complex.
By Proposition 5.5,
I(R(J,F))~ R(J, 1o F).

Moreover, thanks to Proposition 3.9, we have
LH(R.(J, 1o F)) =0
for £ > 1. Applying Corollary 5.7, we deduce that
LHy(R.(J,F))=0
for £ > 1. In particular, L has bounded cohomological dimension and
LL : D*(Znd(Ban)) — D*(Bc) =€ {—,+,b,0}.

is well-defined.
(c) Let J be a filtering preorderd set and let F' be an object of Ban’.
Assume F' is L-acyclic. Proceeding as in (b), we see that the sequence

- — Ri(J,F) = Ro(J,F) = L(F) = 0

is strictly exact in Be. 1t follows that the sequence

- — Ry(J, 1o F) — Ry(J,10 F) — I(L(F)) — 0

is strictly exact in Be. Hence ToFis lim-acyclic and by combining Proposition 2.6
jeJ
and Lemma 3.8 we find that F' is essentially monomorphic.
Conversely, assume F' is essentially monomorphic. Then, by Lemma 3.8, F
satisfies condition SC’. Using Proposition 4.17, we see that the inductive limit of

F in Bc is separated and hence isomorphic to I(L(F')). Combining this fact with
Proposition 2.6, we find that the sequence

- Ry(J 1o F) = Ro(J,To F) = L(L(F)) — 0
is strictly exact in Be. Now, Corollary 5.7 entails that the sequence
-+ — Ri(J,F) = Ro(J,F) = L(F) = 0

is strictly exact in Be and hence that F is L acyclic. O
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Proposition 5.14. The functor
1:Bec— Be
is strictly exact and gives rise to a functor
1: D*(Bc) — D*(Be) % € {+,—,b,0}.

The functor
Cpl: Be — Be

is cokernel preserving and has bounded cohomological dimension. In particular, it
has a left derived functor

LCpl : D*(Bc) — D*(Be) % € {+,—,b,0}.

and
LCpl ~ LL o CS.
Moreover, R R
RHom g, (LCpl(E), F) ~ RHom 4z (E, I(F)).
and

LCploT ~id.

In particular, D*(gc) may be identified with a full subcategory of D*(Bc) and
LH(Bc) may be identified with a full subcategory of LH(Bc).

Proof. The fact that 1 is strictly exact follows directly from Corollary 5.7.
The functor Cpl having a right adjoint is clearly cokernel preserving. Since
Cpl ~ L o CS and CS is exact, to prove the formula

LCpl ~ LL o CS

it is sufficient to show that any object E of Bc is a strict quotient of an object F
for which CS(F) is L-acyclic. We claim that we can take
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Moreover,

CS(EP Es) ~Ind()(S(EP Er) ~ P “E

BeBg BeBg i€l

and such an object is f—acyclic.

Since T is stricly exact, Proposition 5.11 entails immediately that apl(P) is a
projective object of Beis P is a projective object of Be. To prove the derived
adjunction formula it is thus sufficient to replace E by a projective resolution and
apply Proposition 5.11 once more.

For any object E of Be, CS(I(E)) is essentially monomorphic since

CS(I(E)) ~ “lim” Ep.

BeBY,

Thanks to part (c) of Proposition 5.13, it follows that CS(I(E)) is L-acyclic.
Therefore,

LCpl(I(E)) ~ LL(CS(I(E))) ~ L(CS(I(E))) ~ Cpl(I(E)) ~ E.
]

Working as for Bc and gc, the results of this section easily entail the two following
propositions.

Proposition 5.15. The functor
S: Bc — Ind(Ban)

E— “9im” Eg
—
BeBg

has as left adjoint the functor
L : Znd(Ban) — Be

“lim” E; — lim F;.
— —
i€l el

Moreover,
LoS Ziidéé
and for any object F' of Ind(Ban) the following conditions are equivalent:

(i) the canonical morphism F — S o L(F) is an isomorphism;

(ii) F' is the essential image of S;
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(iii) F' is essentially monomorphic.

In particular, Be is equivalent to the full subcategory of Ind(Ban) formed by essen-
tially monomorphic objects.

Proposition 5.16. (a) The functor
S: Bc — Ind(Ban)
is strictly exact and induces a functor
S: D*(Bc) — D*(Ind(Ban))  (x € {—,+,b,0}).

(b) The functors S and LL are quasi-inverse equivalences of categories. They
induce an equivalence of categories

LH(Be) ~ LH(Ind(Ban)).

A Essentially monomorphic ind-objects

Definition A.1. Let £ be a quasi-abelian category and let £ : 7 — & be an ind-
object of £. We say that F is monomorphic (resp. strictly monomorphic) if for any
a :i— 1" of 7 the morphism

E(a): E(i) — E(i)

is a monomorphism (resp. strict monomorphism) of £. An ind-object isomorphic
to a monomorphic (resp. strictly monomorphic) ind-object is said to be essentially
monomorphic (resp. essentially strictly monomorphic).

Proposition A.2. Let £ be a quasi-abelian category and let E : T — & be an
ind-object of £. Then,

(a) the following conditions are equivalent :

(i) E is essentially monomorphic;

(ii) for any ¢ € I, there is o : i — i’ such that for any o : i — i" the
canonical strict monomorphism

Ker E(a) — Ker E(a/ o )

is an epimorphism (and hence an isomorphism);
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(iii) for any i € Z, there is a : i — 4’ such that for any o : ¢ — " the

canonical strict epimorphism
Coim F(a) — Coim E( o «)
is a monomorphism (and hence an isomorphism).
(b) the following conditions are equivalent :

(i) E is essentially strictly monomorphic;

(ii) for any ¢ € I, there is o : i — i’ such that for any o/ : i’ — 1" the

canonical epimorphism
Im E(a) — Im E(a’ o )
is a strict monomorphism (and hence an isomorphism).

Proof. (a) (i) = (ii). Assume u : E — F' is an isomorphism of the ind-object
E : 7 — £ with a monomorphic ind-object F' : 7 — £ and denote v : F' — F its
inverse. For any ¢ € 7, there is j € J and a representant

E(i) = F(j)

of u. Since v ou = idg, there is a representant vy; : F(j) — E(') of v such
that v;j o uj; = E(a) where a : ¢ — ¢’ is a morphism of Z. Consider a morphism
o :i" —i" of . Since E(a') o vy : F(j) — E(i") represents v and uov = idp, we
can find a representant u;;» : E(i") — F(j') of u such that

uj/i” @) E(O[/) @) Ui/j = F(ﬁ)

where (3 : j — j’ is a morphism of J. Now, let h : X — FE(i) be a morphism of &£
such that
E(d/ oa)oh=0.

Since
uj/i” (@] E(O/ (@] O[) = uj/i” (@] E(O/) (@] E(O[) = uj/i” (@] E(O/) (@] Ui/j (@] ’U,ﬂ = F(ﬁ) (@] ’U,ﬂ

it follows that
F(ﬁ)ouﬂohzo

Using the fact F'(3) is a monomorphism, we see that u;; o h = 0. Therefore

vyjouj;oh=E(a)oh=0.
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This shows that Ker E(a) ~ Ker E(a/ o ).
(ii) == (iii). This follows from the definition of the coimage.
(iii)) = (i). Forany i € Z, select a o (i) : i — s(i) such that for any o’ : s(i) — ¢/,

Coim E(o (7)) ~ Coim E(c’ o 0(1)).
Set C'(i) = Coim E(0(i)) and denote u(i) : E(i) — C(i) and v(i) : C(i) — E(s(7))

the canonical morphisms. Let o : ¢ — i’ be a morphism of Z. Using the fact that 7
is filtering, it is possible to find 3 : s(i) — ", B' : s(i') — " such that

E(8) o E(a(i)) = E(8') o E(a(i') o E(a).
Denote C' and C” the coimages of E(3) o E(o(i)) and E(5") o E(o(i")). We get the

following commutative diagram of canonical morphisms

B(H) ——— B(s()
\c /
(1)
) E(B)
C \
B(a) / E(i")

/ E@)
u (i) v(i’)

B({) — B(s(i")

This gives us a monomorphism C(«) : C(i) — C(i’) which is easily seen not to
depend on (3 or #'. Moreover, C(a’ oa)) = C'(a/) o C(«) for any o/ : ¢/ — " in Z and
we get a morphism of functors

u:E— C.

Moreover, we know that the canonical morphism
C — E@")

is a monomorphism. It follows that the morphism C' — C” is monomorphic. There-
fore, C'(a) : C(i) — C(¢') is also a monomorphism and C' is a monomorphic ind-
object.
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Applying the canonical morphism
rsyi : Homg (C(2), E(s(4))) — lim Hom o (C(@), E(j))
JjeT

to v(i) for any i € I, we get a family

(7si),i(v(4)) )ier

of elements of
liny Hom (C(2), B(7)).
jET
Since the commutative diagram above shows that
lim Hom (C(a), idis))] (ragen.e (0(1)) = gy a(0(2)):
jET
this family defines a morphism

v:C—F
in Znd(&). Clearly, v o u = idg. Let us show that o v = ide. Using the definition
of C(a) for a = (i), we get the commutative diagram

u(i)

E() o) —
|

E(s(1))

)
\E
7

—~

~_|

C
BE(o(i)) ‘
C(s

(i

E(a(s(2)))

(5*(1))

.

B(s(i)) = C(s(0)) ~ B(5°(0)

where C(o(i)) is represented by the composition of the second column of vertical
arrows. It follows that

v(s(7)) 0 Ca(i)) = E(o(s(1))) o v(i) = v(s(i)) o u(s(i)) o v(7)

and since v(s()) is injective, we see that

u(s(i)) o v(i) = C(a (7).
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Hence, uov =ide. This concludes the proof of (a).
(b) (i) = (ii). Proceeding as in (a), for any ¢ € Z, we find « : ¢ — 4’ such that
for any o : " — " we get a commutative diagram of the form

F(B)
(2>\(_j>/ (Z) (Z>—> (j)
E(a)

where (3 : j — j' is a morphism of J and F (/) : F(j) — F(j') is a strict monomor-
phism. It follows that vy; is a strict monomorphism. In the canonical commutative
diagram

Im E(a) I
\E( »/) /

the diagonal arrows are strict monomorphisms. Hence, there is a canonical strict
monomorphism

m(vy/;)

Im E(a) — F(j).

Using the commutative diagram

Im E(«) Im E(a)

one sees easily that Im E(«a) — Im E(a’) is a strict monomorphism.
(ii) = (i). We may proceed entirely as in ((a), (iii) = (i)) replacing coimages
by images. O
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