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Preface

This book is based on a course given by the author at the university of

Lisbon during the academic year 1997–1998. This course was divided in

three parts dealing respectively with characteristic classes of real and com-

plex vector bundles, Hirzebruch-Riemann-Roch formula and Atiyah-Singer

theorem. In the text which follows, we have decided to treat only the first

two subjects. For an introduction to the last one, we refer the reader to [21]

for the classical point of view or to [22, 23] for recent developments.

The theory of characteristic classes is a very well developed branch of

mathematics and the literature concerning Riemann-Roch theorem is huge.

So, we will not try to give a full view of these subjects. We will rather

present a few basic but fundamental facts which should help the reader to

gain a good idea of the mathematics involved.

Although the reader is assumed to have a good knowledge of homological

algebra and topology, we begin with a chapter surveying the results of sheaf

theory which are needed in the rest of the book. In particular we recall

results concerning acyclic sheaves, taut subspaces, Poincaré-Verdier duality

and Borel-Moore homology, illustrating them by means of examples and

exercises.

We refer the reader who would like a more detailed treatment of this part

to standard texts on sheaf theory (e.g. [11, 6, 28, 18]) and algebraic topology

(e.g. [9, 29, 14]). Older works may also be of interest (e.g. [31, 25, 1, 19]).

Chapter 2 is devoted to Euler classes. As a motivation, we begin by prov-

ing the classical Lefschetz fixed point formula and applying it to compute

the Euler-Poincaré characteristic of a compact oriented topological mani-

fold by means of its Euler class. Next, we study Thom and Euler classes of

oriented real vector bundles. In particular, we consider Thom isomorphism,

Gysin exact sequence and functorial properties of Euler classes. We end

iii



iv Preface

with results on the Euler class of a normal bundle which allow us to link the

Euler class of an oriented differential manifold with the one of its tangent

bundle.

The first part of Chapter 3 deals mainly with Stiefel-Whitney classes.

We define them in the Grothendieck way by means of projective bundles

and Euler classes of associated tautological bundles. Then, we establish the

pull-back and direct sum formulas. Thanks to the splitting principle, we

also obtain a formula for the Stiefel-Whitney classes of a tensor product. In

the second part of the chapter, we study in general the characteristic classes

of real vector bundles. We begin by classifying real vector bundles of rank

r by means of homotopy classes of maps with values in the infinite Grass-

mannian G∞,r. This establishes a link between the characteristic classes

of real vector bundles with coefficients in a group M and the elements of

H·(G∞,r;M ). By computing this last group for M = Z2, we show that the

modulo 2 characteristic classes of real vector bundles are polynomials in

the Stiefel-Whitney classes. We end by explaining the usual cohomological

classification of real vector bundles and deducing from it that line bundles

are classified by their first Stiefel-Whitney class. This allows us to give a

criterion for a real vector bundle to be orientable.

Chapter 4 is centered on Chern classes. We begin by adapting most of

the results concerning Stiefel-Whitney classes to the complex case. Next,

we consider specific results such as the Chern-Weil method of computing

Chern classes using the curvature of a connection. We also treat briefly of

the Chern character. The last part of the chapter is little bit technical. It is

devoted to Iversen’s construction of the local Chern character for complexes

of complex vector bundles (see [17]) and to its application to the definition

of a local Chern character for coherent analytic sheaves.

For more details on the three preceding chapters, the reader may consults

classical books on the theory of fiber bundles (e.g. [30, 20, 16]).

The last chapter of this book is about Riemann-Roch theorem. After

a short review of the finiteness and duality results for coherent analytic

sheaves, we reach the central question of this part i.e. how to compute

χ(X;F)

for a coherent analytic sheaf on a compact complex analytic manifold X.

The answer to this question is essentially due to Hirzebruch (see [15]) and

states that

χ(X;F) =

∫

X

chF ^ tdTX

where chF is the Chern character of F and tdTX is the Todd class of the

tangent bundle of X. To better understand the meaning of this formula, we
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devote Sections 2–4 to the easy case of line bundles on complex curves. In

this situation, X is a compact Riemann surface and we can link the gener-

alized Riemann-Roch theorem considered above with the original results of

Riemann and Roch. We end the chapter by proving Hirzebruch-Riemann-

Roch theorem for complex projective manifolds. We follow Grothendieck

approach (see [5]) by reducing the result to the case of the complex projec-

tive space by means of a relative Riemann-Roch formula for embeddings.

However, to treat this relative case, we have not followed [5] but used a sim-

pler method based on the ideas of [2, 3, 4] and the proof of the Grothendieck-

Riemann-Roch formula in [10].

For bibliographical informations concerning the subject treated in this

chapter we refer to [15, 10]. Interesting historical comments may also be

found in [7, 8].

It is a pleasure to end this preface by thanking heartily the CMAF for

its hospitality during my stay at Lisbon university. I think in particular to

T. Monteiro Fernandes who invited me to give the course on which this book

is based and suggested to publish it in this collection. I am also grateful

to her for taking a set of lectures notes which served as a first draft for

this work. All my thanks also to O. Neto and to the various people who

attended the course and whose interest has been a strong motivation for

turning the raw lecture notes into a book.

Let me finally thank F. Prosmans whose help was invaluable at all the

stages of the preparation of the manuscript.

March 2000 Jean-Pierre Schneiders
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1

Survey of sheaf theory

1.1 Abelian presheaves and sheaves

Let X be a topological space and let Op(X) denote the category of open

subsets of X and inclusion maps.

Definition 1.1.1. An abelian presheaf on X is a functor F : Op(X)op −→

Ab where Ab denotes the category of abelian groups. In other words, an

abelian presheaf is a law which associates an abelian group F (U ) to any

open subset U of X and which associates to any open subset V ⊂ U a

restriction morphism

rFV U : F (U ) −→ F (V )

in such a way that

rFWV ◦ r
F
V U = rFWU

for any chain of open subsets W ⊂ V ⊂ U of X. We often denote rFV U (s)

simply by s|V when there is no risk of confusion.

A morphism of abelian presheaves is simply a morphism of the cor-

responding functors. More explicitly, a morphism of abelian presheaves

f : F −→ G is a law which associates to any open subset U of X a morphism

f(U ) : F (U ) −→ G(U )

1



2 1. Survey of sheaf theory

in such a way that the diagram

F (U )
f(U)

//

rF
V U ��

G(U )

rG
V U��

F (V )
f(V )

// G(V )

is commutative for any open subsets V ⊂ U of X.

With this notion of morphisms, abelian presheaves form an abelian cat-

egory, denoted Psh(X).

Examples 1.1.2.

(a) On X, we may consider the abelian presheaf C0,X defined by setting

C0,X(U ) = {f : U −→ C : f continuous}

and defining the restriction morphisms by means of the usual restric-

tions of functions.

(b) If X is endowed with a Borelian measure µ, we may consider the

abelian presheaves µ−Lp,X defined by associating to an open U of X

the quotient of the abelian group

{f : U −→ C :

∫

U

|f |pdV µ ≤ +∞}

by the subgroup

{f : U −→ C : f = 0 µ − almost everywhere};

the restriction morphisms being the obvious ones.

Definition 1.1.3. An abelian sheaf on X is an abelian presheaf F such

that

(a) we have

F(∅) = 0;

(b) for any open covering U of an open subset U of X, we have the exact

sequence

0 −→ F(U )
ρU
−−→

∏

V ∈U

F(V )
ρ′U−−→

∏

V,W∈U

F(V ∩W )

where

ρU (s) = (rFV U (s))V ∈U

and

ρ′U ((sV )V ∈U ) = (rF(V∩W )V (sV )− rF(V∩W )W (sW ))V,W∈U .
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A morphism of abelian sheaves is a morphism of the underlying abelian

presheaves. With this notion of morphisms, abelian sheaves form a full

additive subcategory of Psh(X). We denote it by Shv(X).

Examples 1.1.4.

(a) Since continuity is a local property, the abelian presheaf C0,X is clearly

an abelian sheaf.

(b) The abelian presheaf µ− Lp,X associated to a Borelian measure µ on

X is not in general an abelian sheaf. As a matter of fact, the condition
∫

U

|f |pdV µ < +∞

may be satisfied locally on U without holding globally. Note however

that the presheaf µ−Lp,X of functions which are locally in µ− Lp,X
is an abelian sheaf.

(c) IfX is a differential manifold, the presheaves Cp∞,X andDbpX of smooth

and distributional p-forms are clearly abelian sheaves.

(d) Similarly, on a real analytic manifold X, we have the abelian sheaves

ApX and BpX of analytic and hyperfunction p-forms.

(e) On a complex analytic manifold X, we have the abelian sheaves OX ,

OX of holomorphic and antiholomorphic functions and the abelian

sheaves ΩpX and Ωp
X

of holomorphic and antiholomorphic p-forms. We

have also the abelian sheaves C(p,q)
∞,X and Db(p,q)X of smooth and distri-

butional (p, q)-forms and the sheaves A
(p,q)
X and B

(p,q)
X of analytic and

hyperfunction (p, q)-forms.

Definition 1.1.5. The stalk at x ∈ X of an abelian presheaf F is the

abelian group

Fx = lim−→
U3x
U open

F (U )

where the inductive limit is taken over the set of open neighborhoods of x

ordered by ⊃. We denote

rFxU : F (U ) −→ Fx

the canonical morphism and often use the shorthand notation sx for

rFxU(s)

when there is no risk of confusion.
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Remark 1.1.6. Let x ∈ X and let F be an abelian presheaf on X. To deal

with elements of Fx, we only have to know that:

(a) for any σ ∈ Fx there is an open neighborhood U of x in X and

s ∈ F (U ) such that σ = sx;

(b) if U , U ′ are two open neighborhoods of x in X and s ∈ F (U ), s′ ∈

F (U ′) then sx = s′x if and only if there is an open neighborhood U ′′

of x such that U ′′ ⊂ U ∩ U ′ and s|U ′′ = s′|U ′′ .

Proposition 1.1.7. Let F be an abelian presheaf on X. Define A(F )(U )

to be the subgroup of
∏
x∈U Fx formed by elements σ which are locally in

F (i.e. such that for any x0 ∈ U there is a neighborhood U0 of x0 in U

and s ∈ F (U0) with sx = σx for any x ∈ U0). Turn A(F ) into an abelian

presheaf by setting [
r
A(F )
V U (σ)

]
x

= σx

for any x ∈ V and consider the morphism

a : F −→ A(F )

defined by setting

[a(U )(s)]x = sx

for any x ∈ U . Then, A(F ) is an abelian sheaf and for any abelian sheaf

G and any morphism g : F −→ G there is a unique morphism g′ making the

diagram

F
a//

g !!DDD
DD
A(F )

g′
��
�
�

G

commutative. Moreover, a induces an isomorphism

ax : Fx −→ A(F )x

for any x ∈ X.

Definition 1.1.8. We call A(F ) the abelian sheaf associated to F .

Examples 1.1.9.

(a) The abelian sheaf µ−Lp,X considered in Examples 1.1.4 is isomorphic

to A(µ− Lp,X ).
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(b) To any abelian group M , we may associate the constant presheaf

U 7→M.

This presheaf is in general not a sheaf. We denote its associated sheaf

by MX and call it the constant sheaf with fiber M . For any open

subset U of X, we have

MX (U ) = {σ : U −→M : σ locally constant}.

Proposition 1.1.10. The category Shv(X) is abelian. The kernel of a

morphism

f : F −→ G

is the abelian sheaf

U 7→ Ker f(U );

its cokernel is the abelian sheaf associated to the abelian presheaf

U 7→ Coker f(U ).

Proposition 1.1.11. A sequence of abelian sheaves

0 −→ F
f
−→ G

g
−→ H −→ 0

is exact if and only if the sequence of abelian groups

0 −→ Fx
fx−→ Gx

gx−→ Hx −→ 0

is exact for any x ∈ X.

Examples 1.1.12.

(a) Exponential sequence. Let C∗0,X denotes the (multiplicative) abelian

sheaf formed by non vanishing continuous complex valued functions.

Denote

exp : C0,X −→ C
∗
0,X

the morphism which sends a continuous complex valued function f to

exp ◦f and denote

2iπ : ZX −→ C0,X

the morphism which sends a locally constant integer valued function

n to a complex valued function 2iπn. Then, it follows from the local

existence on C∗ of the complex logarithm that

0 −→ ZX
2iπ
−−→ C0,X

exp
−−→ C∗0,X −→ 0

is an exact sequence of sheaves.
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(b) de Rham sequences. Let X be a differential manifold of dimension n

and let d denotes the exterior differential. Working by induction on

n, it is relatively easy to show that for any convex open subset U of

Rn the sequence

0 −→ CRn (U ) −→ C0∞,Rn (U )
d
−→ · · ·

d
−→ Cn∞,Rn(U ) −→ 0

is exact. This result, often referred to as the Poincaré lemma, shows

directly that

0 −→ CX −→ C
0
∞,X

d
−→ · · ·

d
−→ Cn∞,X −→ 0

is an exact sequence of abelian sheaves. Similar results hold with C∞,X
replaced by DbX (and by AX or BX if X is a real analytic manifold).

(c) Dolbeault sequences. Let X be a complex analytic manifold. Then,

for any smooth (p, q)-form ω we have

dω = ∂ω + ∂ω

with ∂ω (resp. ∂ω) of type (p+ 1, q) (resp. (p, q+ 1)). This gives rise

to morphisms

∂ : C
(p,q)
∞,X −→ C

(p+1,q)
∞,X , ∂ : C

(p,q)
∞,X −→ C

(p,q+1)
∞,X

such that ∂2 = 0, ∂
2

= 0, ∂∂ + ∂∂ = 0. If U is a convex open subset

of Cn, one checks by induction on n that the sequences

0 −→ Ωp
Cn(U ) −→ C(p,0)

∞,Cn(U )
∂
−→ · · ·

∂
−→ C(p,n)

∞,Cn(U ) −→ 0

and

0 −→ Ωp
C

n(U ) −→ C
(0,p)
∞,Cn(U )

∂
−→ · · ·

∂
−→ C

(n,p)
∞,Cn(U ) −→ 0

are exact. Therefore, we see that

0 −→ ΩpX −→ C
(p,0)
∞,X

∂
−→ · · ·

∂
−→ C(p,n)

∞,X −→ 0

and

0 −→ Ωp
X
−→ C

(0,p)
∞,X

∂
−→ · · ·

∂
−→ C

(n,p)
∞,X −→ 0

are exact sequences of abelian sheaves.
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Proposition 1.1.13.

(a) Let (Ix)x∈X be a family of injective abelian groups. Then, the abelian

sheaf I defined by setting

I(U ) =
∏

x∈U

Ix

for any open subset U of X and

[
rIV U (s)

]
x

= sx

for any open subset V of U and any x ∈ V is injective.

(b) Let F be an abelian sheaf on X. Then, there is a monomorphism

F −→ I

where I is a sheaf of the type considered in (a). In particular, the

abelian category Shv(X) has enough injective objects.

Remark 1.1.14. As a consequence of the preceding proposition, we get

that any functor F : Shv(X) −→ A where A is an abelian category has a

right derived functor. Note that, in general, Shv(X) does not have enough

projective objects.

1.2 Sections of an abelian sheaf

Definition 1.2.1. Let A be a subset of X and let F be an abelian sheaf

on X.

A section of F on A is an element

σ ∈
∏

x∈A

Fx

with the property that that for any x0 ∈ A there is an open neighborhood

U0 of x0 in X and s ∈ F(U0) such that

σx = sx

for any x ∈ A∩U0. When A = X, we call sections of F on A global section

of F .

The support of a section σ of F on A is the set

supp(σ) = {x ∈ A : σx 6= 0}.
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It is the relatively closed subset of A.

Sections of F on A form an abelian group that we denote by Γ(A;F).

Let B be a subset of X such that B ⊂ A and let σ ∈ Γ(A;F). Then,

rFBA(σ) is the element of Γ(B;F) defined by setting

[
rFBA(σ)

]
x

= σx

for any x ∈ B. We will often use σ|B as a shorthand notation for rFBA(σ).

Of course, we have

supp(σ|B) = supp(σ) ∩B.

Remark 1.2.2. Let U be an open subset of X and let F be an abelian

sheaf on X. Then, the canonical morphism

F(U ) −→ Γ(U ;F)

which sends s ∈ F(U ) to (sx)x∈U is an isomorphism. Hereafter, we will

often use this isomorphism to identify F(U ) and Γ(U ;F) without further

notice. Note that if V is an open subset of U , the two definitions of rFV U
are compatible with this identification.

Definition 1.2.3. Let X be a topological space and let A be a subspace of

X.

We say that A is relatively Haussdorf in X if for any x 6= y in A we can

find open neighborhoods U and V of x and y in X such that U ∩ V = ∅.

By an open covering of A in X, we mean a set U of open subsets of X

such that for any x ∈ A there is U ∈ U containing x. Such a covering is

locally finite on A if any x ∈ A has a neighborhood V in X for which the

set

{U ∈ U : U ∩ V 6= ∅}

is finite.

We say that A is relatively paracompact in X if it is relatively Haussdorf

and if for any open covering U of A in X we can find an open covering V

of A in X which is locally finite on A and such that for any V ∈ V there is

U ∈ U with V ⊂ U .

Remark 1.2.4. One checks easily that a subspace A of a topological space

X is relatively paracompact if it has a fundamental system of paracompact

neighborhoods. This will be the case in particular in the following cases:

(a) X is completely paracompact (e.g. metrizable);

(b) A is closed and X is paracompact.
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Other examples of relatively paracompact subspaces are given by relatively

Haussdorf compact subspaces.

Proposition 1.2.5. Let A be a relatively paracompact subspace of X and

let F be an abelian sheaf on X. Then,

(a) for any σ ∈ Γ(A;F) there is an open neighborhood U of A in X and

s ∈ Γ(U ;F) such that s|A = σ;

(b) if U , U ′ are two open neighborhoods of A in X and s ∈ Γ(U ;F), s′ ∈

Γ(U ′,F) then s|A = s′|A if and only if there is an open neighborhood

U ′′ of A such that U ′′ ⊂ U ∩ U ′ and s|U ′′ = s′|U ′′ .

In other words, we have

Γ(A;F) = lim−→
U⊃A
U open

Γ(U ;F).

Proof. See [24].

Proposition 1.2.6. Let A be a topological subspace of X and let F be an

abelian sheaf on X. Then, the abelian presheaf F|A defined by setting

F|A(U ) = Γ(U ;F)

for any open subset U of A and

r
F|A
VU = rFVU

for any chain V ⊂ U of open subsets of A is an abelian sheaf.

Remark 1.2.7. It follows from the preceding results that sections of F on

A may be considered as the global sections of the abelian sheaf F|A.

1.3 Cohomology with supports

Definition 1.3.1. A family of supports of X is a set Φ of closed subsets of

X such that

(a) if F1 is a closed subset of X included in F2 ∈ Φ, then F1 ∈ Φ;

(b) for any F1, F2 ∈ Φ, there is F3 ∈ Φ such that F1 ∪ F2 ⊂ F3.

Let F be an abelian sheaf on X. Then global sections s of F such that

supp(s) ∈ Φ

form an abelian group that we denote ΓΦ(X;F).
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Examples 1.3.2.

(a) The set ΦX of all the closed subsets ofX is clearly a family of supports

and we have

ΓΦX
(X;F) = Γ(X;F)

for any abelian sheaf F .

(b) Let F be a closed subset of X. Then, the set ΦF of all the closed

subsets of F is a family of supports. In this case we set for short

ΓF (X;F) = ΓΦF
(X;F)

for any abelian sheaf F . Note that this special case allows us to recover

the general one. As a matter of fact, we have

ΓΦ(X;F) = lim−→
F∈Φ

ΓF (X;F).

(b) Let X be a Haussdorf space. Then, the set Φc of all compact subsets

of X is a family of supports. We set for short

Γc(X;F) = ΓΦc
(X;F)

for any abelian sheaf F .

Let Φ be a family of supports of X.

Proposition 1.3.3. The functor

ΓΦ(X; ·) : Shv(X) −→ Ab

is left exact and has a right derived functor

RΓΦ(X; ·) : D+(Shv(X)) −→ D+(Ab).

Proof. The left exactness follows directly from the structure of kernels

in Shv(X). The existence of the right derived functor follows from Re-

mark 1.1.14.

Definition 1.3.4. Let F be an abelian sheaf on X. We define the k-th

cohomology group of X with coefficients in F and supports in Φ as the

group

Hk[RΓΦ(X;F)].

To lighten notations, we denote it by

Hk
Φ(X;F).
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If Φ is the family of all closed subsets of X, we shorten the notation by

dropping the Φ. Similarly, if Φ is the family ΦF (resp. Φc) considered in

Examples 1.3.2, we replace it by F (resp. c).

An abelian sheaf F is Φ-acyclic if Hk
Φ(X;F) = 0 for any k > 0.

Remark 1.3.5. Let F be an abelian sheaf on X. By a well-known result

of homological algebra

RΓΦ(X;F) ' ΓΦ(X;R·)

if R· is a right resolution of F by Φ-acyclic sheaves. The aim of the next

section is to give basic examples of such sheaves

1.4 Flabby and soft abelian sheaves

Definition 1.4.1. An abelian sheaf F on X is flabby if for any chain U1 ⊂

U2 of open subsets of X

rFU1U2
: Γ(U2;F) −→ Γ(U1;F)

is an epimorphism.

Examples 1.4.2.

(a) Any injective abelian sheaf is flabby.

(b) Let (Mx)x∈X be a family of abelian groups. Then,

U 7→
∏

x∈U

Mx

is a flabby sheaf.

(c) The sheaf µ −Lp,X of Examples 1.1.4 is flabby.

(d) The sheaf BX of hyperfunctions is flabby.

Proposition 1.4.3. A flabby abelian sheaf F is Φ-acyclic for any family

of supports Φ. Moreover, if in an exact sequence of abelian sheaves

0 −→ F −→ G −→ H −→ 0

F and G are flabby, then so is H.

Definition 1.4.4. An abelian sheaf F on X is Φ-soft if for any chain

F1 ⊂ F2 of Φ

rFF1F2
: Γ(F2;F) −→ Γ(F1;F)

is an epimorphism.
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Examples 1.4.5.

(a) Assume X is normal. Thanks to Urysohn’s extension result, it is clear

that the abelian sheaf C0,X is Φ-soft for any family of supports Φ.

(b) IfX is a differential manifold, it follows from the existence of partitions

of unity that the abelian sheaves Cp∞,X and DbpX are Φ-soft for any

family of supports Φ. The same is true of the sheaves C(p,q)
∞,X and Db(p,q)X

if X is a complex analytic manifold.

Definition 1.4.6. A family of supports Φ is paracompactifying if

(a) any F ∈ Φ is paracompact;

(b) for any F1 ∈ Φ, there is F2 ∈ Φ with F1 ⊂
◦

F2.

Examples 1.4.7.

(a) If X is paracompact, then the family formed by the closed subsets of

X is paracompactifying.

(b) IfX is a locally compact space, then the family formed by the compact

subsets of X is paracompactifying.

Proposition 1.4.8. Assume the abelian sheaf F is Φ-soft and the family

Φ is paracompactifying. Then, F is Φ-acyclic. Moreover, if in the exact

sequence of abelian sheaves

0 −→ F −→ G −→ H −→ 0

F and G are Φ-soft, then so is H.

Corollary 1.4.9 (de Rham and Dolbeault theorems).

(a) For any differential manifold X, we have the canonical isomorphisms

Hk(X; CX ) ' Hk(Γ(X; C·∞,X )) ' Hk(Γ(X;Db·X ))

and

Hk
c (X; CX ) ' Hk(Γc(X; C·∞,X )) ' Hk(Γc(X;Db·X ))

for any k ∈ N.

(b) For any complex analytic manifold X, we have the canonical isomor-

phisms

Hk(X; ΩpX ) ' Hk(Γ(X; C
(p,·)
∞,X )) ' Hk(Γ(X;Db

(p,·)
X ))

and

Hk
c (X; ΩpX) ' Hk(Γc(X; C(p,·)∞,X )) ' Hk(Γc(X;Db(p,·)X ))

for any k, p ∈ N.
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Proof. Thanks to Examples 1.4.5 (b) and Examples 1.4.7, this follows di-

rectly from Remark 1.3.5 and Proposition 1.4.8.

Exercise 1.4.10. Let Bn denote the open unit ball of Rn. Show that for

n ≥ 1

Hk(Bn; CBn
) '

{
C if k = 0

0 otherwise

Solution. Recall that for any convex open subset U of Rn, the Poincaré

lemma for d shows that the sequence

0 −→ Γ(U ; CRn) −→ Γ(U ; C0∞,Rn) −→ · · · −→ Γ(U ; Cn∞,Rn) −→ 0

is exact. Therefore, by the de Rham theorem we have

Hk(U ; CU ) '

{
C if k = 0

0 otherwise

Since Bn is convex, the conclusion follows.

1.5 Cohomology of subspaces and tautness

Definition 1.5.1. Let X be a topological space and let Φ be a family of

supports on X. We say that a subspace A of X is Φ-taut if the canonical

morphism

lim−→
U⊃A
U open

Hk
Φ∩U (U ;F|U) −→ Hk

Φ∩A(A;F|A)

is an isomorphism for any k ≥ 0 and any abelian sheaf F on X.

Remark 1.5.2. It is easily seen that a subspace A of X is Φ-taut if and

only if for any flabby sheaf F on X

(a) the abelian sheaf F|A is Φ ∩A-acyclic;

(b) the canonical morphism

ΓΦ(X;F) −→ ΓΦ∩A(A;F|A)

is surjective.

In this case, it follows that

F 7→ RΓ(A;F|A)
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is the right derived functor of

F 7→ Γ(A;F).

One should however be aware that this result is false in general.

Proposition 1.5.3. Let X be a topological space and let Φ be a family of

supports on X. Assume A is a topological subspace of X. Then A is Φ-taut

in the following cases:

(a) Φ is arbitrary and A is open;

(b) Φ is paracompactifying and A is closed;

(c) Φ is paracompactifying and X is completely paracompact;

(d) Φ is the family of all closed subset X and A is both compact and

relatively Haussdorf.

Exercise 1.5.4. Let Bn denote the closed unit ball of Rn. Show that for

n ≥ 1

Hk(Bn; CBn
) '

{
C if k = 0

0 otherwise

Solution. Since Bn has a fundamental system of neighborhoods formed by

open balls of Rn, this follows directly from Proposition 1.5.3 and Exer-

cise 1.4.10

1.6 Excision and Mayer-Vietoris sequences

Definition 1.6.1. Let A be a subset of X and let Φ be a family of supports

of X. We set

Φ|A = {F ∈ Φ : F ⊂ A}

and

Φ ∩A = {F ∩A : F ∈ Φ}.

Remark 1.6.2. Let A be a subset of X and let Φ a family of supports of

X. Clearly, for any abelian sheaf F on X, we have canonical morphisms

ΓΦ|A(X;F) −→ ΓΦ(X;F)

and

ΓΦ(X;F) −→ ΓΦ∩A(A;F)

which induce similar morphisms at the level of derived functors.
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Proposition 1.6.3 (Excision). Let A be a subset of X and let Φ be a

family of supports of X. Assume either A is open or A is closed and Φ is

paracompactifying. Then, for any object F · of D+(Shv(X)), we have the

canonical distinguished triangle

RΓΦ|X\A
(X;F ·) −→ RΓΦ(X;F ·) −→ RΓΦ∩A(A;F ·)

+1
−−→ .

In particular, for any abelian sheaf F , we have the excision long exact

sequence:

Hk
Φ|X\A

(X;F) // Hk
Φ(X;F) // Hk

Φ∩A(A;F) -,*+
/.
()

// Hk+1
Φ|X\A

(X;F) // Hk+1
Φ (X;F) // Hk+1

Φ∩A(A;F)

Proof. Let us recall the proof of this result since a detailed understanding

of its mechanism will be necessary in various parts of this book. We treat

only the case where A is open; the other case being similar.

Assume G is a flabby sheaf and let s ∈ Γ(A;G) be such that

supp(s) ⊂ F ∩A

with F in Φ. The zero section on X \F and the section s on A coincide on

(X \ F ) ∩A = A \ F . Therefore, there is a section s′ of G on (X \ F ) ∪A

such that s′|X\F = 0, s′|A = s. Since G is flabby and (X \F )∪A is open, we

may extend s′ into a section s′′ of G on X. For this section, we have

s′′|X\F = 0, s′′|A = s.

Hence, supp s′′ ⊂ F and belongs to Φ. These considerations show that

ΓΦ(X;G) −→ ΓΦ∩A(A;G)

is an epimorphism. Moreover, a simple computation shows that

0 −→ ΓΦ|X\A
(X;F) −→ ΓΦ(X;F) −→ ΓΦ∩A(A;F)

is exact for any abelian sheaf F . It follows that if G· is a flabby resolution

of the complex F ·, then

0 −→ ΓΦ|X\A
(X;G·) −→ ΓΦ(X;G·) −→ ΓΦ∩A(A;G·) −→ 0

is an exact sequence of complexes of abelian groups. Since flabby sheaves are

acyclic for the various functors involved, we get the announced distinguished

triangle. The last part of the result follows from the snakes’ lemma.
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Remark 1.6.4. Let us recall that the snakes’ lemma states that an exact

sequence of complexes of abelian groups

0 −→ A·
u·

−→ B·
v·

−→ C · −→ 0

induces a long exact sequence of cohomology

Hk(A·)
Hk(u·)

// Hk(B·)
Hk(v·)

// Hk(C ·) -,*+
/. δk

()
// Hk+1(A·)

Hk+1(u·)
// Hk+1(B·)

Hk+1(v·)
// Hk+1(C ·)

where δk is defined as follows. Let [ck] be a cohomology class in Hk(C ·).

Since vk is surjective, there is bk ∈ Bk such that

vk(bk) = ck.

Using the fact that dk(ck) = 0, one sees that dk(bk) is in Ker vk+1. Hence,

there is ak+1 ∈ Ak+1 such that uk+1(ak+1) = dk(bk). The cohomology class

of ak+1 is the image of [ck] by δk. A way to remember this definition is to

follow the dotted path in the following diagram:

Ak
uk

//

��

Bk
vk

//

����

�
�

9

]]@
J

_ t
~
Ck

��

Ak+1 uk+1
//

]]@
J

_ t
�
Bk+1 vk+1

// Ck+1

Proposition 1.6.5 (Mayer-Vietoris). Let A, B be two subsets of X and

let Φ be a family of supports on X. Assume that either A and B are open

or A and B are closed and Φ is paracompactifying. Then, for any object F ·

of D+(Shv(X)), we have the canonical distinguished triangle

RΓΦ∩(A∪B)(A ∪ B;F ·) −→ RΓΦ∩A(A;F ·) ⊕ RΓΦ∩B(B;F ·) −→ RΓΦ∩(A∩B)(A ∩ B;F ·)
+1
−−→

In particular, if F is an abelian sheaf, we have the Mayer-Vietoris long exact

sequence

Hk
Φ∩(A∪B)(A ∪ B;F) // Hk

Φ∩A(A;F)⊕ Hk
Φ∩B(B;F) // Hk

Φ∩(A∩B)(A ∩ B;F) -,*+
/.()

// Hk+1
Φ∩(A∪B)(A ∪ B;F) // Hk+1

Φ∩A(A;F)⊕ Hk+1
Φ∩B(B;F) // Hk+1

Φ∩(A∩B)(A ∩ B;F)
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Proof. The proof being similar to that of Proposition 1.6.3, we will not recall

it in details. We only recall that it is based on the fact that the sequence

0 −→ ΓΦ∩(A∪B)(A ∪ B; G)
α
−→ ΓΦ∩A(A; G)⊕ ΓΦ∩B(B; G)

β
−→ ΓΦ∩(A∩B)(A ∩ B; G) −→ 0

where α(s) = (s|A, s|A), β(s, s′) = s|A∩B − s
′
|A∩B is exact when A, B are

open and G is flabby or when A, B are closed, Φ is paracompactifying and

G is Φ-soft.

Exercise 1.6.6.

(a) Let Sn denotes the unit sphere in Rn+1. By using Mayer-Vietoris

sequence and de Rham theorem, show that for n ≥ 1

Hk(Sn; CSn
) '

{
C if k = 0, n

0 otherwise

(b) Show by excision that for n ≥ 1

Hk
c (Bn; CBn

) '

{
C if k = n

0 otherwise

Solution. (a) Assume n ≥ 1. Set

S+
n = {x ∈ Sn : xn+1 ≥ 0}, S−n = {x ∈ Sn : xn+1 ≤ 0}

and identify Sn−1 with S+
n ∩S

−
n (see figure 1.6.1). Since Sn = S+

n ∪S
−
n , we

have the Mayer-Vietoris long exact sequence

Hk(Sn; C) // Hk(S+
n ; C)⊕ Hk(S−n ; C) // Hk(Sn−1; C) -,*+

/.()
// Hk+1(Sn; C) // Hk+1(S+

n ; C)⊕ Hk+1(S−n ; C) // Hk+1(Sn−1; C)

Recall that, for any ε ∈ ]0, 1[, {x ∈ Sn : xn+1 > −ε} is an open subset of Sn
which is diffeomorphic to a ball of Rn. Therefore, working as in (a), we see

that

Hk(S+
n ; C) '

{
C if k = 0

0 otherwise

Of course, there is a similar result for S−n . It follows that

Hk+1(Sn; C) ' Hk(Sn−1; C) (*)
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Figure 1.6.1:

S−n

S+
n

Sn−1

xn+1

0

if k > 0 and that H0(Sn; C) and H1(Sn; C) are isomorphic to the kernel and

the cokernel of the morphism

H0(S+
n ; C)⊕ H0(S−n ; C) −→ H0(Sn−1; C) (**)

(ϕ, ψ) 7→ ϕ|Sn−1
− ψ|Sn−1

Note that since S+
n and S−n are clearly connected spaces, the locally constant

complex valued functions ϕ and ψ are in fact constant.

Let us assume first that n = 1. Since S0 = {0, 1}, we have

Hk(S0; C) '

{
C2 if k = 0

0 otherwise.

Therefore, the morphism (**) becomes up to isomorphisms the additive

map

C2 −→ C2

(x, y) 7→ (x− y, x− y)

It follows that H1(S1; C) ' C and that H0(S1; C) ' C. This last isomor-

phism reflecting the fact that the circle S1 is connected.

Assume now that n > 1 and that

Hk(Sn−1; C) '

{
C if k = 0, n− 1

0 otherwise
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The morphism (**) now becomes equivalent to the additive map

C2 −→ C

(x, y) 7→ x− y

Hence, H1(Sn; C) ' 0 and H0(Sn; C) ' C. Moreover, thanks to (*) we see

that for k > 1 we have

Hk(Sn; C) '

{
C if k = n

0 otherwise

The conclusion follows by induction.

(b) Assume n ≥ 1. Since Bn \ Bn = Sn−1 and since any closed subset

of Bn is compact, we have the excision distinguished triangle

RΓc(Bn; C) −→ RΓ(Bn; C) −→ RΓ(Sn−1; C)
+1
−−→

From the associated long exact sequence, we deduce that

Hk(Sn−1; C) ' Hk+1
c (Bn; C)

for k > 0 since in this case

Hk(Bn; C) ' Hk+1(Bn; C) ' 0.

Moreover, we see also that H0
c(Bn; C) and H1

c(Bn; C) are the kernel and

cokernel of the morphism

H0(Bn; C) −→ H0(Sn−1; C)

ϕ 7→ ϕ|Sn−1

For n = 1, this morphism is equivalent to

C −→ C2

x 7→ (x, x)

and we get H0
c(B1; C) ' 0 and H1

c(B1; C) ' C.

For n > 1, it becomes equivalent to

C −→ C

x 7→ x

and we get H0
c(Bn; C) ' H1

c(Bn; C) ' 0. The conclusion follows by induc-

tion on n.
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Exercise 1.6.7. Let I = [a, b] be a compact interval of R. Show by using

tautness and a suitable Mayer-Vietoris sequence that for any abelian sheaf

F on I, we have

Hk(I;F) = 0

for k > 1. Establish also that this relation holds for k = 1 if

Γ(I;F) −→ Fx

is an epimorphism for every x ∈ I. As an application compute

H·(I;MI )

for any abelian group M .

Solution. Fix k > 0 and assume there is c ∈ Hk(I;F) which is non-zero.

Set

x0 = inf{x ∈ I : c|[a,x] 6= 0}.

Since by tautness

lim−→
x>x0

Hk([a, x];F)' Hk([a, x0];F)

we see that c|[a,x0] 6= 0 and hence that x0 > a. Since

lim
−→
x<x0

Hk([x, x0];F) = Hk({x0};F) = 0,

there is x < x0 with c|[x,x0] = 0. For such an x, the decomposition

[a, x0] = [a, x]∪ [x, x0]

gives the Mayer-Vietoris exact sequence

Hk−1([a, x0];F) // Hk−1([a, x];F)⊕ Hk−1([x, x0];F) // Hk−1({x};F) -,*+
/.()

// Hk([a, x0];F) // Hk([a, x];F)⊕ Hk([x, x0];F) // Hk({x};F)

If k > 1 or k = 1 and

Γ(I;F) −→ Fx

is an epimorphism, it follows from this sequence that

Hk([a, x0];F)
∼
−→ Hk([a, x];F)⊕ Hk([x, x0];F).

This gives us a contradiction since both c|[a,x] and c|[x,x0] are 0 although

c|[a,x0] 6= 0.

The application to F = MI is obvious. We get

Hk(I;MI) =

{
M if k = 0;

0 otherwise.
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1.7 Inverse and direct images

Definition 1.7.1. Let f : X −→ Y be a morphism of topological spaces and

let G be an abelian sheaf on Y .

Let U be an open subset of X. We define f−1(G)(U ) as the abelian

subgroup of
∏
x∈U Gf(x) formed by the elements σ such that for any x0 ∈ U

there is an open neighborhood U0 of x0 in U , an open neighborhood V0 of

f(U0) and s ∈ G(V0) such that σx = sf(x) for any x ∈ U0. Clearly,

U 7→ f−1(G)(U )

is an abelian sheaf on X. We call it the inverse image of G by f . Note that

by construction there is a canonical pull-back morphism

f∗ : Γ(Y ;G) −→ Γ(X; f−1(G)).

Remark 1.7.2. It follows at once from the preceding definition that we

may identify f−1(G)x and Gf(x). In particular, the functor

f−1 : Shv(Y ) −→ Shv(X)

is exact.

Proposition 1.7.3. Let f : X −→ Y and g : Y −→ Z be two morphisms of

topological spaces. Then,

f−1(g−1(H)) ' (g ◦ f)−1(H)

canonically and functorially for H ∈ Shv(Z). Moreover,

(id−1
X )(F) ' F

canonically and functorially for F ∈ Shv(X).

Examples 1.7.4.

(a) Let aX : X −→ {pt} be the morphism which maps the topological space

X to a point. Identifying sheaves on {pt} with their global sections,

we have

MX ' a
−1
X (M )

for any abelian group M .

(b) Combining the preceding proposition with example (a), we get a

canonical isomorphism

f−1(MY ) ' MX

for any abelian group M and any morphism of topological spaces

f : X −→ Y .
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(c) Let i : A −→ X be the canonical inclusion of a subspace A of X and

let F be an abelian sheaf on X. One checks easily that

i−1(F) = F|A.

Definition 1.7.5. We say that (X;F) is an abelian sheafed space if X is a

topological space and F is an abelian sheaf on X. We say that

(f ;ϕ) : (X;F) −→ (Y ;G)

is a morphism of abelian sheafed spaces if (X;F) and (Y ;G) are abelian

sheafed spaces, f : X −→ Y is a morphism of topological spaces and

ϕ : f−1G −→ F

is a morphism of sheaves.

Examples 1.7.6.

(a) Let f : X −→ Y be a morphism of topological spaces. Then the

canonical isomorphism

f∗ : f−1MY −→MX

gives rise to a morphism of sheafed spaces

(f ; f∗) : (X;MX ) −→ (Y ;MY ).

(b) Let f : X −→ Y be a morphism of topological spaces. Then,

g 7→ g ◦ f

induces a canonical morphism of abelian sheaves

f∗ : f−1C0,Y −→ C0,X

and hence a morphism of sheafed spaces

(f ; f∗) : (X; C0,X) −→ (Y ; C0,Y ).

(c) Similarly, a morphism of differential manifolds f : X −→ Y induces

morphisms of abelian sheaves

f∗ : f−1Cp∞,Y −→ C
p
∞,X

corresponding to the pull-back of differential p-forms. Hence, we have

a canonical morphism of sheafed spaces

(f ; f∗) : (X; Cp∞,X ) −→ (Y ; Cp∞,Y ).
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Proposition 1.7.7. A morphism of sheafed spaces

(f ;ϕ) : (X;F) −→ (Y ;G)

induces a morphism

RΓ(Y ;G) −→ RΓ(X;F)

and, in particular, a canonical morphism

(f ;ϕ)∗ : H·(Y ;G) −→ H·(X;F).

Moreover, these morphisms are compatible with the composition of mor-

phisms of sheafed spaces.

Proof. We have a functorial morphism

Γ(Y ;G) −→ Γ(X; f−1G) (*)

Since the functor f−1 is exact, a standard result of homological algebra

gives us a morphism

RΓ(Y ;G) −→ RΓ(X; f−1G).

Composing with the canonical morphism

RΓ(X; f−1G) −→ RΓ(X;F)

induced by ϕ, we get the requested morphism. It is possible to visualize

this abstract construction more explicitly as follows. Assume we are given

a quasi-isomorphism

G
α
−→ J ·

where J · is a complex of Γ(Y ; ·)-acyclic sheaves and a commutative diagram

of the form

f−1(G)
f−1(α)

//

ϕ
��

f−1(J ·)
ψ

��

F
β

// I ·

where β is a quasi-isomorphism and I · is a complex of Γ(X; ·)-acyclic

sheaves. Then, in D+(Ab), we have the commutative diagram

RΓ(Y ;G) /o(1)
//

(2)

��

Γ(Y ;J ·)

(3)
��

Γ(X; f−1(J ·))

(4)
��

RΓ(X;F) /o

(5)
// Γ(X; I ·)
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where (1) and (5) are induced by α and β, (3) is induced by morphism of

the type (*), (4) is induced by ψ and (2) is the morphism defined abstractly

above.

Examples 1.7.8.

(a) Let f : X −→ Y be a morphism of topological spaces. By applying the

preceding proposition to the canonical morphism of sheafed spaces

(f ; f∗) : (X;MX ) −→ (Y ;MY )

we get a canonical morphism

RΓ(Y ;MY ) −→ RΓ(X;MX )

in D+(Ab). The associated morphism

(f ; f∗)∗ : H·(Y ;MY ) −→ H·(X;MX )

is often simply denoted by f∗. Clearly, f∗ = id if f is the identity of

X. Moreover, if g : Y −→ Z is another morphism of topological spaces,

we have f∗ ◦ g∗ = (g ◦ f)∗. This shows that X 7→ H·(X;MX ) is a

functor on the category of topological spaces. In particular, X ' Y

implies H·(X;MX ) ' H·(Y ;MY ).

(b) Let f : X −→ Y be a morphism of differential manifolds. It is well

known that the pull-back of differential forms is compatible with the

exterior differential. In other words, we have

d(f∗(ω)) = f∗(dω)

for any ω ∈ Γ(Y ; Cp∞,Y ). Using what has been recalled in the proof

of the preceding proposition, we see that we have the commutative

diagram

Hp(Y ; CY )
f∗

//

�O
��

Hp(X; CX)
�O
��

Hp(Γ(Y ; C·∞,Y ))
f∗

// Hp(Γ(X; C·∞,X ))

where the first horizontal arrow is the one defined in (a) and the

two vertical isomorphisms come from the de Rham theorem. Thanks

to what has been said in (a), we see also that, up to isomorphism,

de Rham cohomology of X

H·(Γ(X; C·∞,X ))

depends only on the topology ofX and not on its differential structure.
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Definition 1.7.9. Let f : X −→ Y be a morphism of topological spaces and

let F be an abelian sheaf on X.

The direct image of the abelian sheaf F by f is the sheaf f(F) on Y

defined by setting

f(F)(V ) = F(f−1(V ))

for any open subset V of Y ; the restriction morphisms being the obvious

ones.

Example 1.7.10. Let aX : X −→ {pt} be the morphism which maps the

topological space X to a point. Identifying sheaves on {pt} with their

abelian group of global sections, we have

aX(F) ' Γ(X;F)

for any abelian sheaf F on X.

Proposition 1.7.11 (Adjunction formula). We have a canonical func-

torial isomorphism

Hom Shv(Y )(G, f(F)) ' Hom Shv(X)(f
−1(G),F).

This isomorphism is induced by two canonical functorial morphisms

f−1(f(F)) −→ F

and

G −→ f(f−1(G)).

Proof. We will only recall the construction of the canonical functorial mor-

phism

Hom Shv(Y )(G, f(F)) −→ Hom Shv(X)(f
−1(G),F) (*)

Let h : G −→ f(F) be a morphism of abelian sheaves. For any open subset

V of Y , we get a morphism

h(V ) : G(V ) −→ F(f−1(V ))

and using Remark 1.1.6, it is easy to deduce from these morphisms a mor-

phism

hx,f(x) : Gf(x) −→ Fx

for any x ∈ X. Now, let U be an open subset of X and let σ ∈ f−1(G)(U ).

One checks directly that (hx,f(x)(σx))x∈U ∈ F(U ). Hence, for any open

subset U of X, we have a morphism

h′(U ) : f−1(G)(U ) −→ F(U ).
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These morphisms give rise to the morphism

h′ : f−1(G) −→ F

image of h by (*).

Proposition 1.7.12. Let f : X −→ Y and g : Y −→ Z be two morphisms of

topological spaces. Then,

g(f(F)) ' (g ◦ f)(F)

canonically and functorially for F ∈ Shv(X). Moreover,

(idX )(F) ' F

canonically and functorially for F ∈ Shv(X).

Proposition 1.7.13. The direct image functor

f : Shv(X) −→ Shv(Y )

is left exact and has a right derived functor

Rf : D+(Shv(X)) −→ D+(Shv(Y )).

Moreover, if g : Y −→ Z is another morphism of topological spaces, then

Rg ◦Rf ' R(g ◦ f).

Example 1.7.14. Denoting aX : X −→ {pt} the canonical map, we deduce

from the functorial isomorphism

aX(F) ' Γ(X;F)

that

RaX(·) ' RΓ(X; ·).

Therefore, the second part of the preceding proposition contains the fact

that

RΓ(Y ;Rf(F)) ' RΓ(X;F);

a result which replaces Leray’s spectral sequence in the framework of derived

categories.

Proposition 1.7.15. Assume that

(a) the map f is closed (i.e. such that f(F ) is a closed subset of Y if F is

a closed subset of X);
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(b) the fiber f−1(y) is a taut subspace of X for any y ∈ f(Y ).

Then,

[Rf(F)]y = RΓ(f−1(y);F)

for any y ∈ Y and any abelian sheaf F on X.

Example 1.7.16. Thanks to Proposition 1.5.3, it is clear that the condi-

tions on f in the preceding proposition are satisfied if one of the following

conditions holds :

(a) f is closed and X is metrizable;

(b) f is closed, Y is Haussdorf and X is paracompact;

(c) f is proper and X is Haussdorf.

Remark 1.7.17. Note that under the assumptions of Proposition 1.7.15,

we have of course

[f(F)]y = Γ(f−1(y);F)

but that this formula may be false in general.

Corollary 1.7.18 (Vietoris-Begle). Assume that

(a) the map f is closed and surjective,

(b) the fiber f−1(y) is a taut subspace of X for any y ∈ Y ,

(c) the fiber f−1(y) is connected and acyclic (i.e.

Hk(f−1(y);Mf−1 (y)) ' 0

for any k > 0 and any abelian group M) for any y ∈ Y .

Then, the canonical morphism

G −→ Rf(f−1(G))

is an isomorphism for any G ∈ D+(Shv(Y )). In particular, the canonical

morphism

RΓ(Y ;G) −→ RΓ(X; f−1G)

is an isomorphism in D+(Ab).

Proof. It is sufficient to note that

(f−1G)|f−1 (y) ' (Gy)f−1(y)

and that the canonical morphism

M −→ H0(f−1(y);Mf−1 (y))

is an isomorphism if f−1(y) is non-empty and connected.
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Figure 1.7.1:

x0

(x1, · · · , xn)

x(U ∩ ∂X)

x(U )

Remark 1.7.19. Let us recall a few facts about Stokes’ theorem which

are needed in the following exercise. Let X be an oriented n-dimensional

differential manifold with boundary. As is well-known, the orientation of X

induces an orientation on ∂X. This orientation is characterized by the fact

that if x : U −→ Rn is a positively oriented local coordinate system of X on

an open neighborhood of u ∈ ∂X such that

x(u) = 0, x(U ) = {x ∈ Bn : x0 ≤ 0}, x(U ∩ ∂X) = {x ∈ Bn : x0 = 0};

(see Figure 1.7.1) then (x1, · · · , xn)|U∩∂X is a positively oriented coordinate

system of ∂X. With this orientation of ∂X, Stokes’ formula states that
∫

X

dω =

∫

∂X

ω

for any ω ∈ Γc(X; Cn−1
∞,X ).

Exercise 1.7.20.

(a) Let X be an oriented n-dimensional differential manifold. Show that

integration of smooth compactly supported n-forms induces a mor-

phism ∫

X

: Hn
c (X; C) −→ C

(b) Let X be an oriented n-dimensional differential manifold with bound-

ary. Express the various morphisms of the excision long exact sequence

Hk
c (X \ ∂X; C)

uk

// Hk
c (X; C)

vk

// Hk
c (∂X; C) -,*+

/. δk

()
// Hk+1

c (X \ ∂X; C)
uk+1

// Hk+1
c (X; C)

vk+1
// Hk+1
c (∂X; C)
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in terms of de Rham cohomology. Show in particular that
∫

X

δn−1cn−1 =

∫

∂X

cn−1

for any cn−1 ∈ Hn−1
c (∂X; C).

Solution. (a) Integration gives us a morphism

∫

X

: Γc(X; Cn∞,X ) −→ C.

By Stokes’ theorem, we know that

∫

X

dω =

∫

∂X

ω = 0

for any ω ∈ Γc(X; Cn−1
∞,X ). Therefore,

∫
X

induces a morphism

∫

X

: Γc(X; Cn∞,X)/dΓc(X; Cn∞,X) −→ C

and the conclusion follows from the de Rham theorem.

(b) Since C·∞,X is a c-soft resolution of the sheaf CX , the long exact

sequence of cohomology comes from the application of the snake’s lemma

to the exact sequence of complexes

0 −→ Γc(X \ ∂X; C·∞,X |X\∂X) −→ Γc(X; C·∞,X ) −→ Γc(∂X; C·∞,X |∂X) −→ 0

The canonical restriction morphism

C·∞,X |X\∂X −→ C
·
∞,X\∂X

is clearly an isomorphism. As for the restriction morphism

C·∞,X |∂X −→ C
·
∞,∂X

it is a quasi-isomorphism since in the commutative diagram of complexes

CX |∂X
/o //

��

C∂X

��

C·∞,X |∂X
// C·∞,X

both vertical arrows are quasi-isomorphisms. It follows that

Γc(X \ ∂X; C·∞,X |X\∂X) ' Γc(X \ ∂X; C·∞,X\∂X)
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and that

Γc(∂X; C·∞,X |∂X) '
qis

Γ(∂X; C·∞,∂X ).

Computation of uk. Let ck ∈ Hk
c (X \ ∂X; C) be represented by

ωk ∈ Γc(X \ ∂X; Ck∞,X\∂X ).

By extension by zero, ωk becomes a class

ω′
k
∈ Γc(X; Ck∞,X )

and uk(ck) is represented by ω′
k
.

Computation of vk. Let ck ∈ Hk
c (X; C) be represented by

ωk ∈ Γc(X; Ck∞,X)

and let j : ∂X −→ X denotes the inclusion map. Then, vk(ωk) is represented

by

j∗(ωk) ∈ Γc(∂X; Ck∞,∂X ).

Computation of δk. Let ck ∈ Hk(∂X; C) be represented by

ωk ∈ Γc(∂X; Ck∞,∂X).

Set K = suppωk. We know from elementary differential geometry (collar

neighborhood theorem) that there is a neighborhood U of ∂X in X, a

differentiable map p : U −→ ∂X such that p ◦ j = id∂X and a smooth

function ϕ equal to 1 on a neighborhood of ∂X and such that suppϕ is

a p-proper subset U . Denote ω′
k

the k-form on X obtained by extending

ϕp∗ω by zero outside of U . Clearly, ω′
k

has compact support and

j∗ω′
k

= ωk.

Therefore, it follows from the snake’s lemma that δk(ck) is represented by

dω′
k
|X\∂X. As expected, this form has compact support. As a matter of

fact,

dω′
k
|U = dϕ ∧ p∗ωk + ϕp∗dωk = dϕ ∧ p∗ωk

and dϕ = 0 in a neighborhood of ∂X. Assuming now that k = n − 1, we

see using Stokes’ theorem that
∫

X\∂X

δn−1cn−1 =

∫

X

dω′
n−1

=

∫

∂X

ω′
n−1

=

∫

∂X

j∗p∗ωn−1

=

∫

∂X

ωn−1 =

∫

∂X

cn−1.
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1.8 Homotopy theorem

Definition 1.8.1. Let F , G be abelian sheaves on X and Y respectively

and let

(h;ψ) : (X × I; p−1
X F) −→ (Y ;G)

be a morphism where I = [0, 1] and pX : X × I −→ X denotes the first

projection. Let t ∈ [0, 1]. We denote

it : X −→ X × I

the morphism defined by setting it(x) = (x, t) and ht the morphism h ◦ it.

Applying i−1
t to

ψ : h−1G −→ p−1
X F

we get a morphism

i−1
t ψ : i−1

t h−1G −→ i−1
t p−1

X F .

Since h ◦ it = ht and pX ◦ it = idX , this gives us a morphism

ψt : h−1
t G −→ F

and a corresponding morphism

(ht;ψt) : (X;F) −→ (Y ;G).

We call (h;ψ) a homotopy between

(h0;ψ0) : (X;F) −→ (Y,G)

and

(h1;ψ1) : (X;F) −→ (Y ;G).

Two morphisms of abelian sheafed spaces connected by a homotopy are said

to be homotopic.

Proposition 1.8.2. Let F , G be abelian sheaves on X and Y . Assume the

morphisms

(f0;ϕ0) : (X;F) −→ (Y ;G)

and

(f1;ϕ1) : (X;F) −→ (Y ;G)

are homotopic. Then, the morphisms

(f0;ϕ0)
∗ : H·(Y ;G) −→ H·(X;F)

and

(f1;ϕ1)
∗ : H·(Y ;G) −→ H·(X;F)

are equal.
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Proof. Since the application

pX : X × I −→ X

is proper and surjective and I is connected and acyclic (see Exercise 1.6.7),

Corollary 1.7.18 shows that the canonical morphism

(pX ;πX) : (X × I; p−1
X F) −→ (X;F)

induces the isomorphism

(pX ;πX)∗ : H·(X;F)
∼
−→ H·(X × I; p−1

X F).

If

(it; ιt) : (X;F) −→ (X × I; p−1
X F)

denotes the canonical morphism, we have

(pX ;πX) ◦ (it; ιt) = id .

It follows that (it; ιt)
∗ is the inverse of the isomorphism (pX ;πX)∗ and thus

does not depend on t ∈ [0, 1].

Let

(h;ψ) : (X × I; p−1
X F) −→ (Y ;G)

be a homotopy between (f0;ϕ0) and (f1;ϕ1). Since

(h;ψ) ◦ (i0; ι0) = (f0;ϕ0), (h;ψ) ◦ (i1; ι1) = (f1;ϕ1),

we see that

(f0;ϕ0)
∗ = (i0; ι0)

∗ ◦ (h;ψ)∗ = (i1; ι1)
∗ ◦ (h;ψ)∗ = (f1;ϕ1)

∗.

Corollary 1.8.3. If two morphisms

f0 : X −→ Y and f1 : X −→ Y

are homotopic in the topological sense, then, for any abelian group M ,

f∗0 : H·(Y ;MY ) −→ H·(X;MX )

and

f∗1 : H·(Y ;MY ) −→ H·(X;MX )

are equal. In particular, if X and Y are homotopically equivalent, then

H·(X;MX ) ' H·(Y ;MY )

for any abelian group M .
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Examples 1.8.4.

(a) The preceding corollary allows us to show that

Hk(Bn;MBn
) =

{
M if k = 0

0 otherwise

for any abelian group M . As a matter of fact,

h : Bn × I −→ Bn

(x, t) 7→ tx

is a homotopy between the constant map

h0 : Bn −→ Bn

x 7→ 0

and the identity map

h1 : Bn −→ Bn

x 7→ x

Therefore, the inclusion map j0 : {0} −→ Bn and the projection map

p0 : Bn −→ {0} are inverse of each other in the category of topological

spaces modulo homotopy. Hence,

H·(Bn;MBn
) ' H·({0};M{0})

and the conclusion follows.

Note that in contrast with Exercise 1.4.10, we have not made use of

de Rham theorem. A similar reasoning shows that

Hk(Bn;MBn
) '

{
M if k = 0

0 otherwise

for any abelian group M .

(b) Working as in Exercise 1.6.6 (a) and (b), we can deduce from (a) that,

for n ≥ 1 and any abelian group M , we have

Hk(Sn;MSn
) '

{
M if k = 0, n

0 otherwise

and

Hk
c (Bn;MBn

) '

{
M if k = n

0 otherwise
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Exercise 1.8.5. Assume n ≥ 1. Endow Bn+1 with the orientation induced

by the canonical orientation of Rn+1 and orient Sn as ∂Bn+1. Denote
∫

the

morphism obtained by composing the morphism

Hn(Sn; Z) −→ Hn(Sn; C)

induced by the inclusion of Z in C with the integral
∫

Sn

: Hn(Sn; C) −→ C

of Exercise 1.7.20. Show that the group

Hn(Sn; Z)

has a unique generator vSn
such that

∫
vSn

= 1 and that
∫

induces an

isomorphism between Hn(Sn; Z) and Z.

Solution. Since Hn(Sn; Z) ' Z, this group has only two generators g1 and

g2 = −g1. The uniqueness is thus obvious. Let us prove the existence. We

shall use the same notations as in Exercise 1.6.6. It is clear that we have

the following canonical morphism of distinguished triangles

RΓc(Sn; Z) // RΓc(S
+
n ; Z)⊕ RΓc(S

−
n ; Z) // RΓc(Sn−1; Z)

+1
//

RΓc(S
+
n \ Sn−1; Z) //

OO

RΓc(S
+
n ; Z) //

( id
0 )

OO

RΓc(Sn−1; Z)
+1

//

id
OO

where the first vertical arrow is induced by zero extension of sections. It

follows that we have the commutative diagram

Hn−1(Sn−1; Z)
δ′n−1

// Hn(Sn; Z)

Hn−1(Sn−1; Z)
δn−1

// Hn
c (S

+
n \ Sn−1; Z)

OO

where δ′
k

and δk are the Mayer-Vietoris and excision “coboundary opera-

tors”. Since S+
n is an oriented manifold with boundary, we get from Exer-

cise 1.7.20 that
∫

Sn

δ′
n−1

(cn−1) =

∫

S+
n \Sn−1

δn−1(cn−1) = ±

∫

Sn−1

cn−1

where the sign + appears if Sn−1 is oriented as the boundary of S+
n and

the sign − appears in the other case (a simple computation shows that the

sign is in fact (−1)n).
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For n = 1, we have the commutative diagram

H0(S+
1 ; Z)⊕ H0(S−1 ; Z) //

�O
��

H0(S0; Z)
δ′0 //

�O
��

H1(S1; Z)
�O
��

Z2 (
1 −1
1 −1

) // Z2

( 1 −1 )
// Z

Therefore, the generators of H1(S1; Z) are the images by δ′
0

of the functions

ϕ1 and ϕ2 defined on S0 by setting
{
ϕ1(−1) = 0

ϕ1(1) = 1
and

{
ϕ2(−1) = 1

ϕ2(1) = 0

Since ∫

S1

δ′
0
ϕ2 = −(ϕ2(1)− ϕ2(−1)) = 1

we may take vS1 = δ′
0
ϕ2.

Assume now that n > 1 and that we have found vSn−1 ∈ Hn−1(Sn−1; Z)

such that ∫

Sn−1

vSn−1 = 1.

Since ∫

Sn

δ′
n−1

vSn−1 = (−1)n
∫

Sn−1

vSn−1 = (−1)n

we may choose vSn
= (−1)nδ′

n−1
vSn−1 . The conclusion follows easily by

induction.

Exercise 1.8.6. Assume n ≥ 1. Show that if Cn is an open cell of Rn (i.e.

an open subset of Rn which is homeomorphic to Bn) then

Hk
c (Cn; Z) ' 0

for k 6= n and
∫

induces an isomorphism

Hn
c (Cn; Z) ' Z.

In particular, there is a unique class vCn
∈ Hn

c (Cn; Z) such that
∫
vCn

= 1.

Show also that if C ′n is an open cell of Rn included in Cn, then the canonical

morphism

Hn
c (C

′
n; Z) −→ Hn

c (Cn; Z)

is an isomorphism which sends vC′n to vCn
.
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Solution. Let us first assume that Cn = Bn. We start from the excision

distinguished triangle

RΓc(Bn; Z) −→ RΓ(Bn; Z) −→ RΓ(Sn−1; Z)
+1
−−→

For n = 1, we get the exact sequence

H0(Bn; Z) //

�O
��

H1(S0; Z)
δ0 //

�O
��

H1
c(B1; Z) //

�O
��

0

Z
( 1
1 )

// Z2

(−1 1 )
// Z // 0

It follows that a generator of H1
c(B1; Z) is vB1 = δ0([ϕ]) where

{
ϕ(−1) = 0

ϕ(1) = 1

Since ∫

B1

vB1 =

∫

B1

δ0([ϕ]) = ϕ(1)− ϕ(−1) = 1,

we see that
∫
B1

induces the isomorphism

∫

B1

: H1
c(B1; Z)

∼
−→ Z.

For n ≥ 2, we get the isomorphism

Hn−1(Sn−1; Z) /oδn−1
//

�O
��

Hn
c (Bn; Z)

�O
��

Z
1

// Z

Setting vBn
= δn−1vSn−1 , we see that
∫

Bn

vBn
=

∫

Bn

δn−1vSn−1 =

∫

Sn−1

vsn−1 = 1

and the conclusion follows.

Assume now Cn is a general open cell of Rn. By functoriality, it is clear

that

Hk
c (Cn; Z) ' Hk

c (Bn; Z) '

{
Z if k = n

0 otherwise

Let B be an open ball of Rn with center x. By inversion, Rn \B ' B \ {x}.

Therefore,

RΓc(R
n \B; Z) ' RΓc(B \ {x}; Z)
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From the excision distinguished triangle

RΓc(B \ {x}; Z) −→ RΓ(B; Z) −→ RΓ({x}; Z)
+1
−−→

it follows that RΓc(B \ {x}; Z) ' 0. Hence, RΓc(Rn \B; Z) ' 0 and

RΓc(B; Z) −→ RΓc(R
n; Z)

is an isomorphism in the derived category.

It follows that

Hn
c (B; Z) −→ Hn

c (Rn; Z)

is an isomorphism. If we assume moreover that x ∈ Cn and B ⊂ Cn, we see

from the commutative diagram

Hn
c (B; Z) //

''PPPPPP
Hn
c (Cn; Z)

vvnnnnnn

Hn
c (R

n; Z)

that

Hn
c (Cn; Z) −→ Hn

c (Rn; Z)

is surjective. Since these groups are both isomorphic to Z, the preceding

morphism is in fact an isomorphism. Using the commutativity of the dia-

gram

Hn
c (Bn; Z) /o //

∫
Bn

%%KK
KK

KK
Hn
c (Rn; Z)

∫
Rnyyss

ss
ss

C

we see that
∫

Rn induces an isomorphism

∫

Rn

: Hn
c (R

n; Z) −→ Z.

A similar argument with Bn replaced by Cn allows us to conclude.

Exercise 1.8.7. Let ϕ : Cn −→ C ′n be a diffeomorphism between two open

cells of Rn. Show that

ϕ∗vC′n = sgn(Jϕ)vCn

where Jϕ denotes the Jacobian of ϕ.

Solution. It follows from the preceding exercise that

ϕ∗vC′n = mvCn
.
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On one hand, we have

∫
mvCn

= m

∫
vCn

= m.

On the other hand, using de Rham cohomology, we get

∫
ϕ∗vC′n = sgn(Jϕ)

∫
vC′n = sgn(Jϕ).

The conclusion follows.

Exercise 1.8.8.

(a) Show that the canonical morphism

RΓ{0}(Bn; Z) −→ RΓc(Bn; Z)

is an isomorphism.

(b) Deduce from (a) that for any open neighborhood U of u in Rn we have

Hk
{u}(U ; Z) =

{
Z if k = n;

0 otherwise.

Show, moreover, that Hn
{u}(U ; Z) has a unique generator vu such that

∫

U

vu = 1

(c) Let ϕ : U −→ V be a diffeomorphism between open subsets of Rn and

denote Jϕ its Jacobian. Show that for any u ∈ U , the map

ϕ∗ : Hn
{ϕ(u)}(V ; Z) −→ Hn

{u}(U ; Z)

sends vϕ(u) to sgn(Jϕ(u))vu.

Solution. (a) Consider the morphism of distinguished triangles

RΓ{0}(Bn; Z) //

��

RΓ(Bn; Z) //

��

RΓ(Bn \ {0}; Z)
+1

//

��

RΓc(Bn; Z) // RΓ(Bn; Z) // RΓ(Sn−1; Z)
+1

//

In this diagram, the second vertical arrow is the identity and by the homo-

topy theorem the third vertical arrow is an isomorphism. It follows that the
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first vertical arrow is also an isomorphism. Since this arrow is the compo-

sition of the isomorphism

RΓ{0}(Bn; Z) −→ RΓ{0}(Bn; Z)

with the canonical morphism

RΓ{0}(Bn; Z) −→ RΓc(Bn; Z),

we get the conclusion.

(b) The cohomology table follows directly from (a) and Exercise 1.8.6.

Let BU ⊂ U be an open ball with center u. By (a),

Hn
{u}(U ; Z) ' Hn

{u}(BU ; Z) ' Hn
c (BU ; Z).

Denote vu the element of Hn
{u}(U ; Z) corresponding to vBU

∈ Hn
c (BU ; Z).

Since the diagram

Hn
{u}(U ; Z) //

��

Hn
c (U ; Z)

Hn
{u}(BU ; Z) // Hn

c (BU ; Z)

OO

is commutative, we get

∫

U

vu =

∫

BU

vBU
= 1.

(c) Thanks to (b), the result may be obtained by working as in the

preceding exercise.

Exercise 1.8.9. Let B−n+1 = {(x0, · · · , xn) ∈ Bn+1 : x0 ≤ 0} and identify

Bn with

{(0, x1, · · · , xn) : (x1, · · · , xn) ∈ Bn}.

(see Figure 1.8.1). Denote vB−n+1\Bn
∈ Hn+1

c (B−n+1 \ Bn; Z) and vBn
∈

Hn
c (Bn; Z) the classes which have an integral equal to 1. Show that

vB−
n+1\Bn

= δn(vBn
)

where δn is the coboundary operator associated to the distinguished triangle

RΓc(B
−
n+1 \Bn; Z) −→ RΓ(B−n+1; Z) −→ RΓc(Bn; Z)

+1
−−→

Solution. Thanks to the preceding exercise, this follows directly from Exer-

cise 1.7.20.
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Figure 1.8.1:

x0

(x1, · · · , xn)

Bn

B−n+1

1.9 Cohomology of compact polyhedra

Definition 1.9.1. A finite simplicial complex is a finite set Σ of non-empty

finite sets called simplexes such that if σ ∈ Σ and σ′ ⊂ σ then σ′ ∈ Σ. We

call the finite set S = ∪Σ, the set of vertices of Σ.

The dimension of a simplex σ ∈ Σ is the number dimσ = #σ − 1.

Simplexes of dimension n ∈ N are called n-simplexes. A p-face of an n-

simplex σ is a p-simplex σ′ such that σ′ ⊂ σ. The dimension of the finite

simplicial complex Σ is the number

dimΣ = sup
σ∈Σ

dimσ.

The n-skeleton of Σ is the simplicial complex

Σn = {σ ∈ Σ : dimσ ≤ n}.

The realization of Σ is the compact subspace |Σ| of R#S defined by

setting

|Σ| = {α : S −→ R : |α ≥ 0, suppα ∈ Σ,
∑

s∈S

α(s) = 1}.

If σ ∈ Σ, we set

|σ| = {α ∈ |Σ| : suppα = σ}.

Clearly, |σ| ∩ |σ′| 6= ∅ if and only if σ = σ′ and |Σ| =
⋃
σ∈Σ |σ|.

The data of a finite simplicial complex Σ and an isomorphism

h : |Σ| −→ X

of topological spaces is a finite triangulation of X. A topological space X

which has a finite triangulation is a compact polyhedron.
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Examples 1.9.2. The set Σ whose elements are

{A}, {B}, {C},{D}, {A,B}, {A,D}, {B,D}, {B,C},{D,C}, {A,B,D}

is a finite simplicial complex of dimension 2. It has {A,B,C,D} as set of

vertices and contains

- four 0-simplexes ({A}, {B}, {C}, {D}),

- five 1-simplexes ({A,B}, {A,D}, {B,D}, {B,C},{D,C}),

- one 2-simplex ({A,B,D}).

A compact polyhedron homeomorphic to |Σ| is

A

B

C

D

Compact polyhedra homeomorphic to |Σ1| and |Σ0| are respectively

A

B

C

D

and

A

B

C

D

Definition 1.9.3. Let σ be a k-simplex of Σ. Two bijections

µ : {0, · · · , k} −→ σ, ν : {0, · · · , k} −→ σ

have the same sign if the signature of ν−1 ◦ µ is positive. Clearly, the

relation “to have the same sign” is an equivalence relation on the set of

bijections between {0, · · · , k} and σ. An equivalence class for this relation

is called an orientation of σ. Of course, a k-simplex of Σ has only two

possible orientations, if o is one of them, we denote −o the other. An

oriented k-simplex is a k-simplex of Σ endowed with an orientation. If

µ : {0, · · · , k} −→ σ is a bijection, we denote by [µ(0), · · · , µ(k)] the oriented

k-simplex obtained by endowing σ with the orientation associated to µ.

A k-cochain of Σ is a map c from the set of oriented k-simplexes of Σ to

Z such that if c(σ,o) denotes the values of c on the oriented simplex (σ, o),
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we have c(σ,−o) = −c(σ,o). It is clear that k-cochains form a group. We

denote it by Ck(Σ). We define the differential

dk : Ck(Σ) −→ Ck+1(Σ)

by setting

(dkc)[x0,··· ,xk+1] =

k+1∑

l=0

(−1)lc[x0,··· ,x̂l,··· ,xk+1].

One checks easily that the groups Ck(Σ) (k ≥ 0) together with the differ-

entials dk (k ≥ 0) form a complex C ·(Σ) canonically associated with Σ. We

call it the simplicial cochain complex of Σ.

Lemma 1.9.4. Let σ = {x0, · · · , xk} be a k-simplex of Σ and let αl be the

point of |Σ| corresponding to xl. Set

ϕ(x0 ,··· ,xk)(t1, · · · , tk) = α0 +

k∑

l=1

tl(αl − α0)

and

Jk = {(t1, · · · , tk) ∈ Rk : t1 > 0, · · · , tk > 0,

k∑

l=1

tl < 1}.

Then, Jk is an open cell of Rk and ϕ(x0,··· ,xk) : Jk −→ |σ| is an homeo-

morphism. Moreover, if v(x0,··· ,xk) is the image of vJk
by the isomorphism

ϕ−1∗
(x0,··· ,xk)

: Hk
c (Jk; Z)

∼
−→ Hk

c (|σ|; Z), then we have

v(xµ0 ,··· ,xµk
) = (signµ)v(x0,··· ,xk)

for any permutation µ of {0, · · · , k}.

Proof. The fact that ϕ is an homeomorphism is obvious. Let µ be a per-

mutation of {0, · · · , k}. Set

ψµ = ϕ−1
(xµ0 ,··· ,xµk

) ◦ ϕ(x0,··· ,xk).

Clearly, ψµ is the restriction to Jk of the affinity of Rk characterized by

ψµ(Pl) = Pµl

where P0 = 0, P1 = e1, · · · , Pk = ek. It follows that ψµ preserves or

reverses the orientation of Rk according to the fact that µ is even or odd.

Using Exercise 1.8.7, we see that

ψ∗µ(vJk
) = (signµ)vJk

.
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Hence,

ϕ−1∗
(xµ0 ,··· ,xµk

)
(vJk) = ϕ−1∗

(x0,··· ,xk)
◦ ψ∗µ(vJk

)

= (signµ)ϕ−1∗
(x0,··· ,xk)(vJk

)

and the conclusion follows.

Lemma 1.9.5. Let σ = {x0, · · · , xk} be a k-simplex of Σ and let σ′ =

{x1, · · · , xk}. The distinguished triangle

RΓc(|σ|; Z) −→ RΓc(|σ| ∪ |σ
′|; Z) −→ RΓc(|σ

′|; Z)
+1
−−→

induces a canonical morphism

δk−1 : Hk−1
c (|σ′|; Z) −→ Hk

c (|σ|; Z)

and we have

δk−1(v[x1,··· ,xk]) = v[x0,··· ,xk].

Proof. The existence of the distinguished triangle follows from the fact that

|σ| (resp. |σ′|) is open (resp. closed) in |σ| ∪ |σ′|. Thanks to the morphism

ϕ(x0,··· ,xk) of the preceding lemma, we may assume that |σ| = Jk, |σ
′| =

{(t1, · · · , tk) : t1 > 0, · · · , tk > 0,
∑k
l=1 tk = 1}. Then, |σ| ∪ |σ′| appears

as a manifold with boundary and the result follows from Exercises 1.8.9

and 1.7.20 since ∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1 · · · −1

1 1 0 · · · 0

1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

> 0.

Proposition 1.9.6. For any k ≥ 0, there is a canonical isomorphism be-

tween Hk(|Σ|; Z) and Hk(C ·(Σ)).

Proof. Let us consider the excision distinguished triangle

RΓc(|Σp| \ |Σp−1|; Z) −→ RΓc(|Σp|; Z) −→ RΓc(|Σp−1|; Z)
+1
−−→ (*)

Since |Σp| \ |Σp−1| =
⊔
σ∈Σp\Σp−1

|σ| and |σ| is open in |Σp| for any σ ∈

Σp \Σp−1, we get

RΓc(|Σp| \ |Σp−1|; Z) '
⊕

σ∈Σp\Σp−1

RΓc(|σ|; Z).
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Using the fact that |σ| is homeomorphic to an open ball of Rp if σ ∈ Σp \
Σp−1, we see that

Hk
c (|Σp| \ |Σp−1|; Z) =





⊕

σ∈Σp\Σp−1

Hp
c (|σ|; Z) if k = p

0 otherwise.

Using Lemma 1.9.4, we get a canonical isomorphism

Hp
c (|Σp| \ |Σp−1|; Z) ' Cp(Σ).

The long exact sequence of cohomology associated to (*) is

Hk
c (|Σp| \ |Σp−1|; Z) // Hk(|Σp|; Z) // Hk(|Σp−1|; Z) -,*+

/.()
// Hk+1
c (|Σp| \ |Σp−1|; Z) // Hk+1(|Σp|; Z) // Hk+1(|Σp−1|; Z)

For k > p, we get that

Hk(|Σp|; Z) ' Hk(|Σp−1|; Z).

By decreasing induction on p, we see that Hk(|Σp|; Z) ' Hk(|Σ0|; Z) ' 0.

For k < p− 1, we obtain

Hk(|Σp|; Z) ' Hk(|Σp−1|; Z).

By increasing induction on p, this gives us the isomorphism

Hk(|Σp−1|; Z) ' Hk(|Σ|; Z).

For k = p− 1, we get the exact sequence

0 // Hp−1(|Σp|; Z) // Hp−1(|Σp−1|; Z) -,*+
/.()

// Hp
c(|Σp| \ |Σp−1|; Z) // Hp(|Σp|; Z) // Hp(|Σp−1|; Z)

Using the isomorphisms obtained above, we may rewrite this sequence as

0 −→ Hp−1(|Σ|; Z)
αp−1
−−−−→ Hp−1(|Σp−1 |; Z)

βp−1

−−−−→ Cp(|Σ|)
γp

−−→ Hp(|Σp|; Z) −→ 0.

Set δp = βp ◦ γp. Clearly, Coker δp−1 ' Cokerβp−1 ' Hp(|Σp|; Z) and

through this isomorphism, the canonical map

(δp)′ : Coker δp−1 −→ Cp+1(|Σ|)
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becomes the map

βp : Hp(|Σp|; Z) −→ Cp+1(|Σ|).

It follows that Ker δp/ Im δp−1 is canonically isomorphic to

Ker βp ' Hp(|Σ|; Z).

To conclude, it remains to show that δp = dp. Let [x0, · · · , xp+1] be an

oriented (p + 1)-simplex of Σ and let c ∈ Cp(Σ) be a simplicial p-cochain.

We have to show that

[δp(c)][x0,··· ,xp+1 ] =

p+1∑

l=0

(−1)lc[x0,··· ,x̂l,··· ,xp+1 ].

Denote ∆ the simplicial complex formed by the finite non-empty subsets of

{x0, · · · , xp+1}.

Using the morphisms of distinguished triangles

RΓc(|∆k| \ |∆k−1|; Z) // RΓc(|∆k|; Z) // RΓc(|∆k−1|; Z)
+1

//

RΓc(|Σk| \ |Σk−1|; Z) //

OO

RΓc(|Σk|; Z) //

OO

RΓc(|Σk−1|; Z)
+1

//

OO

One sees that we may assume Σ = ∆. Moreover, we may assume that

c[x0,··· ,x̂l,··· ,xp+1 ] =

{
1 if l = 0

0 otherwise

Set σ = {x0, · · · , xp+1} and σ′ = {x1, · · · , xp+1}. Since |σ| ∪ |σ′| is open

in |∆| and |σ′| is open in |∆p−1|, we have the morphism of distinguished

triangles

RΓc(|σ|; Z) //

��

RΓc(|σ| ∪ |σ
′|; Z) //

��

RΓc(|σ
′|; Z)

+1
//

��

RΓc(|∆| \ |∆p|; Z) // RΓc(|∆|; Z) // RΓc(|∆p|; Z)
+1

//

Therefore, the diagram

Hp
c(|σ

′|; Z)
ϕ

//

��

Hp+1
c (|σ|; Z)

��

Hp
c(|∆p| \ |∆p−1|; Z)

��

Hp(|∆p|; Z) // Hp+1
c (|∆| \ |∆p|; Z)
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is commutative. Since c is the image of the orientation class v[x1,··· ,xp] ∈
Hp
c (|σ

′|; Z) by the canonical morphism

Hp
c (|σ

′|; Z) −→ Hp
c (|∆p| \ |∆p−1|; Z) ' Cp(Σ),

δp(c) is the image of ϕ(v[x1,··· ,xp]) by the canonical morphism

Hp+1
c (|σ|; Z) −→ Hp+1

c (|∆| \ |∆p|; Z) ' Cp+1(Σ).

But Lemma 1.9.5 shows that

ϕ(v[x1,··· ,xp]) ' v[x0,··· ,xp]

and the conclusion follows.

Corollary 1.9.7 (Euler’s theorem). Let Σ be a finite simplicial complex.

Then, the abelian groups

Hk(|Σ|; Z) k ≥ 0

are finitely generated and the Euler-Poincaré characteristic

χ(|Σ|) =
∑

k

(−1)k rk Hk(|Σ|; Z)

is equal to ∑

k

(−1)k#(Σk \ Σk−1).

Proof. The first part follows directly from the fact that

Ck(Σ) ' Z#(Σk\Σk−1)

is a free abelian group with finite rank.

Denote Zk(Σ) and Bk+1(Σ) the kernel and the image of the differential

dk : Ck(Σ) −→ Ck+1(Σ)

and set

Hk(Σ) = Zk(Σ)/Bk(Σ).

From the exact sequences

0 −→ Zk(Σ) −→ Ck(Σ) −→ Bk+1(Σ) −→ 0

0 −→ Bk(Σ) −→ Zk(Σ) −→ Hk(Σ) −→ 0
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we deduce that

rkCk(Σ) = rkZk(Σ) + rkBk+1(Σ)

and that

rkZk(Σ) = rkBk(Σ) + rk Hk(Σ).

It follows that

rkCk(Σ) = rkBk(Σ) + rkBk+1(Σ) + rk Hk(Σ)

and, hence, that
∑

k

(−1)k rkCk(Σ) =
∑

k

(−1)k rk Hk(Σ).

The conclusion follows since

rkCk(Σ) = #(Σk \ Σk−1)

and

Hk(Σ) ' Hk(|Σ|; Z).

Examples 1.9.8.

(a) Consider a simplicial complex Σ with |Σ| homeomorphic to

Clearly, Σ has four 0-simplexes, five 1-simplexes and one 2-simplex. Hence,

χ(|Σ|; Z) = 4− 5 + 1 = 0.

(b) Consider a simplicial complex Σ with |Σ| homeomorphic to

We have three 0-simplexes and three 1-simplexes. Therefore, χ(|Σ|; Z) =

3 − 3 = 0. Note that |Σ| ' S1 and our result is compatible with the fact

that

Hk(S1; Z) '

{
Z if k = 0, 1

0 otherwise

since dimH0(S1; Z)− dimH1(S1; Z) = 1− 1 = 0.

(c) Similarly, for
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we have χ = 4− 6 + 4 = 2. This is compatible with the relation

dimH0(S2; Z)− dimH1(S2; Z) + dimH2(S2; Z) = 1− 0 + 1 = 2.

1.10 Cohomology of locally compact spaces

Definition 1.10.1. Let X be a locally compact topological space. We call

the cohomological dimension of the functor

F 7→ Γc(X;F)

the cohomological dimension of X and denote it by dimcX.

Remark 1.10.2. Note that by a well-known result about cohomological

dimensions, dimcX ≤ n (n ∈ N) if and only if

Hk
c (X;F) ' 0

for any k > n and any F ∈ Shv(X). Note also that contrarily to what

may appear at first glance, cohomological dimension is a local notion. More

precisely, if U is an open covering of X, we have

dimcX = sup
U∈U

dimcU.

In particular, dimc U ≤ dimcX for any open subspace U of X. Note that

although a similar majoration holds for closed subspaces, it may be false for

arbitrary subspaces.

Exercise 1.10.3. Show that the cohomological dimension of an open sub-

space of Rn is equal to n. Deduce from this fact that if U and V are

homeomorphic open subspaces of Rn and Rm then n = m.

Solution. Let us prove that dimc Rn ≤ n. The conclusion will follow since

we know that

Hn
c (B; Z) = Z

for any open ball B of Rn.

Since
1

2
+

1

π
arctg x : R −→ ]0, 1[
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is a homeomorphism, Rn is homeomorphic to ]0, 1[
n
. Since this last space

is an open subspace of [0, 1]n, it is sufficient to show that dimc [0, 1]n ≤ n.

We will proceed by induction on n.

For n = 1, this follows from Exercise 1.6.7. Assuming the result is true

for n, we prove it for n+ 1 by using the isomorphism

RΓ([0, 1]n+1;F) ' RΓ([0, 1]; p(F))

(where p : Rn+1 −→ Rn is a canonical projection) and the fibers formula for

Rp.

The last part follows from the fact that cohomological dimension is

clearly invariant by homeomorphism.

Remark 1.10.4. It follows at once from the preceding exercise that the

cohomological dimension of a differential manifold is equal to its usual di-

mension.

Exercise 1.10.5. Let Σ be a finite simplicial complex. Show that the

cohomological dimension of |Σ| is equal to dimΣ.

Solution. We will proceed by induction on dim Σ. For dimΣ = 0, the result

is obvious. To prove that the result is true for dimΣ = n+ 1 if it is true for

dimΣ ≤ n, it is sufficient to use the excision distinguished triangle

RΓc(|Σn+1| \ |Σn|;F) −→ RΓc(|Σn+1|;F) −→ RΓc(|Σn|;F)
+1
−−→

together with the fact that |Σn+1| \ |Σn| is a finite union of open cells of

dimension n + 1.

Definition 1.10.6. The reduced cohomology H̃·(X; Z) of X with coefficient

in Z is defined by setting

H̃k(X; Z) =

{
H0(X; Z)/Z if k = 0,

Hk(X; Z) otherwise.

A topological space X is cohomologically locally connected (clc for short) if,

for any x ∈ X and any neighborhood U of x, there is a neighborhood V of

x included in U such that all the morphisms

H̃k(U ; Z) −→ H̃k(V ; Z)

are zero.

Examples 1.10.7. One checks directly that differential manifolds are clc

spaces. With a little more work, one sees also that the same is true of

compact polyhedra.
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Proposition 1.10.8 (Borel-Wilder). Assume X is a locally compact clc-

space. Then, for any pair K, L of compact subsets of X such that L ⊂ K◦,

all the restriction morphisms

Hk(K; Z) −→ Hk(L; Z)

have finitely generated images.

Proof. We will proceed by increasing induction on k. Denote L the family

of compact subsets L of K◦ which have a compact neighborhood L′ ⊂ K◦

for which the image

rkL′K : Hk(K; Z) −→ Hk(L′; Z)

is finitely generated. It is clear that any point x ∈ K◦ has neighborhood

in L. Hence, it is sufficient to show that if L1, L2 ∈ L then L1 ∪ L2 ∈ L.

Choose compact neighborhoods L′1, L
′
2 of L1, L2 for which rkL′1K

and rkL′2K
have finitely generated images. Let L′′1 , L′′2 be compact neighborhoods of

L1, L2 such that L′′1 ⊂ L
′
1
◦
, L′′2 ⊂ L

′
2
◦
. Consider the diagram

Hk(K; Z)
β

//

δ
��

Hk(K; Z)⊕ Hk(K; Z)

ε
��

Hk−1(L′1 ∩ L
′
2; Z)

α′ //

γ′
��

Hk(L′1 ∪ L
′
2; Z)

δ′��

β′
// Hk(L′1; Z)⊕ Hk(L′2; Z)

Hk−1(L′′1 ∩ L
′′
2 ; Z)

α′′ // Hk(L′′1 ∪ L
′′
2 ; Z)

where the horizontal morphisms come from Mayer-Vietoris sequences and

the vertical ones are restriction maps. We know that Im ε is finitely gener-

ated. Since

β′(Im δ) ⊂ Im ε

we see that β′(Im δ) is also finitely generated. Hence, so is Im δ/(Im δ ∩

Imα′). Using the epimorphism

δ′(Im δ/(Im δ ∩ Imα′)) −→ Im(δ′ ◦ δ)/ Im(α′′ ◦ γ′)

we see that Im(δ′ ◦ δ)/ Im(α′′ ◦ γ′) is finitely generated. Since the induction

hypothesis shows that Im γ′ is finitely generated, it follows that Im(δ′ ◦ δ)

is finitely generated. This shows that L1 ∪ L2 ∈ L and the conclusion

follows.

Corollary 1.10.9. Assume X is a compact clc space. Then, the abelian

groups

Hk(X; Z)
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are finitely generated. If, moreover, X has finite cohomological dimension,

then the Euler-Poincaré characteristic

χ(X) =
∑

k∈Z

rk Hk(X; Z)

is well-defined.

Remark 1.10.10. It follows from the preceding corollary that a compact

differential manifold has a well-defined Euler-Poincaré characteristic. We

will study it with more details in Chapter 2.

1.11 Poincaré-Verdier duality

Let f : X −→ Y be a continuous map between locally compact spaces.

Definition 1.11.1. A closed subset F of X is f-proper if the map

f|F : F −→ Y

is proper or in other words if F ∩ f−1(K) is compact for every compact

subset K of Y . Clearly, f-proper subsets of X form a family of supports.

Let F be a sheaf on X and let U be an open subset of Y . We set

f!(F)(U ) = Γf−proper(f
−1(U );F).

One checks easily that f!(F) is a sheaf on Y . We call it the direct image

with proper supports of F by f .

Proposition 1.11.2. The functor

f! : Shv(X) −→ Shv(Y )

is left exact and has a right derived functor

Rf ! : D
+(Shv(X)) −→ D

+(Shv(Y ))

which is computable by means of c-soft resolutions.

Remark 1.11.3. For the canonical map

aX : X −→ {pt}

we see easily that

RaX !(F) ' RΓc(X;F).
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Proposition 1.11.4 (Fibers formula). For any F ∈ D+(Shv(X)), we

have a canonical isomorphism

[Rf !(F)]y ' RΓc(f
−1(y);F).

Corollary 1.11.5. The cohomological dimension of the functor f! is equal

to

sup
y∈Y

[dimc f
−1(y)]

Corollary 1.11.6 (Cartesian square formula). Assume

Y
f

//

�

X

T

g′
OO

f ′
// Z

g
OO

is a cartesian square of locally compact spaces. Then, we have the canonical

isomorphisms

g−1f! ' f
′
!g
′−1

and g−1Rf ! ' Rf
′
!g
′−1

Proposition 1.11.7. Let g : Y −→ Z be another continuous map of locally

compact spaces. Then, there are canonical isomorphisms

(g ◦ f)! ' g! ◦ f! and R(g ◦ f)! ' Rg! ◦Rf !.

Remark 1.11.8. Combining the preceding result with Remark 1.11.3, we

see that

RΓc(Y ;Rf !F) ' RΓc(X;F).

A result which may be seen as a kind of Leray theorem with compact sup-

ports.

Theorem 1.11.9 (Poincaré-Verdier duality). Assume f! has finite co-

homological dimension (i.e. assume that there is n ≥ 0 such that

Hk(Rf !F) = 0

for k > n and any F ∈ Shv(X)). Then,

Rf ! : D
+(Shv(X)) −→ D

+(Shv(Y ))

has a right adjoint

f ! : D+(Shv(Y )) −→ D+(Shv(X)).
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In other words, there is a canonical functorial isomorphism

Hom
D+(Shv(Y ))(Rf !F ,G) ' Hom

D+(Shv(X))(F , f
!G).

Moreover, for F ∈ D−(Shv(X)) and G ∈ D+(Shv(Y )), there is a functorial

isomorphism

RHom(Rf !F ,G) ' RHom(F , f !G).

Example 1.11.10. Let F be a closed subspace of X. Denote ΓFG the

abelian sheaf

U 7→ ΓF∩U (U ;G).

Let i : F −→ X be the canonical inclusion of F in X. Then, one checks easily

that i! is exact and that

RHom(i!F ,G) ' RHom(F , i−1RΓFG).

In particular, there is a canonical functorial isomorphism

i!G ' i−1RΓFG.

Corollary 1.11.11 (Absolute Poincaré duality). Assume X is a finite

dimensional locally compact space. Then, we have the canonical isomor-

phism

RHom(RΓc(X; ZX),Z) ' RΓ(X;ωX)

where ωX = a!
XZ is the dualizing complex of X.

Proof. Take f = aX , F = ZX , G = Z in Theorem 1.11.9 and use the

isomorphism

RHom(ZX , ωX) ' RΓ(X;ωX ).

Proposition 1.11.12. Let g : Y −→ Z be another continuous map of locally

compact spaces. Then, the canonical isomorphism

R(g ◦ f)! ' Rg! ◦Rf !

induces by adjunction the canonical isomorphism

(g ◦ f)! ' f ! ◦ g!.

Corollary 1.11.13 (Alexander duality). Assume X has finite cohomo-

logical dimension and let F be a closed subset of X. Then, there is a

canonical isomorphism

RHom(RΓc(F ; Z),Z)' RΓF (X;ωX ).
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Proof. It is clear that F is locally compact and has finite homological di-

mension. Moreover, thanks to Example 1.11.10 and Proposition 1.11.12, we

have

ωF = a!
FZ ' i!a!

XZ ' i−1RΓFωX

where i : F −→ X is the canonical inclusion. Hence, the conclusion follows

from Corollary 1.11.11 with X replaced by F .

Proposition 1.11.14. For Rn there is a canonical isomorphism

ωRn ' ZRn [n].

Proof. Using Corollary 1.11.11, we see that

(ωRn)x ' lim−→
U3x

U open ball

RHom(RΓc(U ; Z),Z).

Thanks to Examples 1.8.4, we know that

RΓc(U ; Z) ' Z[−n].

Hence,

(ωRn)x ' Z[n].

This shows in particular that

Hk(ωRn ) ' 0

for k 6= −n and that the sheaf

orRn = H−n(ωRn )

has all its fibers canonically isomorphic to Z. Moreover, it follows from

Corollary 1.11.11 that for any open ball U of Rn,

RΓ(U ; orRn ) ' RHom(RΓc(U ; ZU)[n],Z) ' Z.

Using the fact (see Exercise 1.8.6) that the canonical diagram

RΓc(U ; Z)[n]

��

/o // Z

RΓc(U
′; Z)[n] /o // Z

is commutative if U ⊂ U ′ are open balls of Rn, we see that orRn is canoni-

cally isomorphic to ZRn .
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Corollary 1.11.15. Let U (resp. F ) be an open (resp. a closed) subset of

Rn. Then, we have the canonical isomorphisms

RHom(RΓc(U ; Z),Z) ' RΓ(U ; Z)[n]

and

RHom(RΓc(F ; Z),Z) ' RΓF (Rn; Z)[n].

In particular, there are exact sequences of the form

0 −→ Ext1(Hk+1
c (U ; Z),Z) −→ Hn−k(U ; Z) −→ Hom(Hk

c (U ; Z),Z) −→ 0

and

0 −→ Ext1(Hk+1
c (F ; Z),Z) −→ Hn−k

F (Rn; Z) −→ Hom(Hk
c (F ; Z),Z) −→ 0.

Proof. The first part follows from Corollary 1.11.11 and Corollary 1.11.13

combined with the preceding proposition.

As for the second part, it follows from the fact that for any complex C ·

of abelian groups we have an exact sequence of the form

0 −→ Ext1(Hk+1(C ·),Z) −→ H−k(RHom(C ·,Z)) −→ Hom(Hk(C ·),Z) −→ 0

for any k ∈ Z.

Exercise 1.11.16. Let f : S1 −→ R2 be a continuous map and set C =

f(S1). We define the multiplicity of x ∈ C to be µx = #f−1(x). A point

x ∈ C is simple if µx = 1 and multiple otherwise. Assume C has a finite

number of multiple points each of which has finite multiplicity. Compute

the cohomology of C and R2 \ C. In particular, show that the number of

bounded connected components of R2 \C is 1 +
∑
x∈C(µx − 1) generalizing

in this way the well-known theorem on Jordan curves. For example in

x1

x2

x3

x4
I

II

III

IV
V

VI
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we have

µx1 = µx2 = µx3 = 2, µx4 = 3

and

1 +
∑

x∈C

(µx − 1) = 1 + 1 + 1 + 1 + 2 = 6.

Solution. Let g : S1 −→ C be the map induced by f . We have

Rg(ZS1 )x ' RΓ(g−1(x); Z) ' Zµx (*)

for any x ∈ C. In particular, Rg(ZS1) ' g(ZS1 ). Consider the canonical

morphism ZC −→ g(ZS1). Since g is surjective, it is a monomorphism. More-

over, (*) shows that its cokernel is supported by the set of multiple points

of C. Therefore, we get the exact sequence of sheaves

0 −→ ZC −→ g(ZS1) −→
⊕

x∈C
µx>1

Zµx−1
{x} −→ 0

where Z{x} is the direct image of the constant sheaf on {x} in C. Applying

RΓ(C; ·) we get the distinguished triangle

0 −→ RΓ(C; ZC) −→ RΓ(C;Rg(ZS1)) −→ RΓ(C;
⊕

x∈C
µx>1

Zµx−1
{x} )

+1
−−→

Moreover,

RΓ(C;Rg(ZS1)) ' RΓ(S1; ZS1) and RΓ(C;
⊕

x∈C
µx>1

Zµx−1
{x} ) '

⊕

x∈C
µx>1

Zµx−1.

Taking cohomology and setting

ν =
∑

x∈C
µx>1

(µx − 1),

we get the exact sequence

0 −→ H0(C; ZC) −→ H0(S1; ZS1) −→ Zν −→ H1(C; ZC) −→ H1(S1; ZS1) −→ 0

and the isomorphisms

Hk(C; ZC) ' Hk(S1; ZS1) ' 0

for k > 1. Since S1 is connected, so is C and H0(C; ZC) ' H0(S1; ZS1) ' Z.

Through these isomorphisms, the first morphism appears as id : Z −→ Z.

Hence, using the fact that H1(S1; ZS1) ' Z, we get the exact sequence

0 −→ Zν −→ H1(C; ZC) −→ Z −→ 0.
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The last group being projective, we get

H1(C; ZC) ' Zν+1.

The cohomology table for C is thus

Hk(C; ZC) '





Z if k = 0,

Z1+ν if k = 1,

0 otherwise.

Since all these groups are free, Corollary 1.11.15 shows that

H2−k
C (R2; ZR2) ' Hom(Hk(C; Z),Z).

Therefore,

Hk
C(R2; ZR2) '





Z1+ν if k = 1,

Z if k = 2,

0 otherwise.

Consider the excision distinguished triangle

RΓC(R2; Z) −→ RΓ(R2; Z) −→ RΓ(R2 \ C; Z)
+1
−−→

Taking cohomology and using the fact that Hk(R2; Z) ' 0 for k > 0, we get

the exact sequence

0 −→ H0
C(R2; Z) −→ H0(R2; Z) −→ H0(R2 \ C; Z) −→ H1

C(R2; Z) −→ 0

and the isomorphisms

Hk(R2 \ C; Z) ' Hk+1
C (R2; Z)

for k > 0. Since R2 is connected, a locally constant function in R2 is

constant and we have H0(R2; Z) ' Z and H0
C(R2; Z) ' 0. It follows that

the sequence

0 −→ Z −→ H0(R2 \ C; Z) −→ Z1+ν −→ 0

is exact. From these results we deduce that

Hk(R2 \ C; Z) '





Z2+ν if k = 0,

Z if k = 1,

0 otherwise.

Hence the number of connected components of R2 \ C is 2 + ν. Since C

is compact, R2 \ C has exactly one non bounded connected component. It
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follows that the number of bounded connected components of R2\C is 1+ν.

Moreover, our method of proof shows also that

H1(R2 \ C; Z) −→ H1(R2 \B; Z)

is an isomorphism if B is a closed ball of R2 containing C. It follows that,

for any bounded connected component U of R2 \ C, we have

Hk(U ; Z) '

{
Z if k = 0,

0 otherwise

and that

Hk(U ; Z) '

{
Z if k = 0, 1,

0 otherwise

if U is the non bounded connected component of R2 \ C.

1.12 Borel-Moore homology

From the point of view of sheaf theory, cohomology is more natural than

homology. However, to make the link with classical homology theories, it is

convenient to introduce the following kind of co-cohomology.

Definition 1.12.1. Let Φ be a family of supports of X. We define the

Borel-Moore homology HΦ
k (X; Z) ofX with integer coefficients and supports

in Φ by setting

HΦ
k (X; Z) = H−kΦ RΓ(X;ωX).

Remark 1.12.2. Note that thanks to Corollary 1.11.11, we have a canon-

ical epimorphism

Hk(X; Z) −→ Hom(Hk
c (X; Z),Z)

which becomes an isomorphism when Hk+1
c (X; Z) has no torsion.

Proposition 1.12.3. If X is a Homologically Locally Connected space in

the sense of singular homology (HLC for short), then there are canonical

isomorphisms

Hc
k(X; Z) ' SHk(X; Z) (k ∈ N)

where SHk(X; Z) denotes the singular homology with integer coefficients of

X.

Corollary 1.12.4. Assume X is a HLC space and K is a compact subset

of X. Then, there are canonical isomorphisms

H−kRΓ(K;ωX) ' SHk(X,X \K; Z).
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Proof. This follows from the preceding proposition combined with the dis-

tinguished triangle

RΓc(X \K;ωX) −→ RΓc(X;ωX ) −→ RΓ(K;ωX)
+1
−−→

Proposition 1.12.5. Let f : X −→ Y be a continuous map and assume

X, Y are locally compact spaces of finite cohomological dimension. Then,

there is a canonical morphism

Rf !ωX −→ ωY .

This morphism induces a morphism

f∗ : Hc
· (X; Z) −→ Hc

· (Y ; Z)

which is compatible with the usual push-forward morphism

f∗ : SH·(X; Z) −→ SH·(Y ; Z).

Proof. We have

f !ωY ' f
!a!
Y Z ' a!

XZ ' ωX .

Thanks to Poincaré-Verdier duality,

Hom
D(Shv(Y ))(Rf !ωX , ωY ) ' Hom

D(Shv(X))(ωX , f
!ωY ).

Hence, to the isomorphism ωX ' f !ωY corresponds a canonical morphism

Rf !ωX −→ ωY .

Applying RΓc(Y ; ·) to this morphism, we get a morphism

RΓc(X;ωX) −→ RΓc(Y ;ωY )

which induces f∗ at the level of cohomology. For the link with singular

homology, we refer to standard texts.

Remark 1.12.6. For f = aX , we see that

(aX)∗ : Hc
0(X; Z) −→ Z

corresponds to the classical augmentation

# : SH0(X; Z) −→ Z.

which associates to a singular 0-cycle c =
∑J

j=1mj [xj] the number #c =∑J
j=1mj . This is why we will often use # as a shorthand notation for

(aX)∗.
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1.13 Products in cohomology and homology

Definition 1.13.1. Let F , G be two abelian sheaves on the topological

space X. We define the tensor product of F and G to be the abelian sheaf

associated to the presheaf

U 7→ F(U ) ⊗G(U ).

Let Φ and Ψ be families of supports on X. Since F ∩ G ∈ Φ ∩ Ψ for any

F ∈ Φ and any G ∈ Ψ, we have a canonical morphism

^: ΓΦ(X;F)⊗ ΓΨ(X;G) −→ ΓΦ∩Ψ(X;F ⊗G).

Proposition 1.13.2. The functor

⊗ : Shv(X) × Shv(X) −→ Shv(X)

is right exact, left derivable and has finite homological dimension. Moreover,

if Φ and Ψ are families of supports on X, we have a canonical morphism

^: RΓΦ(X;F) ⊗L RΓΨ(X;G) −→ RΓΦ∩Ψ(X;F ⊗L G)

which induces the generalized cup-products

^: Hk
Φ(X;F) ⊗Hl

Ψ(X;G) −→ Hk+l
Φ∩Ψ(X;F ⊗L G)

at the level of cohomology.

Remark 1.13.3. For F = G = ZX , we have F ⊗L G ' ZX and one can

show that the morphisms

^: Hk
Φ(X; ZX )⊗Hl

Ψ(X; ZX ) −→ Hk+l
Φ∩Ψ(X; ZX )

given by the preceding proposition coincide with the classical cup-products.

On can also recover the usual formulas

(ck ^ cl) ^ cm = ck ^ (cl ^ cm) and ck ^ cl = (−1)klcl ^ ck.

For F = ZX and G = ωX , we have F ⊗L G = ωX and we get the

morphisms

^: Hk
Φ(X; ZX) ⊗H−lΨ (X;ωX ) −→ Hk−l

Φ∩Ψ(X;ωX ).

Using the equality H−mΨ (X;ωX) = HΨ
m(X; ZX ), we recover the classical

cap-products

_: Hk
Φ(X; ZX) ⊗Hψ

l (X; ZX ) −→ HΦ∩Ψ
l−k (X; ZX ).
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Thanks to the associativity of the generalized cup-products, we also recover

the cup-cap associativity formula

(ck ^ cl) _ cm = ck _ (cl _ cm).

If the elements of Φ ∩Ψ are compact, we also get a pairing

〈·, ·〉 : Hk
Φ(X; Z)⊗HΨ

k (X; Z) −→ Z

by composing

_: Hk
Φ(X; Z)⊗HΨ

k (X; Z) −→ HΦ∩Ψ
0 (X; Z)

with

# : Hc
0(X; Z) −→ Z.

This pairing is a natural generalization of the classical pairing between ho-

mology and cohomology. Thanks to the cup-cap associativity formula, we

have 〈
ck ^ cl, ck+l

〉
=
〈
ck, cl _ ck+l

〉
.

Proposition 1.13.4 (Projection formula). Let f : X −→ Y be a contin-

uous map between locally compact spaces. Then, for any F ∈ D+(Shv(X))

and any G ∈ D+(Shv(Y )), there is a canonical isomorphism

G ⊗L Rf !F
∼
−→ Rf !(f

−1G ⊗L F).

Corollary 1.13.5 (Universal coefficient formula). Let X be a locally

compact space. Then, for any M ∈ D+(Ab), we have the canonical isomor-

phism

RΓc(X;M ) ' M ⊗L RΓc(X; Z).

Remark 1.13.6. Thanks to the preceding proposition, one can prove that

if f : X −→ Y is a morphism of locally compact spaces we have

f∗(f
∗(ck) _ cl) = ck _ f∗(cl)

for any ck ∈ Hk(Y ; Z) and any cl ∈ Hc
l (X; Z). In particular, we get

〈
f∗(ck), cl

〉
=
〈
ck, f∗(cl)

〉

if k = l.

Definition 1.13.7. Let X, Y be topological spaces and let F (resp. G) be

a sheaf on X (resp. Y ). Denote pX , pY the canonical projections of X × Y
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on X and Y . We define the exterior tensor product F � G of F and G by

the formula

F � G = p−1
X F ⊗ p

−1
Y G.

Let Φ and Ψ be families of supports on X and Y . Denote Φ×Ψ the family

of supports on X × Y formed by the closed subsets of the products of the

form F × G with F ∈ Φ and G ∈ Ψ. By definition of F � G, we get a

canonical morphism

× : ΓΦ(X;F)⊗ ΓΨ(Y ;G) −→ ΓΦ×Ψ(X × Y ;F � G)

Proposition 1.13.8. Assume X, Y are topological spaces. Then, the func-

tor

� : Shv(X) × Shv(Y ) −→ Shv(X × Y )

is right exact and left derivable. It has finite homological dimension and if Φ

and Ψ are families of supports on X and Y , we have a canonical morphism

RΓΦ(X;F) ⊗L RΓΨ(Y ;G) −→ RΓΦ×Ψ(X × Y ;F �L G)

which induces the generalized cross-products

× : Hk
Φ(X;F) ⊗Hl

Ψ(Y ;G) −→ Hk+l
Φ×Ψ(X × Y ;F � G)

at the level of cohomology.

Remark 1.13.9. If F = ZX and G = ZY , we get F � G ' ZX×Y and the

generalized cross-products

× : Hk
Φ(X; Z)⊗Hl

Ψ(Y ; Z) −→ Hk+l
Φ×Ψ(X × Y ; Z)

corresponds to the classical cross-products in cohomology. Note that this is

not really a new operation since

ck × cl = p∗X(ck) ^ p∗Y (cl).

So, most of the properties of cross-products in cohomology may be deduced

from this formula. In particular, if f : X −→ X ′ and g : Y −→ Y ′ are

continuous maps, we have

(f × g)∗(ck × cl) = f∗(ck) × g∗(cl).

Proposition 1.13.10 (Künneth theorem for cohomology).

Assume X, Y are locally compact spaces. Then, the canonical morphism

RΓc(X;F) ⊗L RΓc(Y ;G) −→ RΓc(X × Y ;F �L G)

is an isomorphism for any F in D+(Shv(X)) and any G in D+(Shv(Y )).
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Proof. This follows directly from the projection formula and the cartesian

square formula.

Lemma 1.13.11. Assume X and Y are locally compact spaces. Denote

pY : X × Y −→ Y

the second projection. Then, there is a functorial canonical morphism

ωX �L G −→ p!
Y G

for G ∈ D+(Shv(Y )). This morphism becomes an isomorphism if X is a clc

space.

Proof. We have the chain of morphisms

RpY !(ωX �L G) ' RpY !(p
−1
X ωX ⊗

L p−1
Y G) (1)

' RpY !(p
−1
X ωX) ⊗L G (2)

' a−1
Y RaX !ωX ⊗

L G (3)

where (1) comes from the definition of �, (2) follows from the projection

formula and (3) from the cartesian square formula. Using the canonical

morphism

RaX !ωX −→ Z,

we get a canonical morphism

RpY !(ωX �L G) −→ G.

By adjunction, this gives us the requested morphism

ωX �L G −→ p!
Y G. (*)

At the level of sections, these morphisms may be visualized as follows. Let

U , V be open subsets of X and Y . Then, on one hand, we have

RΓ(U × V, p!
Y G) ' RHom(ZU×V , p

!
Y G|V )

' RHom(RpV !ZU×V ,G|V )

' RHom(RΓc(U ; ZU),RΓ(V ;G)).

On the other hand,

RΓ(U ;ωX)⊗L RΓ(V ;G) ' RHom(RΓc(U ; ZU),Z)⊗L RΓ(V ;G)
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and the canonical morphism

RΓ(U ;ωX) ⊗L RΓ(V ;G) −→ RΓ(U × V ; p!
Y G)

induced by (*) corresponds to the canonical morphism

RHom(RΓc(U ; ZU),Z)⊗L RΓ(V ;G) −→ RHom(RΓc(U ; Z),RΓ(V ;G)).

The last part of the result follows by taking limits and cohomology and

using the fact that

RHom(C ·,Z)⊗L P · ' RHom(C ·, P ·)

if C · is a bounded complex with finitely generated cohomology.

Proposition 1.13.12. Let X and Y be locally compact topological spaces.

Then, there is a canonical morphism

ωX �L ωY −→ ωX×Y . (1)

If Φ and Ψ be families of supports on X and Y , this morphism induces a

canonical morphism

RΓΦ(X;ωX )⊗L RΓΨ(Y ;ωY ) −→ RΓΦ×Ψ(ωX×Y ) (2)

and, hence, cross-products in homology

× : HΦ
k (X; Z) ⊗HΨ

l (Y ; Z) −→ HΦ×Ψ
k+l (X × Y ; Z).

Moreover, if X or Y is a clc space and Φ (resp. Ψ) is the family of all

compact subsets of X (resp. Y ), then both (1) and (2) are isomorphisms.

Proof. This follows directly from the preceding lemma and the fact that

p!
Y ωY = ωX×Y .

Remark 1.13.13. A link between the cross-products in homology and co-

homology is given by the formula

(cp × cq) _ (cr × cs) = (−1)p(s−q)(cp _ cr) × (cq _ cs)

which entails the formula

〈
ck × cl, ck × cl

〉
=
〈
ck, ck

〉 〈
cl, cl

〉
.

Note also that homology cross-products are compatible with push-forwards.

Namely, if f : X −→ X ′ and g : Y −→ Y ′ are morphisms of locally compact

spaces, then

(f × g)∗(ck × cl) = f∗(ck)× g∗(cl).
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1.14 Cohomology of topological manifolds

Definition 1.14.1. A topological manifold of dimension n is a Haussdorf

topological space which is locally isomorphic to Rn.

Proposition 1.14.2. A topological manifold X of dimension n is a clc

locally compact space. Its cohomological dimension is n, ωX is concentrated

in degree −n and H−n(ωX ) is a locally constant sheaf with fiber Z.

Proof. This follows directly from the definition and Proposition 1.11.14.

Definition 1.14.3. We define the orientation sheaf orX of X by setting

orX = H−n(ωX).

The manifold X is orientable if and only if the sheaf orX is constant. In

such a case, an orientation of X is an isomorphism

ZX
∼
−→ orX .

The manifold X endowed with an orientation forms an oriented manifold.

The orientation class of the oriented manifold X is the section

µX ∈ Γ(X; orX)

image of the section

1X ∈ Γ(X; ZX)

by the orientation of X.

Proposition 1.14.4. Assume X is a topological manifold. Then,

Γ(K; orX) ' SHn(X,X \K; Z)

canonically for any compact subset K of X. In particular, the notions

related to orientability considered above are compatible with the ones con-

sidered in singular homology.

Proof. As a matter of fact, orX ' ωX [−n] and

Γ(K; orX ) ' H0RΓ(K;ωX [−n]) ' H−nRΓ(K;ωX)

and the announced isomorphism follows from Corollary 1.12.4. Recall that

an orientation ofX from the point of view of singular homology corresponds

to the data of a generator µx ∈ SHn(X,X \ {x}; Z) for any x ∈ X in

such a way that for any x0 ∈ X there is a neighborhood K of x0 and
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µK ∈ SHn(X,X\K; Z) such that µx is the image of µK in SHn(X,X\{x}; Z)

for any x ∈ K. Using the isomorphism

Γ(K; orX) ' SHn(X,X \K; Z)

one sees easily that the family (µx)x∈X corresponds to a section µ of orX
on X which generates (orX)x for any x ∈ X and the conclusion follows.

Remark 1.14.5.

(a) If X is orientable and connected, we have

Hom(ZX ,ZX) ' Γ(X; ZX) ' Z.

It follows that the sheaf ZX has only two automorphisms (± id). Therefore,

X has exactly two orientations. If µX is the class of one of them, −µX is

the class of the other.

(b) Any open subset U of a topological manifold X is a topological

manifold. If µX is an orientation class of X, µX|U is an orientation class for

U .

(c) We may restate Proposition 1.11.14 by stating that the topological

manifold Rn is canonically oriented. We will denote µRn the corresponding

orientation class.

(d) Since ωX = orX [n], we have

Γ(U ; orX ) = H−n(U ;ωX).

Thanks to Corollary 1.11.11, we get that

Γ(U ; orX ) = H−n(RHom(RΓc(U ; ZX),Z)).

Since Hn+1
c (U ; ZX) ' 0, we obtain a canonical isomorphism

Γ(U ; orX) ' Hom(Hn
c (U ; ZX),Z).

This provides a more explicit way to view the sheaf orX .

Definition 1.14.6. A homeomorphism ϕ : X −→ Y of oriented topolog-

ical manifolds is oriented if the orientation class of X corresponds to the

orientation class of Y through the canonical isomorphism

ϕ−1 orY ' orX .

Lemma 1.14.7. A diffeomorphism ϕ : U −→ V between open subsets of Rn

is oriented if and only if its Jacobian Jϕ is strictly positive.
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Proof. Let x0 and y0 be points of U and V . Denote µU and µV the canonical

orientation classes of U and V and denote νU the image of µU by the

canonical isomorphism ϕ−1 orV ' orU . Let BU (resp. BV ) be an open ball

of U (resp. V ) containing x0 (resp. y0). Assume that ϕ(BU ) ⊂ BV . Using

part (d) of Remark 1.14.5, we see that νU|BU
= ±µU|BU

according to the

fact that the diagram

Hn
c (BU ; Z)

∫
U // Z

Hn
c (ϕ(BU ); Z)

O�ϕ∗
OO

i
��

Hn
c (BV ; Z)

∫
V

==zzzzzzzzzzzzzz

commutes or anticommutes. Using Exercise 1.8.6, we know that if

vϕ(BU ) ∈ Hn
c (ϕ(BU ); Z)

has integral 1 then so has i(vϕ(BU )). Let m be an integer such that

ϕ∗(vϕ(BU )) = mvU

where vU ∈ Hn
c (BU ; Z) is a class with integral 1. On one hand, we have

∫
ϕ∗(vϕ(BU )) = m.

On the other hand, representing the classes by means of de Rham complexes,

we get ∫
ϕ∗(vϕ(BU )) = ±

∫
vϕ(BU ) = ±1

according to the fact that Jϕ is positive or negative in BU . The conclusion

follows.

Proposition 1.14.8. Let (ϕi : Ui −→ Vi)i∈I be a family of homeomorphisms

such that X =
⋃
i∈I Vi each Ui being an open subset of Rn. Assume that

the homeomorphism

ϕ−1
j ◦ ϕi : ϕ−1

i (Vi ∩ Vj) −→ ϕ−1
j (Vi ∩ Vj)

is oriented for any i, j ∈ I. Then, there is a unique orientation of X such

that ϕi : Ui −→ Vi is oriented for any i ∈ I. Moreover, any orientation of X

may be obtained in this way.
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Proof. The first part is obtained by gluing the isomorphisms

ZVi
' orVi

induced by the isomorphisms ZUi
' orUi

corresponding to the canonical

orientations of the Ui’s.

As for the second part, it follows directly from the definition if one keeps

in mind that it is always possible to reverse the orientation of a homeomor-

phism

ϕi : Ui −→ Vi (Ui open subset of Rn)

by composing it with the reflection

(x1, · · · , xn) 7→ (x1, · · · ,−xn).

Corollary 1.14.9. On a differential manifold, the topological and differ-

ential notions of orientation coincide

Exercise 1.14.10. Let F be an abelian sheaf on the topological space X

(a) Assume U and V are two open subsets of X with X = U ∪ V and

U ∩ V non-empty and connected. Show that if the abelian sheaves

F|U and F|V are constant, then so is F .

(b) Deduce from (a) that a locally constant sheaf on [0, 1]n is constant.

Remark 1.14.11 (Classification of locally constant sheaves).

Let X be a topological space which is path-connected and locally path-

connected, let F be a locally constant sheaf on X and let γ : [0, 1] −→ X be

a continuous path between x and y. It follows from the preceding exercise

that we have

γ−1F ' M[0,1]

where M is an abelian group. Hence, the canonical morphisms

(γ−1F)([0, 1]) −→
(
γ−1F

)
0

and (γ−1F)([0, 1]) −→
(
γ−1F

)
1

are isomorphisms. This gives us a canonical isomorphism

(
γ−1F

)
0
−→
(
γ−1F

)
1

and consequently a canonical isomorphism

mγ : Fx −→ Fy.
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which is called the monodromy along γ. A simple computation shows that

if γ′ is a path from y to z then mγ′ ◦mγ = mγ′◦γ . If the path γ0 and γ1 are

connected by a homotopy h : [0, 1]2 −→ X i.e. if

h(t, 0) = γ0(t) and h(t, 1) = γ1(t);

then h−1F is constant on [0, 1]
2

and one sees easily that the morphisms

mγ1 : Fx −→ Fy and mγ2 : Fx −→ Fy

are equal. In particular, γ 7→ mγ induces a representation of the Poincaré

group π1(X,x) of X at x on Fx which is called the monodromy representa-

tion of F at x.

It can be shown that the functor from the category of locally constant

sheaves on X to the category of representations of π1(X,x) on abelian

groups obtained by associating to a locally constant sheaf F on X its mon-

odromy representation at x is an equivalence of categories.

A trivial consequence is that locally constant sheaves on X are constant

if X is simply path-connected.

Another consequence is that locally constant sheaves with fiber Z on X

correspond to representations of π1(X,x) on Z. Since the only automor-

phisms of Z are ± id, these representations may be classified by morphisms

π1(X,x) −→ Z2;

non trivial representations corresponding to epimorphisms. Therefore, non

constant locally constant sheaves with fiber Z on X are classified by invari-

ant subgroup of index 2 of π1(X,x).

In particular, ifX is a topological manifold and π1(X,x) has no invariant

subgroup of index 2, then X is orientable.

Proposition 1.14.12. Let X be an oriented topological manifold of di-

mension n. Denote µX its orientation class. Then, µX may be viewed as

an element of Hn(X; Z) and

·_ µX : Hk
Φ(X; Z) −→ HΦ

n−k(X; Z)

is an isomorphism.

Proof. Since ωX = orX [n], we have

Γ(X; orX ) = H−n(RΓ(X;ωX)) = Hn(X; ZX )
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and µX may be viewed as an element of Hn(X; ZX). By the functoriality

of the cup product, we have the following commutative diagram

Hk
Φ(X; ZX )⊗H−n(X;ωX )

^ // Hk−n
Φ (X;ωX)

Hk
Φ(X; ZX)⊗H−n(X; ZX [n])

id⊗H−n(X;ν)

OO

// Hk−n
Φ (X; ZX [n])

Hk−n
Φ (X;ν)

OO

where ν : ZX [n] −→ ωX is the isomorphism associated to µX . Since µX is

the image of 1X ∈ Γ(X; ZX) = H−n(X; ZX [n]) by H−n(X; ν), the diagram

Hk
Φ(X; ZX)

·^µX // Hk−n
Φ (X;ωX )

Hk
Φ(X; ZX)

id

OO

·^1X

// Hk−n
Φ (X; ZX [n])

Hk−n
Φ (X;ν)

OO

is commutative and the conclusion follows.

Remark 1.14.13. When we work with oriented topological manifolds, the

preceding proposition allows us to transform operations on cohomology into

operations on homology and vice-versa. In particular, if f : X −→ Y is a

continuous map between oriented topological manifolds of dimension nX ,

nY , then

f∗ : Hc
k(X; Z) −→ Hc

k(Y ; Z)

and

f∗ : Hk(Y ; Z) −→ Hk(X; Z)

induce canonical morphisms

f! : HnX−k
c (X; Z) −→ HnY−k

c (Y ; Z)

and

f ! : HnY −k(Y ; Z) −→ HnX−k(X; Z).

Moreover,

^: Hk
Φ(X; Z)⊗Hl

Ψ(X; Z) −→ Hk+l
Φ∩Ψ(X; Z)

gives rise to the intersection product

· : HΦ
nX−k(X; Z)⊗HΨ

nX−l(X; Z) −→ HΦ∩Ψ
nX−k−l(X; Z).

Among the many compatibility formulas relating these operations, let us

just recall that

f!(f
∗cp ^ cq) = cp ^ f!c

q
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or dually that

f∗(f
!cp · cq) = cp · f∗(cq)

and that

(cp × cq) · (cr × cs) = (−1)(nX−p)(nY−s)(cp · cr)× (cq · cs).

Definition 1.14.14. Let X, Y be oriented topological manifolds of dimen-

sion n and p. Assume Y is a closed subspace of X and denote i : Y −→ X

the inclusion map. Then, the fundamental homology class of Y in X is the

class

[Y ] = i∗(µY )

of HY
p (X; Z). Dually, the fundamental cohomology class (or Thom class) of

Y in X is the class

τY/X = i!(1Y )

of Hn−p
Y (X; Z) which is also characterized by the formula

τY/X _ µX = [Y ].

Proposition 1.14.15. Let X be an oriented differential manifold of dimen-

sion n and let Y , Z be closed oriented differential submanifolds of dimension

p and q of X. Assume Y and Z meet transversally. Then Y ∩Z is a closed

differential submanifold of dimension p + q − n of X which is canonically

oriented. Moreover, for this orientation, we have

[Y ∩ Z] = [Y ] · [Z]

and

τY∩Z/X = τY/X ^ τZ/X .

Proof. We will only treat the case where n > p, n > q, p + q > n, leav-

ing the adaptation to the other cases to the reader. Since Y and Z meet

transversally, we have

TxX = TxY + TxZ and Tx(Y ∩ Z) = TxY ∩ TxZ

at any point x ∈ Y ∩ Z. It follows that it is possible to find an oriented

basis of TxX of the form

u1, . . . , un−q, w1, . . . , wp+q−n, v1, . . . , vn−p

where

u1, . . . , un−q, w1, . . . , wp+q−n and w1, . . . , wp+q−n, v1, . . . , vn−p
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are oriented bases of TxY and TxZ and

w1, . . . , wp+q−n

is a basis of Tx(Y ∩Z). We define the canonical orientation of Y ∩Z as the

one corresponding to such a basis.

Let us now prove that

[Y ∩ Z] = [Y ] · [Z]

in HY
p+q−n(X; Z). Since

U 7→ HU∩Y
p (U ; Z), U 7→ HU∩Z

q (U ; Z), U 7→ HU∩Y∩Z
p+q−n (U ; Z)

are sheaves on X, the problem is of local nature. Therefore, we may assume

that

X = Rn−q × Rp+q−n × Rn−p

and that

Y = Rn−q × Rp+q−n × {0}, Z = {0} × Rp+q−n × Rn−p

the orientations being the products of the canonical orientations of the fac-

tors. In this case,

Y ∩ Z = {0} × Rp+q−n × {0}

with the orientation given by the canonical orientation of Rp+q−n. There-

fore,

[Y ] = µRn−q × µRp+q−n × [0], [Z] = [0]× µRp+q−n × µRn−p

and

[Y ∩Z] = [0]× µRp+q−n × [0].

Since by Remark 1.14.13 we have

(µRn−q × µRp+q−n × [0]) · ([0]× µRp+q−n × µRn−p )

= (µRn−q · [0])× (µRp+q−n · µRp+q−n )× ([0] · µRn−p )

= [0]× µRp+q−n × [0]

the conclusion follows.

1.15 Sheaves of rings and modules

In order to focus the survey contained in the preceding sections on the basic

ideas of sheaf theory, we have chosen to deal only with sheaves of abelian

groups. In the rest of this book, we will however need to use sheaves of

rings and modules. The adaptation of the theory reviewed above to this

more general situation being rather mechanical, we will not do it explicitly

here and refer the interested reader to standard texts on the subject.
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Euler class of manifolds and

real vector bundles

2.1 Lefschetz fixed point formula

Let X, Y be two compact oriented topological manifolds of dimension n.

Recall that a correspondence between X and Y is a subset C of X × Y .

The image of a subset A ⊂ X by the correspondence C is the set

C(A) = {y ∈ Y : ∃x ∈ A, (x, y) ∈ C}

which may also be described as

pY (p−1
X (A) ∩ C).

Following Lefschetz, we will introduce similar notions in the framework of

homology.

Definition 2.1.1. A homological correspondence from X to Y is a class

γn ∈ Hn(X × Y ; Z).

For any abelian group M , the image of a class cp ∈ Hp(X;M ) by γn is

the class

γn(cp) = (pY )∗(p
!
X (cp) · γn) ∈ Hp(Y ;M ).

Let f : X −→ Y be a continuous map. As usual, set δf (x) = (x, f(x))

and let

∆f = Im δf = {(x, y) : y = f(x)}

73
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denote the graph of f . Clearly,

δf : X −→ X × Y

induces a homeomorphism between X and ∆f which turns ∆f into a com-

pact oriented manifold of dimension n. We will denote

if : ∆f −→ X × Y

the canonical inclusion. As is well-known, we may recover f from the cor-

respondence ∆f . A similar result is true in homology.

Proposition 2.1.2. The class

γf = (δf )∗(µX ) = (if )∗(µ∆f
)

is a homological correspondence from X to Y for which we have

γf (cp) = f∗(cp).

Proof. Recall that

[∆f ] = (if )∗(µ∆f
) = (δf )∗(µX ).

Recall also that cp · µX = cp. As a matter of fact, for cp = cn−p _ µX , we

have

cp · µX = (cn−p _ µX) · µX = (cn−p ^ 1) _ µX = cp.

Therefore, keeping in mind that

pX ◦ δf = idX , pY ◦ δf = f,

we have successively

γf (cp) = (pY )∗(p
!
Xcp · (δf )∗(µX ))

= (pY )∗(δf )∗(δ
!
fp

!
Xcp · µX)

= f∗(cp · µX)

For p ∈ N, let αp,r (r = 1, · · · , Rp) be a basis of the finite dimension

vector space Hp(X; Q). Thanks to Poincaré-Verdier duality, we know that

the pairing

Hp(X; Q) ×Hn−p(X; Q) −→ Q
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which sends (cp, cn−p) to #(cp ·cn−p) is perfect. Therefore, there is a unique

basis α∨p,r (r = 1, · · · , Rp) of Hp(X; Q) such that

#(α∨p,r · αn−p,r′) = δrr′

for any r, r′ ∈ {1, · · · , Rp}. Denote βq,s, β
∨
q,s (s = 1, · · · , Sq) similar basis

for the rational homology of Y .

Proposition 2.1.3. Let γ be a homological correspondence from X to Y .

Then,

γ =

n∑

p=1

Rp∑

r=1

Sp∑

s=1

(Γp)srα
∨
n−p,r × βp,s

where Γp is the matrix of

γ(·) : Hp(X; Q) −→ Hp(Y ; Q)

with respect to the basis αp,r (r = 1, · · · , Rp) and βp,s (s = 1, · · · , Sp).

Proof. Thanks to Künneth theorem, we know that the classes

α∨p,r × βn−p,s (p = 1, · · · , n; r = 1, · · · , Rp; s = 1, · · · , Sp)

form a basis of Hn(X × Y ; Q). Hence

γ =

n∑

p=1

Rp∑

r=1

Sp∑

s=1

(Γp)srα
∨
n−p,r × βp,s

where the (Γp)sr are rational numbers. Let us compute γ(αp0 ,r0 ). Note that

p!
X (cp) = (−1)n(n−p)cp × µY .

As a matter of fact, we may assume cp = cn−p _ µX . Hence,

p!
X (cp) = p∗X (cn−p) _ µX×Y

= (cn−p × 1Y ) _ (µX × µY )

= (−1)n(n−p)(cn−p _ µX )× (1Y _ µY ) (1)

= cp × µY (2)

where in (1) we have used the formula

(cp × cq) _ (cr × cs) = (−1)p(s−q)(cp _ cr) × (cq _ cs)

and in (2) the formula

1Y _ cp = cp.
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Therefore, γ(αp0 ,r0) is equal to

n∑

p=1

Rp∑

r=1

Sp∑

s=1

(−1)n(n−p0)(Γp)sr(pY )∗
[
(αp0,r0 × µY ) · (α∨n−p,r × βp,s)

]
.

Using the formula

(αp × αq) · (βr × βs) = (−1)(n−p)(n−s)(αp · βr)× (αq · βs)

we see that

(pY )∗
[
(αp0,r0 × µY ) · (α∨n−p,r × βp,s)

]

= (−1)(n−p0)(n−p)(pY )∗
[
αp0,r0 · (α

∨
n−p,r) × (µY · βp,s)

]

= (−1)(n−p0)(n−p)#(αp0,r0 · α
∨
n−p,r)βp,s (*)

= (−1)(n−p0)(n−p)(−1)p(n−p0)δp,p0δr,r0βp,s

where (*) follows from the formula (f × g)∗(αp × αq) = f∗(αp) × g∗(αq).

Therefore,

γ(αp0,r0 ) =

n∑

p=1

Rp∑

r=1

Sp∑

s=1

(Γp)srδp,p0δr,r0βp,s

=

Rp∑

r=1

Sp∑

s=1

(Γp0 )sr0βp0 ,s

and the conclusion follows.

Recall that a fixed point of a correspondence C from X to X is a point

x ∈ X such that x ∈ C(x). Such a point is characterized by the fact that

(x, x) ∈ C ∩∆ where ∆ is the diagonal of X ×X.

Definition 2.1.4. Let γ ∈ Hn(X ×X; Z) be a homological correspondence

from X to X. We define the algebraic number of fixed points of γ as the

number

#(γ · [∆])

and the Lefschetz number of γ as the number

Λγ =
n∑

p=0

(−1)p tr [γ(·) : Hp(X; Q) −→ Hp(X; Q)] .

Theorem 2.1.5 (Lefschetz fixed points formula). Assume

γ ∈ Hn(X ×X; Z)
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is a homological correspondence from X to X. Then,

#(γ · [∆]) = Λγ .

Proof. Using the classes αp,r, α
∨
p,r introduced above and Proposition 2.1.3,

we see that

γ =
n∑

p=1

Rp∑

r=1

Rp∑

s=1

(Γp)srα
∨
n−p,r × αp,s

where Γp is the matrix of

γ(·) : Hp(X; Q) −→ Hp(X; Q)

with respect to the basis αp,r (r = 1, · · · , Rp). Similarly, we have

γid =

n∑

p′=1

Rp∑

r′=1

Rp∑

s′=1

δs′,r′α
∨
n−p′,r′ × αp′,s′ .

Let ∼: X ×X −→ X ×X be the morphism defined by setting

∼ (x, x′) = (x′, x).

We have

∼∗ (γid) =

n∑

p′=1

Rp∑

r′=1

Rp∑

s′=1

(−1)p
′(n−p′)δs′,r′αp′,s′ × α

∨
n−p′,r′

and

∼∗ (γid) =∼∗ δ∗µX = δ∗µX = γid.

Therefore,

[∆] =

n∑

p′=1

Rp∑

r′=1

Rp∑

s′=1

(−1)p
′(n−p′)δs′,r′αp′,s′ × α

∨
n−p′,r′ .

Since

#
(
(α∨n−p,r × αp,s) · (αp′,s′ × α

∨
n−p′,r′)

)
= (−1)pp

′

(−1)p
′(n−p′δpp′δrs′δsr′

we see that

#(γ · [∆]) =

n∑

p=1

Rp∑

r=1

Rp∑

s=1

(−1)p
2

(Γp)srδsr =

n∑

p=1

(−1)p
2

tr Γp

and the conclusion follows since p2 ≡ p (mod 2).
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Corollary 2.1.6.

(a) Let f : X −→ X be a continuous map. Set Λf = Λγf
. Then,

#(γf · [∆]) = Λf =

n∑

p=0

(−1)p tr(f∗ : Hp(X; Q) −→ Hp(X; Q)).

In particular, Λf = 0 if f has no fixed point.

(b) For f = idX , we get

#([∆] · [∆]) = Λid =

n∑

p=0

(−1)p dimQ Hp(X; Q) = χ(X).

Exercise 2.1.7. Assume n ∈ N0. Let f : Sn −→ Sn be a continuous map.

Define the degree of f as the unique integer deg(f) making the diagram

Hn(Sn; Z)
f∗

// Hn(Sn; Z)

Z

O�·vSn

OO

·deg(f)
// Z

O� ·vSn

OO

commutative.

(a) Show that

Λf = 1 + (−1)n deg(f).

(b) Deduce from (a) that f has a fixed point if deg(f) 6= (−1)n+1.

(c) Apply (b) to show that if there is a homotopy connecting f to idSn

and n is even then f has a fixed point.

(d) As an application, show that any vector field θ of class C1 on Sn must

vanish at some x ∈ Sn if n is even.

Solution. (a) follows directly from the definition of deg(f) and the fact that

Hk(Sn; Z) =

{
Z if k = 0, n;

0 otherwise.

(b) Since Λf = 0 if and only if deg(f) = (−1)n+1, the conclusion follows

directly from Corollary 2.1.6.

(c) When f ∼ idSn
, we have f∗ = (idSn

)∗ = id. Hence, deg(f) = 1 and

the conclusion follows from (b).

(d) Let ϕt(x) be the flow of the vector field θ. From (c), we know that

ϕt has a fixed point xt ∈ Sn for any t ∈ R. Since Sn is compact, we may
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find a sequence tk −→ 0+ such that xtk −→ x0 ∈ Sn. Let t ∈ R and choose

the sequence mk of integers such that mktk −→ t. Clearly,

ϕt(x0) = lim
k−→∞

ϕmktk(xtk) = lim
k−→∞

xtk = x0.

It follows that ϕt(x0) = x0 for any t ∈ R and hence that θ(x0) = 0.

Exercise 2.1.8.

(a) Let X be a compact oriented manifold of dimension n. Show that

χ(X) = 0

if n is odd.

(b) Let X be a compact oriented C1 manifold. Show that if X has a

nowhere vanishing C1 vector field then χ(X) = 0.

Solution. (a) Set

Rp = dimHp(X; Q).

By Poincaré duality, we have Rp = Rn−p. Therefore, if n = 2k + 1 (k ∈ N)

we have

χ(X) =

n∑

p=0

(−1)pRp =

k∑

p=0

(−1)pRp +

2k+1∑

p=k+1

(−1)pRp

=
k∑

p=0

(−1)pRp +
k∑

p=0

(−1)n−pRn−p

= 0.

(b) Working as in Exercise 2.1.7, we see that χ(X) 6= 0 entails that any

C1-vector field on X vanish for some x ∈ X. The conclusion follows.

Corollary 2.1.9. Let X be a compact differential manifold of dimension

n.

(a) Assume C is a closed differential submanifold of dimension n of X×X

which meets ∆ transversally. Then C ∩∆ is finite and

Λ[C] =
∑

(x,x)∈C∩∆

i(x,x)(C,∆)

where i(x,x)(C,∆) is equal to 1 if the canonical orientation of

T(x,x)C ⊕ T(x,x)∆

coincides with that of T(x,x)(X ×X) and to −1 otherwise.
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(b) Assume f : X −→ X is a differentiable map with a non-empty set F of

fixed points. Assume that for any x ∈ F ,

f ′x : TxX −→ TxX

does not fix any non-zero tangent vector. Then, the set F is finite and

Λf =
∑

x∈F

sgn(det(id−f ′x)).

Proof. (a) Thanks to Theorem 2.1.5, the result follows directly from Propo-

sition 1.14.15.

(b) Clearly, (x, x) ∈ ∆f ∩ ∆ if and only if x ∈ F . Moreover, for any

x ∈ F , we have

T(x,x)∆f = {(θ, f ′x(θ)) : θ ∈ TxX}

and

T(x,x)∆ = {(θ, θ) : θ ∈ TxX}.

Hence, we have

T(x,x)∆f ∩ T(x,x)∆ = {(θ, θ) : θ ∈ TxX, f
′
x(θ) = 0}.

It follows that ∆f and ∆ meet transversally. If θ1, . . . , θn is an oriented

basis of TxX, then

(θ1, f
′
x(θ1)), . . . , (θn, f

′
x(θn))

and

(θ1, θ1), . . . , (θn, θn)

are oriented bases for T(x,x)∆f and T(x,x)∆. Therefore,

(θ1, f
′
x(θ1)), . . . , (θn, f

′
x(θn)), (θ1, θ1), . . . , (θn, θn)

is an oriented basis for T(x,x)∆f ⊕ T(x,x)∆. This basis has the same orien-

tation as the basis

(0, f ′x(θ1)− θ1), . . . , (0, f
′
x(θn) − θn), (θ1, θ1), . . . , (θn, θn).

Using the assumptions, we know that f ′x−id is injective and hence bijective.

It follows that

f ′x(θ1) − θ1, . . . , f
′
x(θn)− θn

is a basis of TxX. Hence,

(0, f ′x(θ1) − θ1), . . . , (0, f
′
x(θn)− θn), (θ1, 0), . . . , (θn, 0).

is an oriented basis for T(x,x)∆f ⊕ T(x,x)∆ and

i(x,x)(∆f ,∆) = (−1)n sgn(det(f ′x − id)) = sgn(det(id−f ′x)).

The conclusion follows from (a).
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2.2 Euler classes of manifolds and index theorem

Definition 2.2.1. The Euler class of an oriented topological manifold X

is the class

εX = δ∗τ∆/X×X

Proposition 2.2.2. For any oriented compact topological manifold, we

have

χ(X) =

∫

X

εX .

Proof. We know that

χ(X) = #([∆] · [∆]).

Therefore,

χ(X) = #((τ∆/X×X ^ τ∆/X×X ) _ µX×X )

=

∫

X×X

τ∆/X×X ^ τ∆/X×X =

∫

X×X

τ∆/X×X ^ δ!(1X)

=

∫

X×X

δ!(δ
∗τ∆/X×X ) =

∫

X

εX

2.3 Basic notions on real vector bundles

A (continuous) real vector bundle of rank r is the data of a continuous map

pE : E −→ BE

between topological spaces together with structures of real vector spaces of

dimr on each fiber Eb = p−1
E (b) (b ∈ B) of p. These data being such that

for any b ∈ B there is a neighborhood U of b in B and a family (e1, · · · , er)

of continuous sections of pE |p−1
E

(U) : p−1
E (U ) −→ U with the property that

(e1(b
′), · · · , er(b′)) is a basis of p−1

E (b′) for any b′ ∈ U . We call pE (resp.

E, BE) the projection (resp. the total space, the base) of the vector bundle.

A family like (e1, · · · , er) is called a (continuous) frame of the real vector

bundle over U . We will often refer to a vector bundle by giving its total

space alone assuming that the projection and the basis are clear from the

context.

Let E be a real vector bundle of rank r and let U be an open subset of its

base BE . Then, pE |p−1
E

(U) : p−1
E (U ) −→ U has clearly a canonical structure

of real vector bundle of rank r. We call it the restriction of E to U and

denote it by E|U .
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A morphism between two real vector bundles E, F with common base B

is a continuous map f : E −→ F such that pF ◦f = pE , the map fb : Eb −→ Fb
induced by f being R-linear for any b ∈ B. Clearly, morphisms of real

vector bundles may be composed and R-linearly combined in a natural way.

Hence, real vector bundles with base B form a category. We will denote it

by VectR(B). One sees easily that this category is additive, the direct sum

E ⊕F of two real vector bundles E and F with base B being characterized

by the fact that

(E ⊕ F )b = Eb ⊕ Fb,

a local frame of E ⊕ F being given by (e1, · · · , er, f1, · · · , fs) if (e1, · · · , er)

and (f1, · · · , fs) are local frames of E and F .

A trivial vector bundle is a vector bundle of the form

pB : V × B −→ B

where V is a real vector space. A vector bundle is trivializable if it is

isomorphic to a trivial vector bundle. By definition, any vector bundle is

locally of this type.

A sub-bundle of a vector bundle F with basis B is the data of a vector

bundle E with basis B together with a morphism i : E −→ F for which

ib : Eb −→ Fb is injective for any b ∈ B.

A quotient bundle of a vector bundle E with basis B is the data of a

vector bundle F with basis B together with a morphism q : E −→ F for

which qb : Eb −→ Fb is surjective for any b ∈ B.

Let i : E −→ F be a sub-bundle of F . Then, i has a cokernel in VectR(B)

characterized by the fact that

(Coker i)b = Coker ib,

a local frame of Coker i being obtained by considering a local frame of F of

the type (i(e1), · · · , i(er), fr+1, · · · , fs) with (e1, · · · , er) a local frame of E

and taking the images of fr+1, · · · , fs in Coker i. From this construction, it

follows that Coker i together with the canonical morphism F −→ Coker i is

a quotient bundle of F that one often denotes F/E when i is clear from the

context.

Let q : E −→ F be a quotient bundle of E. Then, q has a kernel in

VectR(B) characterized by the fact that

(Ker q)b = Ker qb,

a local frame of Ker i being obtained by considering a local frame of E of the

type (f1, · · · , fr , fr+1, · · · , fs) where (q(fr+1), · · · , q(fs)) is a local frame of
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F and viewing (f1, · · · , fr) as local sections of Ker q. Clearly, Ker i together

with the canonical morphism j : Ker i −→ E is a sub-bundle of E.

Note that if i : E −→ F (resp. q : E −→ F ) is a sub-bundle of F (resp. a

quotient bundle of E) then

E ' Ker(F −→ Coker i) (resp. F ' Coker(Ker q −→ E)).

Note also that when the base space B is paracompact, one can show,

using a partition of unity, that for any sub-vector bundle E of F one has

F ' E ⊕ F/E.

Finally, let us recall that the inverse image of vector bundle E of base

B by a continuous map f : B′ −→ B is the vector bundle f−1(E) with base

B′ characterized by the fact that

f−1(E)b′ = Ef(b′)

for any b′ ∈ B′, a frame of f−1(E) on f−1(U ) being given by (e1◦f, · · · , er ◦

f) where (e1, · · · , er) is a frame of E on U .

2.4 Orientation of real vector bundles

Let A be a noetherian ring with finite global homological dimension and let

E be a real vector bundle of rank r and base B.

Definition 2.4.1. The relative dualizing complex of B in E for sheaves of

A-modules is the complex

ωAB/E = (RΓBAE)|B.

Proposition 2.4.2.

(a) The canonical restriction morphism

Rp(RΓBAE) −→ (RΓBAE)|B

is an isomorphism. In particular,

RΓ(U ;ωAB/E) ' RΓU (p−1(U );A)

for any open subspace U of X.

(b) The canonical restriction morphism

(ωAB/E)b −→ RΓ{b}(Eb;A)

is an isomorphism. In particular, ωAB/E is concentrated in degree r.
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Proof. (a) One checks easily by working at the level of fibers that

p(ΓBF) −→ (ΓBF)|B

is an isomorphism for any flabby sheaf F on E. The first part follows. As

for the second part, it is a consequence of Leray theorem.

(b) The problem being local on B, we may assume E = Rr×B. Consider

the morphism of distinguished triangles

[Rp(RΓUARr×U )]b //

(1)
��

[Rp(ARr×U )]b //

(2)
��

[Rṗ(AĖ)]b
+1

//

(3)
��

RΓ{b}(R
r × {b};A) // RΓ(Rr × {b};A) // RΓ(Rr \ {0} × {b};A)

+1
//

We will prove that (2) and (3) are isomorphisms. This will show that (1) is

also an isomorphism and the conclusion will follow.

By simple homotopy arguments, one gets the isomorphisms

[Rp(ARr×U)]b ' A

and

RΓ(Rr × {b};A) ' A.

Since these isomorphisms transform (2) into the identity, (2) is also an

isomorphism.

Denote q : Sr−1 × U −→ U the second projection. Working as above one

sees that (3) will be an isomorphism if the canonical morphism

[Rq(ASr−1×U )]b −→ RΓ(Sr−1 × {b};A)

is an isomorphism. Since Sr−1 is compact, the fiber of q at b is compact

and relatively Haussdorf in Sr−1 × U . It is thus a taut subspace and the

conclusion follows from the fiber formula for Rq

Definition 2.4.3. The relative A-orientation sheaf of B in E is the sheaf

orAB/E = HrωAB/E

Proposition 2.4.4.

(a) We have

RΓ(U ; orAB/E ) ' RΓU (p−1(U );A)[r]

and in particular

Γ(U ; orAB/E ) ' Hr
U (p−1(U );A)
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(b) The canonical restriction morphism

[orAB/E ]b −→ Hr
{b}(Eb;A)

is an isomorphism.

(c) Any frame (e1, · · · , er) of E on U induces a canonical isomorphism

ψ(e1,··· ,er) : AU
∼
−→ (orAB/E )|U .

In particular, orAB/E is a locally constant sheaf with fiber A.

(d) Let (e1, · · · , er) and (e′1, · · · , e
′
r) be two frames of E on U . Set

e′i(u) =

r∑

s=1

Sji(u)ej(u)

for i = 1, · · · , r. Assume detS(u) ≷ 0 on U . Then,

ψ(e′1,··· ,e
′
r) = ±ψ(e1,··· ,er).

Proof. (a) It follows from part (b) of the preceding proposition that

ωAB/E ' orAB/E [−r].

Therefore,

RΓ(U ; orAB/E ) ' RΓ(U ;ωAB/E)[r]

and the conclusion follows from part (a) of preceding proposition.

(b) This follows directly from part (b) of the preceding proposition.

(c) Let (e1, · · · , er) be a frame of E on U . Consider the morphism

ϕ : Rr × U −→ p−1(U )

defined by setting

ϕ(x1, · · · , xr, u) =

r∑

j=1

xjej(u).

Clearly, ϕ is an isomorphism of real vector bundles. It follows that the

canonical morphism

ϕ∗ : orAU/p−1(U) −→ orAU/Rr×U (*)

is an isomorphism. By pull-back through the first projection, the canonical

generator

v{0} ∈ Hr
{0}(R

r;A)
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gives the canonical class

p∗Rrv{0} ∈ Hr
U (Rr × U ;A).

Thanks to the second isomorphism of (a), we get a canonical class

µU/Rr×U ∈ Γ(U ; orAU/Rr×U ).

This class induces a morphism

AU −→ orAU/Rr×U . (**)

which corresponds at the level of fibers to the isomorphism

A −→ Hr
{0}(R

r;A)

induced by v{0}. It follows that (**) is an isomorphism. By combining it

with (*), we get the conclusion.

(c) Consider the isomorphism

σ : Rr × U −→ Rr × U

defined by setting σ(x′, u) = (S(u)x′, u) and assume detS(u) > 0 (resp.

detS(u) < 0) on U . To conclude, it is sufficient to prove that the canonical

morphism

σ∗ : orAU/Rr×U −→ orAU/Rr×U

sends µU/Rr×U to itself (resp. minus itself). At the level of the fiber at u,

this amounts to show that the pull-back by the linear bijection

x′ 7→ S(u)x′

of v{0} is equal to itself (resp. minus itself). This follows from Exercise 1.8.8.

Definition 2.4.5. The vector bundle E is A-orientable if the sheaf orAB/E
is constant. An A-orientation of E is the data of an isomorphism

AB
∼
−→ orAB/E

or of the corresponding A-orientation class

µAB/E ∈ Γ(B; orAB/E ).

An orientation of the vector bundle E is the data of an orientation on

every fiber Eb (b ∈ B) in such a way that for any point b ∈ B there is a

neighborhood U and a frame (e1, · · · , er) of E on U with the property that

the basis (e1(b
′), · · · , er(b′)) is positively oriented in Eb′ for any b′ ∈ U . The

vector bundle E is orientable if it can be given an orientation.
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Proposition 2.4.6.

(a) Any vector bundle E is canonically Z2-oriented.

(b) A vector bundle E is Z-orientable if and only if it is orientable. More-

over, any Z-orientation of E corresponds to a canonically determined

orientation and vice-versa.

Proof. We use the notations of Proposition 2.4.4. Denote

µAU/e ∈ Γ(U ; orAB/E )

the section corresponding to the isomorphism ψe. Clearly,

µAU/e′ = ±µAU/e

if detS(u) ≷ 0 on U . Therefore, in case (a), we get µZ2

U/e′ = µZ2

U/e and there

is a unique class µZ2

B/E ∈ Γ(U ; orZ2

B/E ) such that µZ2

B/E |U
= µZ2

U/e for any

frame e of E on U .

To prove (b), let us proceed as follows. Assume E is Z-orientable and

let µB/E be a Z-orientation class of E. Let b ∈ B and let e be a frame of

E on a neighborhood U of b. The only generators of Z being 1 and −1, we

know that

(µB/E)b = ±(µU/e)b.

Hence, restricting U if necessary, we may assume that

µB/U |U = ±µU/e.

Changing the sign of one of the sections of e if necessary, we see that for

any b ∈ B there is a neighborhood U of b and a frame e of E on U such

that

µB/E |U = µU/e.

Choosing the orientations of the fibers Eb in order to make all these frames

positively oriented gives us a canonical orientation of E. The reverse pro-

cedure is similar.

2.5 Thom isomorphism and Gysin exact sequence

Definition 2.5.1. Let E be an A-oriented real vector bundle with base

B. The Thom class of E is the image of the orientation class µAB/E by the

canonical isomorphism

Γ(B; orAB/E ) ' Hr
B(E;A).

We denote it by τAE .
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Proposition 2.5.2 (Thom isomorphism). Let E be an A-oriented real

vector bundle with base B. Then,

Hk(B;AB) −→ Hk+r
B (E;AE)

ck 7→ τAE ∪ p
∗(ck)

is an isomorphism.

Proof. This follows directly from part (a) of Proposition 2.4.4.

Definition 2.5.3. The Euler class of an A-oriented vector bundle E with

base B is the class eAE ∈ Hr(B;AB) defined by setting eAE = (τ ′
A
E)|B where

τ ′
A
E is the image of τAE in Hr(E;AE).

Proposition 2.5.4. Let E be an A-oriented real vector bundle. Then, a

necessary condition for the existence of a nowhere vanishing section of E is

that

eAE = 0.

Proof. Set Ė = E \B and denote s0 : B −→ E the zero section of E. Assume

s : B −→ E is a nowhere vanishing section of E. Thanks to the homotopy

theorem, we know that

s∗ = s∗0.

It follows that eE = s∗0τ
′A
E = s∗τ ′

A
E . Using the inclusion s(B) ⊂ Ė, we see

that eE = s∗((τ ′
A
E)|Ė). Since τAE ∈ Hr

B(E;A), it is clear that (τ ′
A
E)|Ė = 0.

Hence, eAE = 0 and the conclusion follows.

Proposition 2.5.5 (Gysin exact sequence). For any A-oriented vector

bundle E with rank r and base B, there is a long exact sequence of the form

Hk−r(B;A)
eA

E^· // Hk(B;A)
ṗ∗

// Hk(Ė;A) -,*+
/.()

// Hk+1−r(B;A)
eA

E^·// Hk+1(B;A)
ṗ∗

// Hk+1(Ė;A)

(*)

Proof. Consider the excision distinguished triangle

RΓB(E;AE) −→ RΓ(E;AE) −→ RΓ(Ė;AĖ)
+1
−−→

Taking cohomology, we get the long exact sequence

Hk
B(E;AE) // Hk(E;AE) // Hk(Ė;AE) -,*+

/.()
// Hk+1
B (E;AE) // Hk+1(E;AE) // Hk+1(Ė;AE)

(**)
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We know by Proposition 2.5.2 that

τAE ^ · : Hk−r(B;AB) −→ Hk
B(E;AE)

is an isomorphism. Moreover, the homotopy theorem shows that

p∗ : Hk(B;AB) −→ Hk(E;AE)

is an isomorphism, its inverse isomorphism being

s∗0 : Hk(E;AE) −→ Hk(B;AB).

Using these isomorphisms, we transform easily (**) into (*).

Exercise 2.5.6. Let n ∈ N0. Consider the real projective space of dimen-

sion n

Pn(R) = {d : d line of Rn+1 through 0} ' (Rn+1 \ {0})/R∗

and the tautological real line bundle on Pn(R)

Un(R) = {(v, d) ∈ Rn+1 × Pn(R) : v ∈ d}

the projection p : Un(R) −→ Pn(R) being defined by p(v, d) = d. Show by

using a suitable Gysin exact sequence that the morphism of graded rings

Z2[X]/(Xn+1) −→ H·(Pn(R); Z2)

defined by sending X to eZ2

Un(R) ∈ H1(Pn(R); Z2) is an isomorphism.

Solution. For short, set e = eZ2

Un(R). Consider the Gysin exact sequence

Hk−1(Pn(R); Z2)
e^· // Hk(Pn(R); Z2)

ṗ∗
// Hk(U̇n(R); Z2) -,*+

/.()
// Hk(Pn(R); Z2)

e^·// Hk+1(Pn(R); Z2)
ṗ∗

// Hk+1(U̇n(R); Z2)

Clearly, the first projection U̇n(R) −→ Rn+1 \ {0} is a homeomorphism.

Hence, Hk(U̇n(R); Z2) ' Hk(Rn+1 \ {0}; Z2). Moreover, by homotopy, we

know that

Hk(Rn+1 \ {0}; Z2) ' Hk(Sn; Z2) '

{
Z2 if k = 0, n;

0 otherwise.

Assuming n > 1 and denoting q : Sn −→ Pn(R) the canonical map, we get

the exact sequences

0 −→ H
0
(Pn(R); Z2)

q∗

−−→ H
0
(Sn ; Z2) −→ H

0
(Pn(R); Z2)

e^·
−−−→ H

1
(Pn(R); Z2) −→ 0
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0 −→ H
n−1

(Pn(R); Z2)
e^·
−−−→ H

n
(Pn(R); Z2)

q∗

−−→ H
n
(Sn ; Z2)

α
−→ H

n
(Pn(R); Z2) −→ 0

and isomorphisms

Hk(Pn(R); Z2)
e^·
−−→ Hk+1(Pn(R); Z2)

for 1 ≤ k ≤ n− 1. We know that Pn(R) is a compact connected topological

manifold of dimension n. Therefore, H0(Pn(R); Z2) ' Z2 and

q∗ : H0(Pn(R); Z2) −→ H0(Sn; Z2)

is an isomorphism. Hence,

H0(Pn(R); Z2)
e^·
−−→ H1(Pn(R); Z2)

is an isomorphism. By Poincaré duality, we have

Hn(Pn(R); Z2) ' H0(Pn(R); Z2) ' Z2.

The morphism α being surjective is thus an isomorphism. It follows that

Hn−1(Pn(R); Z2)
e^·
−−→ Hn(Pn(R); Z2)

is also an isomorphism. Summing up, for n > 1, we have established that

Hk(Pn(R); Z2)
e^·
−−→ Hk+1(Pn(R); Z2)

is an isomorphism for k = 0, · · · , n−1. Since we have also H0(Pn(R); Z2) '

Z2 and Hk(Pn(R); Z2) ' 0 if k > n, the conclusion follows easily. The case

n = 1 is treated similarly.

2.6 Euler classes of inverse images and direct sums

Proposition 2.6.1. Let f : Y −→ X be a continuous map and let E be a

vector bundle on X. Then, there is a canonical isomorphism

f−1 orAX/E
∼
−→ orAY/f−1(E) .

In particular, any A-orientation of E on X induces an A-orientation of

f−1(E) on Y .

Proof. Consider the commutative diagram

f−1(E)
g

//

q
��

E
p

��

Y
f

// X
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where

g|f−1(E)y
: f−1(E)y −→ Ef(y)

is the canonical isomorphism, p and q being the projections of the vector

bundles E and f−1(E). Since g is continuous, it induces canonical pull-back

morphisms

RΓU (E|U ;AE) −→ RΓV (f−1(E)|V ;Af−1(E))

for any open subsets U , V of X, Y such that V ⊂ f−1(U ). Taking coho-

mology, we obtain in the same conditions a canonical morphism

Γ(U ; orAX/E) −→ Γ(V ; orAY/f−1(E)).

This gives us a morphism of sheaves of A-module

f−1 orAX/E −→ orAY/f−1(E) (*)

It remains to prove that this is an isomorphism. At the level of fibers, (*)

may be visualized through the commutative diagram

(orAX/E)f(y) //

�O
��

(orAY/f−1(E))y

�O
��

Hr
{f(y)}(Ef(y);A)

g∗
|f−1(E)y

// Hr
{y}(f

−1(E)y;A)

Since g|f−1(E)y
: f−1(E)y −→ Ef(y) is a homeomorphism, g∗|f−1(E)y

is an

isomorphism and the conclusion follows.

Remark 2.6.2. In the situation of the preceding proposition, assume E

is oriented. Then, it is canonically Z-oriented and we get a canonical Z-

orientation on f−1E. One checks easily that one can characterize the cor-

responding orientation by the fact that if e1, . . . , er is a positively oriented

frame of E on U then e1◦f, . . . , er ◦f is a positively oriented frame of f−1E

on f−1(U ).

Proposition 2.6.3. Let f : Y −→ X be a continuous map and let E be an

A-oriented vector bundle of rank r on X. Assume f−1(E) is endowed with

the A-orientation induced by that of E. Then,

eAf−1(E) = f∗eAE .

Proof. It follows from the proof of the preceding proposition that the image

by

g∗ : Hr
X(E;A) −→ Hr

Y (f−1(E);A)
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of τE is τf−1(E). Therefore, denoting s0,X and s0,Y the zero sections of E

and f−1(E), we have

eAf−1(E) = s∗0,Y τ
′A
f−1(E) = s∗0,Y g

∗τ ′
A
E

= f∗s∗0,Xτ
′A
E = f∗eAE .

Exercise 2.6.4. Let E be a real vector bundle of rank r onX with eZ2

E 6= 0.

Show that if E can be represented as an inverse image of a real vector bundle

on Sn, then n = r.

Solution. This follows directly from the preceding proposition and the fact

that

Hk(Sn; Z2) = 0

for k 6∈ {0, n}.

Proposition 2.6.5. Let E (resp. F ) be a vector bundle of rank r (resp. s)

on X. Then, there is a canonical isomorphism

orAX/E ⊗A orAX/F
∼
−→ orAX/E⊕F .

In particular, givenA-orientations forE and F , we can construct canonically

an A-orientation for E ⊕ F .

Proof. Denote pE : E⊕ F −→ E, pF : E⊕F −→ F the canonical projections.

For any open subset U of X, consider the pull-back morphisms

RΓU(E|U ;AE) −→ RΓp−1
E

(U)((E ⊕ F )|U ;AE⊕F )

RΓU (F|U ;AF ) −→ RΓp−1
F (U)((E ⊕ F )|U ;AE⊕F ).

Combining them with a cup product, we get a canonical morphism

RΓU(E|U ;AE) ⊗L
A

RΓU(F|U ;AF ) −→ RΓU((E ⊕ F )|U ;AE⊕F )

since p−1
E (U ) ∩ p−1

F (U ) is the zero section of (E ⊕ F )|U . This gives us a

canonical morphism

Γ(U ; orAX/E) ⊗A Γ(U ; orAX/F ) −→ Γ(U ; orAX/E⊕F )

and consequently a morphism of sheaves of A-modules

orAX/E ⊗A orAX/F −→ orAX/E⊕F .
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To prove that it is an isomorphism, we will work at the level of fibers. Using

the commutative diagram

(orAX/E)x ⊗A (orAX/F )x //

�O
��

(orAX/E⊕F )x

�O
��

Hr
{x}(Ex;A)⊗

A
Hs
{x}(Fx;A) // Hr+s

{x} (Ex ⊕ Fx;A)

we see that it is sufficient to establish that the second horizontal arrow is

an isomorphism. This follows directly from the commutative diagram

Hr
{x}(Ex;A)⊗

A
Hs
{x}(Fx;A) //

�O
��

Hr+s
{x} (Ex ⊕ Fx;A)

�O
��

Hr
c(Ex;A)⊗A Hs

c(Fx;A) // Hr+s
c (Ex ⊕ Fx;A)

and Künneth theorem. (There is no torsion problem since both Hr
c(Ex;A)

and Hs
c(Fx;A) are isomorphic to A.)

Remark 2.6.6. In the situation of the preceding proposition, assume E

and F are oriented. Then, the canonical Z-orientations of E and F induce a

canonical Z-orientation ofE⊕F . One checks easily that one can characterize

the corresponding orientation by the fact that if e1, . . . , er (resp. f1, . . . , fr)

is a positively oriented local frames of E (resp. F ) then

e1, . . . , er, f1, . . . , fr

is a positively oriented local frame of E ⊕ F .

Proposition 2.6.7. Let E and F be two A-oriented vector bundles of rank

r and s on X. Assume E ⊕ F is endowed with the A-orientation induced

by that of E and F . Then,

eAE⊕F = eAE ^ eAF .

Proof. It follows from the proof of the preceding proposition that

τAE⊕F = p∗Eτ
A
E ^ p∗F τ

A
F .

Therefore, denoting s0,E⊕F , s0,E and s0,F the zero sections of E ⊕ F , E

and F , we get

s∗0,E⊕F (τ ′
A
E⊕F ) = s∗0,E⊕F p

∗
Eτ

′A
E ^ s∗0,E⊕F p

∗
F τ

′A
F

= s∗0,Eτ
′A
E ^ s∗0,F τ

′A
F

= eAE ^ eAF .
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Exercise 2.6.8. Show that an oriented real vector bundle E on Sn with

eZ
E 6= 0 has no proper sub-bundle.

Solution. Let us proceed by contradiction. Assume F is a proper sub-bundle

of rank s of E. Denote G the quotient bundle E/F and t its rank. The

assumption on E combined with the cohomology table

Hk(Sn; Z) '

{
Z if k = 0, n

0 otherwise,

shows that the rank of E is n. It follows that 0 < s < n and 0 < t < n.

Since π1(Sn) ' 1, F and G are orientable. Moreover, we may choose their

orientations in such a way that

E ' F ⊕ G

as oriented real vector bundles. In this case, we have eZ
E = eZ

F ^ eZ
G.

Since both eZ
F and eZ

G are 0, we get eZ
E = 0 contrarily to what has been

assumed.

2.7 Euler classes of normal bundles

Proposition 2.7.1. Let X and Y be topological manifolds of dimension

dX and dY . Assume Y is a closed subspace of X and denote i : Y −→ X the

canonical inclusion. Then,

i−1RΓYAX ' i
!AX ' orAY ⊗Ai

−1(orAX)∨[dY − dX ].

Proof. We know that ωAX = orAX [dX ] and that ωAY = orAY [dY ]. Since ωAY =

i!ωAX, and since orAX is locally isomorphic to AX , the conclusion follows.

Definition 2.7.2. In the situation of the preceding proposition, we call

orAY/X = orAY ⊗Ai
−1(orAX )∨

the relative A-orientation sheaf of Y in X. A relative A-orientation of Y

in X is the datum of an isomorphism

AY
∼
−→ orAY/X .

The associated relative A-orientation class is the image

µAY/X ∈ H0(Y ; orAY/X)
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of 1Y by this isomorphism. The Thom class of a relative A-orientation of

Y in X is the class

τAY/X ∈ HdX−dY

Y (X;AX )

corresponding to µAY/X through the isomorphism of the preceding propo-

sition. The restriction of τAY/X to Y is called the Euler class eAY/X of the

relative A-orientation.

Remark 2.7.3. If, in the situation considered above, X and Y are both

oriented, then we have isomorphisms

ZX ' orX , ZY ' orY

and consequently an isomorphism

ZY ' orY/X .

We leave it to the reader to check that the Thom class of the corresponding

relative orientation of Y in X is

i!(1).

In particular, the preceding definition is compatible with Definition 1.14.14.

Proposition 2.7.4. Let Y be a closed differential submanifold of dimension

dY of the compact differential manifold X of dimension dX . Then, there is

a canonical isomorphism

orAY/X ' orAY/TYX
.

In particular, relative A-orientations of Y inX correspond to A-orientations

of the real vector bundle TYX −→ Y . Moreover, for corresponding orienta-

tions, we have

eAY/X = eATY X
.

Proof. Endow X with a Riemannian metric and identify TYX with the

orthogonal complement of TY in TX|Y . For any ε > 0, set Vε = {vy ∈

(TYX)y : |vy| < ε}. As is well-known, for ε sufficiently small, the map

ϕ : Vε −→ ϕ(Vε)

which sends vy ∈ Vε to expy(vy) ∈ X is a diffeomorphism such that ϕ(y) = y

for any y ∈ Y . It follows that

ϕ∗ : RΓY (Aϕ(Vε)) −→ RΓY (AVε
)
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is an isomorphism. Since

RΓY (Aϕ(Vε)) ' RΓY (AX ) ' orAY/X [dY − dX ]

and

RΓY (AVε
) ' RΓY (ATY X) ' orAY/TYX

[dY − dX ],

ϕ∗ induces an isomorphism

ψ : orAY/X
∼
−→ orAY/TYX

(*)

A priori, this isomorphism depends on the chosen Riemannian metric. How-

ever, since two such metrics are homotopic, it is not difficult to see that the

associated maps

ϕ0 : Vε0 −→ X , ϕ1 : Vε1 −→ X

become homotopic when restricted to an appropriate neighborhood V of Y

in TYX. One can even request that the homotopy h : V × [0, 1] −→ X is

such that h(y, t) = y for any y ∈ Y . It is then clear that the isomorphisms

ψ0 : orAY/X ' orATY X/Y
and ψ1 : orAY/X ' orATY X/Y

associated to ϕ0 and ϕ1 are equal. Moreover, by construction, for corre-

sponding A-orientations, we have

ϕ∗((τAY/X)|ϕ(Vε)) = (τATY X )|Vε
.

Hence,

eATY X
= [ϕ∗((τAY/X )|ϕ(Vε)]|Y = (τAY/X)|Y = eAY/X .

Remark 2.7.5. In the preceding proposition, assume X and Y oriented

and take A = Z. Thanks to Remark 2.7.3, there is a canonical relative

orientation of Y inX. By working locally, one checks easily that this relative

orientation corresponds to the orientation of TYX obtained by quotienting

the orientation of (TX)|Y by that of TY .

Corollary 2.7.6. Let X be a compact oriented differential manifold. Then,

εX = eTX .

In particular,

χ(X) =

∫

X

eTX .
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Proof. The orientation ofX induces canonical orientations on ∆ andX×X.

If we give T∆(X × X) its usual quotient orientation, Remark 2.7.5 and

Proposition 2.7.4 show that

e∆/X×X = eT∆(X×X).

Since the canonical isomorphism

TX
∼
−→ δ−1T∆(X ×X)

defined by sending θ ∈ TxX to the class of (0, θ) ∈ T(x,x)(X × X) modulo

T(x,x)∆ is compatible with the orientations, we get

eTX = δ∗eT∆(X×X).

The conclusion follows Definition 2.2.1.

Exercise 2.7.7. Show that the tangent bundle TSn to an even dimensional

sphere Sn has no proper sub-bundle.

Solution. Assume E has a proper sub-bundle. It follows from Exercise 2.6.8

that eZ
TSn

= 0 and hence that

χ(Sn) =

∫
eZ
TSn

= 0.

But for n even, we have χ(Sn) = 1 + (−1)n = 2 and we get a contradiction.

Exercise 2.7.8. Let p : E −→ X be an oriented differential real vector

bundle of rank r on an oriented manifold X of dimension n. Assume s :

X −→ E is a section of E transverse to the zero section which vanishes at

some points of X. Then,

Zs = {x ∈ X : s(x) = 0}

is a closed oriented differential submanifold of X of codimension r and the

image of

τZs/X ∈ Hr
Zs

(X; Z)

in Hr(X; Z) is the Euler class of E.

Solution. It follows from our assumptions that E has a canonical structure

of oriented differential manifold. Therefore, the zero section s0 : X −→ E of

E induces canonical morphisms

s0! : Hk(X; Z) −→ Hk+r
X (E; Z) (k ∈ Z).
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Since

s0!(c
k) = s0!(s

∗
0p
∗ck) = p∗ck ^ s0!(1)

and s0!(1) = τX/E = τE , these morphisms coincide with Thom isomor-

phisms. Therefore, we have only to show that

s0!(eE) = s0!(τZs/X ) = τZs/E .

Since

Ts(X)E ' (p−1E)|s(X)

as oriented vector bundles, we have

eE = s∗eTs(X)E = s∗τs(X)/E = s∗0τs(X)/E ;

the last equality coming from the fact that s0 and s are homotopic. There-

fore,

s0!(eE) = s0!s
∗
0(τs(X)/E)

= τs(X)/E ^ (s0!1)

= τs(X)/E ^ τX/E

and the conclusion follows from Proposition 1.14.15.



3

Characteristic classes of

real vector bundles

For the sake of simplicity, all the topological spaces in this chapter will be

implicitly assumed to be paracompact.

3.1 Stiefel-Whitney classes

Lemma 3.1.1 (Leray-Hirsch). Let f : X −→ Y be a proper map. Assume

the classes

g1 ∈ Hk1(X;A), · · · , gn ∈ Hkn(X;A)

are such that

g1|f−1(y), · · · , gn|f−1(y)

form a free family of generators of H·(f−1(y);A) as an A-module for any

y ∈ Y . Then,

g1, · · · , gn

form a free family of generators of H·(X;A) for the H·(Y ;A)-module struc-

ture given by the left action

(α, β) 7→ f∗(α) ^ β.

99
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Proof. Using the isomorphisms

RHomA(AY [−k], Rf(AX)) ' RHomA(f−1AY , AX)[k] ' RΓ(X;AX)[k]

we associate to g1, · · · , gn canonical morphisms

h1 : AY [−k1] −→ Rf(AX ), · · · , hn : AY [−kn] −→ Rf(AX ).

This gives us a morphism

h :

n⊕

j=1

AY [−kj] −→ Rf(AX ).

Its fiber at y ∈ Y is the morphism

hy :

n⊕

j=1

A[−kj] −→ [Rf(AX )]y ' RΓ(f−1(y);A)

associated to the cohomology classes g1|f−1(y), · · · , gn|f−1(y). Therefore, our

assumption ensures that h is an isomorphism. Applying RΓ(Y ; ·), we see

that h induces the isomorphism

n⊕

j=1

RΓ(Y ;AY )[−kj] −→ RΓ(Y ;Rf(AX)) ' RΓ(X;AX ).

It follows that the morphism of graded A-modules

n⊕

j=1

H·(Y ;AY )[−kj] −→ H·(X;AX )

(α1, · · · , αn) 7→ (p∗(α1) ^ g1 + · · ·+ p∗(αn) ^ gn)

is an isomorphism, hence the conclusion.

Let E be a vector bundle of rank r based on X. As usual, we define the

real projective bundle P (E) associated to E by setting

P (E) = {(d, x) : x ∈ X, d line of Ex trough 0x},

the projection π : P (E) −→ X being defined by setting

π(d, x) = x.

Of course, P (E) ' Ė/R∗ where the action of R∗ on Ė is defined fiberwise

using the real vector space structure of Ex (x ∈ X). As is well-known,P (E)
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has a canonical topology. For this topology, π is continuous and using local

frames of E, we see that for any x ∈ X there is a neighborhood U of x and

a commutative diagram of the form

π−1(U ) /o //

π ##GG
GG

G
Pr−1(R)× U

pUxxqqqqqq

U

(*)

In particular, π is proper and its fibers are homeomorphic to Pr−1(R). Recall

that

E ×X P (E) = {(e, (d, x)) : p(e) = x}

and denote U (E) the subset of E ×X P (E) defined by

U (E) = {(e, (d, x)) : p(e) = x, e ∈ d}.

One checks easily that the second projection

pP (E) : U (E) −→ P (E)

turns U (E) into a line bundle with base P (E). By construction, a homeo-

morphism

π−1(U ) ' Pr−1(R)× U

of the type (*) transforms U (E)|π−1 (U) into a line bundle isomorphic to

p−1
Pr−1(R)Ur−1(R).

Proposition 3.1.2. Let E be a vector bundle of rank r on X. Set

ξ = eZ2

U(E) ∈ H1(P (E); Z2).

Then,

1, ξ, · · · , ξr−1

form a free family of generators of H·(P (E); Z2) as an H·(X; Z2)-module.

In other words, any β ∈ H·(P (E); Z2) may be written in a unique way as

β = π∗α0 + π∗α1 ^ ξ + · · ·+ π∗αr−1 ^ ξr−1

with α0, · · · , αr−1 ∈ H·(X; Z2).

Proof. We know from Exercise 2.5.6 that the morphism

Z2[X]/(Xr) −→ H·(Pr−1(R); Z2)



102 3. Characteristic classes of real vector bundles

which sends X to e = eZ2

Ur−1(R) is an isomorphism. It follows that

1, e, · · · , er−1

is a free family of generators of H·(Pr−1(R); Z2) as a Z2-module. Since

ξ|π−1(x) corresponds to e through the canonical isomorphism

U (E)|p−1
P (E)

(x) ' Ur−1(R),

we see that

1, ξ|π−1(x), · · · , ξ
r−1
|π−1(x)

form a free family of generators of H·(π−1(x); Z2) for any x ∈ X and the

conclusion follows from Lemma 3.1.1.

Definition 3.1.3. Let E be a vector bundle of rank r based on the space

X. Using the preceding proposition, we define the Stiefel-Whitney classes

w1(E), · · · , wr(E) of E by the formula

ξr = π∗(wr(E)) + π∗(wr−1(E)) ^ ξ + · · ·+ π∗(w1(E)) ^ ξr−1.

We also set w0(E) = 1 and wk(E) = 0 for k > r. By construction,

wk(E) ∈ Hk(X; Z2)

for any k ∈ N. We also define the total Stiefel-Whitney class w(E) of E by

the formula

w(E) = w0(E) + · · ·+ wr(E) ∈ H·(X; Z2).

Proposition 3.1.4. Let f : Y −→ X be a morphism of topological spaces.

Assume E is a vector bundle of rank r on X. Then,

w(f−1(E)) = f∗w(E).

Proof. Consider the canonical diagram

f−1(E)
g

//

q
��

E
p

��

Y
f

// X

Define P (g) : P (f−1(E)) −→ P (E) as the map

(d, y) 7→ (g(d), f(y))
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and U (g) : U (f−1(E)) −→ U (E) as the map

(e, (d, y)) 7→ (g(e), (g(d), f(y))).

We get the commutative diagram

U (f−1(E))
U(g)

//

��

U (E)

��

P (f−1(E))
P (g)

//

$
��

P (E)

π
��

Y
f

// X

Since g|f−1(E)y
: f−1(E)y −→ Ef(y) is an isomorphism, so is

U (g)|U(f−1(E))(d,y)
: U (f−1(E))(d,y) −→ U (E)(g(d),f(y)).

It follows that U (f−1(E)) ' P (g)−1U (E) and hence that

ξf−1(E) = eZ2

U(f−1(E)) = P (g)∗eZ2

U(E) = P (g)∗ξE .

Applying P (g)∗ to the relation

ξrE = π∗(wr(E)) + π∗(wr−1(E)) ^ ξE + · · ·+ π∗(w1(E)) ^ ξr−1
E ,

we get

ξrf−1(E)

= $∗f∗(wr(E)) +$∗f∗(wr−1(E)) ^ ξf−1(E) + · · ·

+$∗f∗(w1(E)) ^ ξr−1
f−1(E)

and the conclusion follows from the definition of the Stiefel-Whitney classes

of f−1(E).

Proposition 3.1.5. Let E, F be vector bundles of rank r and s on the

topological space X. Then,

w(E ⊕ F ) = w(E) ^ w(F ).

Proof. Consider the map

i : E −→ E ⊕ F

defined at the level of fibers by setting

i(ex) = (ex, 0)
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and denote j : P (E) −→ P (E ⊕ F ) the map induced by i. Consider also the

map

p : E ⊕ F −→ F

defined at the level of fibers by setting

px(ex, fx) = fx

and denote

q : P (E ⊕ F ) \ j(P (E)) −→ P (F )

the map induced by p. Finally, denote

ρ : P (E ⊕ F ) \ j(P (E)) −→ P (E ⊕ F )

the inclusion map. One checks easily that

j−1U (E ⊕ F ) ' U (E)

and that

ρ−1U (E ⊕ F ) ' q−1U (F ).

Set

α =

r∑

k=0

π∗E⊕F (wk(E))ξr−kE⊕F

and

β =

s∑

l=0

π∗E⊕F (wl(F ))ξs−lE⊕F .

Clearly, we have

j∗α =

r∑

k=0

j∗π∗E⊕F (wk(E))j∗ξr−kE⊕F

=

r∑

k=0

π∗E(wk(E))ξr−kE

= 0

and

ρ∗β =

s∑

l=0

ρ∗π∗E⊕F (wl(F ))ρ∗ξs−lE⊕F

=

s∑

l=0

q∗π∗F (wl(F ))q∗ξs−lF

= q∗

(
s∑

l=0

π∗F (wl(F ))ξs−lF

)

= 0.
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From the second relation, it follows that β = σ(γ) where

σ : H·j(P (E))(P (E ⊕ F ); Z2) −→ H·(P (E ⊕ F ); Z2)

is the canonical morphism. Using the fact that for

^: H·(j(P (E)); Z2)⊗H·j(P (E))(P (E ⊕ F ); Z2) −→ H·j(P (E))(P (E ⊕ F ); Z2)

we have

α ^ σ(γ) = σ(j∗α ^ γ),

we see that

α ^ β = 0

in H·(P (E ⊕ F ); Z2). It follows that

r∑

k=0

s∑

l=0

π∗E⊕F (wk(E) ^ wl(F ))ξr+s−k−lE⊕F = 0

and hence that

r+s∑

n=0

π∗E⊕F

(
n∑

k=0

wk(E) ^ wn−k(F )

)
ξr+s−nE⊕F = 0.

This shows that

ξr+sE⊕F =

r+s∑

n=1

π∗E⊕F ([w(E) ^ w(F )]n) ξ
r+s−n
E⊕F

and the conclusion follows.

Exercise 3.1.6. Let E be a vector bundle of rank r on the topological space

X. Show that a necessary condition for E to have a trivial sub-bundle of

rank s is that

wr(E) = · · · = wr−s+1(E) = 0.

In particular, a necessary condition for E to be trivial is that

w(E) = 1.

Solution. Assume first that E is trivial. It follows that

E ' Rr ×X ' a−1
X (Rr)

where aX : X −→ {pt} is the canonical map. Hence,

w(E) = a∗Xw(Rr) = a∗Xw0(R
r) = 1.
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Assume now that E has a trivial sub-bundle T of rank s. From the isomor-

phism

E ' T ⊕ E/T

we deduce that

w(E) = w(T ) ^ w(E/T ) = w(E/T ).

Since E/T has rank r − s, the conclusion follows.

3.2 Splitting principle and consequences

Proposition 3.2.1 (Splitting principle). Let E be a real vector bundle

of rank r on the space X. Then, there is a proper map

f : Y −→ X

for which the canonical map

f∗ : H·(X; Z2) −→ H·(Y ; Z2)

is injective and such that

f−1(E) ' L1 ⊕ · · · ⊕ Lr

with L1, · · · , Lr real line bundles on Y .

Proof. Let us proceed by induction on r. For r = 1, the result is obvious.

Assume it is true for r − 1 and let us prove it for r. We know that

π : P (E) −→ X

is a proper map for which

π∗ : H·(X; Z2) −→ H·(P (E); Z2)

is injective. Using the canonical inclusion

U (E) −→ E ×X P (E) ' π−1(E)

we see that U (E) is a sub-bundle of π−1(E). Setting F = π−1(E)/U (E),

we get the isomorphism

π−1E ' U (E) ⊕ F.

By the induction hypothesis, there is a proper map

g : Y −→ P (E)
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for which

g∗ : H·(P (E); Z2) −→ H·(Y ; Z2)

is injective and such that

g−1(F ) ' L1 ⊕ · · · ⊕ Lr−1

with L1, · · · , Lr line bundles on Y . Setting f = π ◦ g and Lr = g−1(U (E))

allows us to conclude.

Remark 3.2.2. As shown hereafter, the preceding result allows us to reduce

the proof of formulas concerning Stiefel-Whitney classes of vector bundles

to the case of line bundles.

Proposition 3.2.3. Let E be a vector bundle of rank r on X. Then,

wr(E) = eZ2

E

in Hr(X; Z2).

Proof. By the preceding proposition, we may assume that there is a proper

map

f : Y −→ X

with

f∗ : H·(X; Z2) −→ H·(Y ; Z2)

injective and such that

f−1(E) = L1 ⊕ · · · ⊕ Lr.

For such a map, we have

f∗(w(E)) = w(f−1(E)) = w(L1) ^ · · ·^ w(Lr).

Moreover, w(Lk) = 1 + w1(Lk), hence

f∗(wr(E)) = w1(L1) ^ · · ·^ w1(Lr).

Since

f∗(eE) = eZ2

f−1(E) = eZ2

L1
^ · · ·^ eZ2

Lr

the proof is reduced to the case where r = 1. When E is a line bundle,

π : P (E) −→ X is a homeomorphism and π−1E ' U (E). It follows that

ξE = π∗eE . By the definition of Stiefel-Whitney classes, this shows that

w1(E) = eE , hence the conclusion.
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Remark 3.2.4 (Symmetric Polynomials). Let A be a ring with unit.

Recall that the elementary symmetric polynomials of A[X1, · · · , Xn] are the

polynomials Sn,1, · · · , Sn,n characterized by the fact that

(X −X1) · · · (X −Xn) =

n∑

k=0

(−1)kSn,k(X1, · · · , Xn)X
n−k

in A[X1, · · · , Xn, X]. In particular, Sn,1 = X1 + · · · + Xn and Sn,n =

X1 · · ·Xn. Recall also that any symmetric polynomial P of degree r of

A[X1, · · · , Xn] may be written in a unique way as Q(Sn,1, · · · , Sn,n) with

Q in A[X1, · · · , Xn]. An algorithm to find Q by induction on n and on the

degree of P is the following:

(a) Write P (X1, · · · , Xn−1, 0) as Q1(Sn−1,1, · · · , Sn−1,n−1).

(b) Find the polynomial R1(X1, · · · , Xn) such that

P (X1, · · · , Xn)− Q1(Sn,1, · · · , Sn,n−1) = Sn,nR1(X1, · · · , Xn).

(c) Express R1(X1, · · · , Xn) as Q2(Sn,1, · · · , Sn,n).

(d) Write P as

Q1(Sn,1, · · · , Sn,n−1) + Sn,nQ2(Sn,1, · · · , Sn,n).

Exercise 3.2.5. Write

P (X1, X2, X3) = X1X
2
3 +X1X

2
2 +X2X

2
1 +X2X

2
3 +X3X

2
1 +X3X

2
2

as a polynomial in S3,1 = X1 +X2 +X3, S3,2 = X1X2 +X1X3 +X2X3 and

S3,3 = X1X2X3.

Solution. Consider the polynomial

X1X
2
2 +X2X

2
1 .

Clearly,

X1X
2
2 +X2X

2
1 = X1X2(X1 +X2) = S2,1S2,2.

We have

P − S3,1S3,2 = P − (X1 +X2 +X3)(X1X2 +X1X3 +X2X3)

= P −X2
1X2 −X

2
1X3 −X1X2X3 −X1X

2
2 −X1X2X3

−X2
2X3 −X1X2X3 −X1X

2
3 −X2X

2
3

= −3X1X2X3 = −3S3,3.
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Therefore,

P = S3,1S3,2 − 3S3,3.

Proposition 3.2.6. Let P be a symmetric polynomial of Z2[Z1, · · · , Zr].

Then, to any vector bundle E on X of rank r is canonically associated a

class

wP (E) ∈ H·(X; Z2).

This class is characterized by the fact that

(a)

wP (f−1(E)) = f∗wP (E)

for any continuous map f : Y −→ X;

(b)

wP (E) = P (eZ2

L1
, · · · , eZ2

Lr
)

if E = L1 ⊕ · · · ⊕ Lr with L1, · · · , Lr line bundles.

Proof. Write

P (Z1, · · · , Zr) = Q(Sr,1, · · · , Sr,r)

where Q ∈ Z2[Z1, · · · , Zr] and Sr,1, · · · , Sr,r are the elementary symmetric

polynomials in r unknowns. Set

wP (E) = Q(w1(E), · · · , wr(E)).

Clearly, if f : Y −→ X is a continuous map, we have

f∗wP (E) = f∗Q(w1(E), · · · , wr(E))

= Q(w1(f
−1(E)), · · · , wr(f

−1(E)))

= wP (f−1(E)).

Moreover, if E = L1 ⊕ · · · ⊕ Lr with L1, · · · , Lr line bundles, we get

w(E) = (1 + ξ1) · · · (1 + ξr)

with ξ1 = eZ2

L1
, · · · , ξr = eZ2

Lr
. It follows that

w(E) = 1 + Sr,1(ξ1, · · · , ξr) + · · ·+ Sr,r(ξ1, · · · , ξr)

and hence that

wk(E) = Sr,k(ξ1, · · · , ξr).
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Therefore,

wP (E) = Q(w1(E), · · · , wr(E))

= Q(Sr,1(ξ1, · · · , ξr), · · · , Sr,r(ξ1, · · · , ξr))

= P (ξ1, · · · , ξr).

The fact that these two properties characterize wP (·) uniquely follows from

the splitting principle.

Definition 3.2.7. Let E −→ B, F −→ B be two real vector bundles of rank

r and s. Recall that E⊗F denotes the real vector bundle of rank rs defined

by setting

E ⊗F = Eb ⊗Fb

the frame of E⊗F on U associated to a frame e1, · · · , er of E|U and a frame

f1, · · · , fs of F|U being given by the sections

ei ⊗ fj (i ∈ {1, . . .r}, j ∈ {1, . . . s}).

Proposition 3.2.8. Let p1 : L1 −→ B and p2 : L2 −→ B be two real line

bundles. Then,

eZ2

L1⊗L2
= eZ2

L1
+ eZ2

L2
.

Proof. Denote µ : L1 ⊕ L2 −→ L1 ⊗L2 the continuous map defined at the

level of fibers by setting

µb(e1, e2) = e1 ⊗ e2

and denote q1 : L1 ⊕ L2 −→ L1, q2 : L1 ⊕ L2 −→ L2 the two projections. By

homotopy, we have

RΓL1(L1 ⊕ L2; Z2) ' RΓB(L2; Z2)

and

RΓL2(L1 ⊕ L2; Z2) ' RΓB(L1; Z2).

Hence, we deduce from the Mayer-Vietoris distinguished triangle

RΓL1∩L2
(L1 ⊕ L2; Z2) −→ RΓL1

(L1 ⊕ L2; Z2) ⊕ RΓL2
(L1 ⊕ L2; Z2) −→ RΓL1∪L2

(L1 ⊕ L2; Z2)
+1
−−−→

a canonical morphism

H1
B(L1; Z2) ⊕ H1

B(L2; Z2) −→ H1
L1∪L2

(L1 ⊕ L2; Z2). (*)

Since µ−1(B) = L1 ∪ L2, we also have an isomorphism

RΓL1∪L2(L1 ⊕ L2; Z2) ' RΓB(Rµ(Z2))
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and hence a morphism

H1
B(L1 ⊗L2; Z2) −→ H1

L1∪L2
(L1 ⊕ L2; Z2). (**)

Let us prove that the image of the Thom class of L1 ⊗ L2 by (**) is the

image of the Thom classes of L1 and L2 by (*). This will give the result

thanks to the commutative diagrams

H1(B; Z2)
1 // H1(B; Z2)

H1(L1 ⊗L2; Z2)

|B
OO

µ∗
// H1(L1 ⊕ L2; Z2)

|B
OO

H1
B(L1 ⊗L2; Z2)

OO

µ∗
// H1

L1∪L2
(L1 ⊕ L2; Z2)

OO

and

H1(B; Z2)⊕ H1(B; Z2)
( 1 1 )

// H1(B; Z2)

H1(L1; Z2)⊕ H1(L2; Z2)

|B
OO

( q∗1 q∗2 )
// H1(L1 ⊕ L2; Z2)

|B
OO

H1
B(L1; Z2)⊕ H1

B(L2; Z2)

OO

( q∗1 q∗2 )
// H1
L1∪L2

(L1 ⊕ L2; Z2)

OO

First, note that it follows from Thom isomorphism that

U 7→ H1
U (L1|U ; Z2); U 7→ H1

U(L2|U ; Z2)

are sheaves on B. Moreover, note also that since

H0
L1|U∪L2 |U

(L1|U ⊕ L2|U ; Z2) = 0

for any open subset U of B,

U 7→ H1
L1 |U∪L2|U

(L1|U ⊕ L2|U ; Z2)

is also a sheaf on B. From these remarks, it follows that our problem is of

local nature and it is sufficient to work at the level of fibers and to show

that the image of the appropriate Thom classes by canonical maps

H1
{b}((L1)b; Z2)⊕ H1

{b}((L2)b; Z2) −→ H1
(L1)b∪(L2)b

((L1)b ⊕ (L2)b; Z2)

and

H1
{b}((L1)b ⊗ (L2)b; Z2) −→ H1

(L1)b∪(L2)b
((L1)b ⊕ (L2)b; Z2)
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corresponding to (*) and (**) are equal. Denote µ : R2 −→ R the multipli-

cation, τ the generator of H1
{0}(R; Z2) and q1, q2 the two projections from

R2 to R. Using local frames for L1 and L2, we are reduced to show that

µ∗(τ ) = q∗1(τ ) + q∗2(τ ) (***)

in H1
(R×{0})∪({0}×R)(R

2; Z2). We know that τ is the image of χ]0,+∞[ by the

canonical map

H0
R\{0}(R; Z2) −→ H1

{0}(R; Z2).

It follows that µ∗(τ ) (resp. q∗1(τ ), q
∗
2(τ )) is the image of χQ1 + χQ3 (resp.

χQ1 + χQ4 , χQ1 + χQ2 ) by the canonical map

H0
R2\(R×{0})∪({0}×R)(R

2; Z2) −→ H1
(R×{0})∪({0}×R)(R

2; Z2).

Here, Q1, · · · , Q4 are the open quarter planes defined in the following figure

Q1Q2

Q3 Q4

To establish (***), it is sufficient to note that

χQ1 + χQ4 + χQ1 + χQ2 = χQ2 + χQ4 = χQ1 + χQ3 + χR2

modulo 2.

Corollary 3.2.9. Let E be the a real vector bundle of rank r on B. Denote

Det(E) the determinant bundle associated to E. Then,

w1(E) = eZ2

DetE .

Proof. Thanks to the splitting principle, we may assume that

E ' L1 ⊕ . . .⊕ Lr

where L1, . . . , Lr are real line bundles on B. Denote ξ1, . . . , ξr their Euler

classes modulo 2. Since

w(E) = w(L1) . . .w(Lr) = (1 + ξ1) . . . (1 + ξn),
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we see that

w1(E) = ξ1 + · · ·+ ξn.

Since moreover

Det(E) ' Det(L1)⊗ . . .⊗Det(Lr) ' L1 ⊗ . . .⊗Lr ,

the preceding proposition shows that

eZ2

Det(E) = eZ2

L1
+ · · ·+ eZ2

Lr

and the conclusion follows.

Lemma 3.2.10. For any r, s ∈ N0 there is a unique polynomial

Tr,s ∈ Z[U1, . . . , Ur, V1, . . .Vs]

such that

r∏

i=1

s∏

j=1

(1 +Xi + Yj) = Tr,s(Sr,1(X), . . . , Sr,r(X), Ss,1(Y ), . . . , Ss,s(Y ).

Proof. This follows directly from the fact that

r∏

i=1

s∏

j=1

(1 +Xi + Yj)

is symmetric in the X and Y variables.

Exercise 3.2.11. Compute T1,s and T2,2 explicitly.

Solution. Since

(1 +X1 + Y1) . . . (1 +X1 + Ys) =

s∑

k=0

(1 +X1)
kSs,k(Y1, . . . , Ys)

and

(1 +X1)
k =

k∑

l=0

C lkX
l
1,

we see directly that

T1,s(U, V ) =

s∑

k=0

k∑

l=0

C lkU
l
1Vk.
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The computation of T2,2 is also easy but more tedious. The final answer is

1 + 2U1 + 2U2 + 2V1 + 2V2

+ U
2

1 + 2U1U2 + U
2

2 + 3U1V1 + 2U2V1 + 2U1V2 − 2U2V2 + V
2

1 + 2V1V2 + V
2

2

+ U
2

1 V1 + U1U2V1 + U
2

1 V2 + U1V1V2 + U1V
2

1 + U2V
2

1

Proposition 3.2.12. Assume E (resp. F ) is a real vector bundle of rank

r (resp. s) on B. Then,

w(E ⊗F ) = Tr,s(w1(E), . . . , wr(E), w1(F ), . . . , ws(F )).

Proof. Thanks to the splitting principle, we may assume that

E ' L1 ⊕ . . .⊕ Lr and F ' N1 ⊕ . . .⊕ Ns

where L1, . . . , Lr and N1, . . . , Ns are real line bundles on X. Denote ξ1,

. . . , ξr and η1, . . . , ηs their Euler classes modulo 2. Since

E ⊗F '
r⊕

i=1

s⊕

j=1

Li ⊗Nj ,

we have

w(E ⊕ F ) =

r∏

i=1

s∏

j=1

w(Li ⊗Nj).

Hence, using Proposition 3.2.8, we get

w(E ⊕ F ) =

r∏

i=1

s∏

j=1

(1 + ξi + ηj)

and the conclusion follows from the preceding lemma.

Exercise 3.2.13. Let E and F be real plane bundles on B. Show that

w1(E ⊗F ) = 0

w2(E ⊗F ) = w1(E)2 + w1(E)w1(F ) + w1(F )2

w3(E ⊗F ) = w1(E)2w1(F ) + w1(E)w1(F )2

w4(E ⊗F ) = w2(E)2 + w1(E)w2(E)w1(F ) + w1(E)2w2(F )

+ w1(E)w1(F )w2(F ) + w2(F )2 + w2(E)w1(F )2

Solution. This follows by reducing modulo 2 the polynomial T2,2 computed

in Exercise 3.2.11.
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Definition 3.2.14. Let E −→ B, F −→ B be two real vector bundles of rank

r and s. Recall that Hom(E,F ) denotes the real vector bundle of rank rs

defined by setting

Hom(E,F ) = Hom(Eb, Fb)

the local frame of Hom(E,F ) on U associated to a frame e1, · · · , er of E|U
and a frame f1, · · · , fs of F|U being given by the morphisms

hij : E|U −→ F|U

characterized by the fact that

hji(ek) =

{
0 if k 6= i

fj if k = i

If F is the trivial bundle R × B −→ B, then Hom(E,F ) is simply denoted

E∗ and is called the dual of E. In particular, the local frame of E∗ on U

associated to a frame e1, · · · , er of E|U is the family of sections e∗1, · · · , e
∗
r

of E∗ on U characterized by the relations

〈
e∗j , ei

〉
= δji.

Remark 3.2.15. One checks easily that the canonical morphisms

E∗ ⊗F −→ Hom(E,F )

is an isomorphism. So, if we know the Stiefel-Whitney classes of E∗ and F ,

we can compute that of Hom(E,F ).

Proposition 3.2.16. For any real vector bundle E with base B and rank

r, there is a (non-canonical) isomorphism

E∗ ' E.

In particular,

w(E∗) = w(E).

Proof. Using a partition of unity, one can construct easily on each fiber Ex
an euclidean scalar product (·, ·)b in such a way that

b 7→ (ej , ek)b

is a continuous function on U if (e1, · · · , er) is a local frame of E on U .

Using these scalar products, we obtain the requested isomorphism

ϕ : E −→ E∗

by setting ϕb(e) = (e, ·)b for any b ∈ B and any e ∈ Eb.
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Exercise 3.2.17.

(a) Show that

TPn(R) ' Hom(Un(R),Un(R)⊥)

where Un(R)⊥b is the orthogonal complement of Un(R)b in Rn+1 for

any b ∈ Pn(R).

(b) Deduce from (a) that

w(TPn(R)) =
(
1 + eZ2

Un(R)

)n+1

.

(c) Prove that

w(TPn(R)) = 1

if and only if n = 2r − 1 (r ∈ N0). As a consequence, show that if

n+ 1 is not a power of 2 then Pn(R) is not parallelizable.

Solution. (a) Let d ∈ Pn(R). By definition, d is a line of Rn+1 containing

the origin. Denote

q : Rn+1 \ {0} −→ Pn(R)

the canonical map and let v ∈ Rn+1 \ {0} be such that q(v) = d. Clearly,

the linear map

Tvq : Rn+1 −→ TdPn(R)

has d as kernel. Hence,

Tvq|d⊥ : d⊥ −→ TdPn(R)

is an isomorphism. Moreover, since

Hom(Un(R),Un(R)⊥)d = Hom(Un(R)d,Un(R)⊥d )

' Hom(d, d⊥)

v induces a canonical isomorphism

εv : Hom(Un(R),Un(R)⊥)d −→ d⊥.

This isomorphism sends h : d −→ d⊥ to h(v). By composition, we get the

isomorphism

Tvq ◦ εv : Hom(Un(R),Un(R)⊥)d −→ TdPn(R). (*)

Since

q(λv) = q(v)
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for λ 6= 0, the chain rule shows that

T qλv(λ · θ) = T qv (θ)

for any θ ∈ Rn+1. Therefore, (*) does not depend on v and we get a

canonical isomorphism

Hom(Un(R),Un(R)⊥)d ' Td(Pn(R)).

One checks easily that it extends to the requested isomorphism of vector

bundles.

(b) Since

Un(R) ⊕ Un(R)⊥ = Rn+1 × Pn(R)

we see that

Hom(Un(R),Un(R))⊕ Hom(Un(R),Un(R)⊥)

' Hom(Un(R),Rn+1 × Pn(R))

and therefore that

(R × Pn(R)) ⊕ TPn(R) ' [Un(R)∗]
⊕n+1

.

It follows that

1 ^ w(TPn(R)) = w(Un(R))n+1,

hence the conclusion.

(c) Assume n = 2r − 1 with r ∈ N. It follows that

w(TPn(R)) =
(
1 + eZ2

Un(R)

)2r

= 1 +
[
eZ2

Un(R)

]2r

since we work modulo 2. But 2r = n+ 1 > dimPn(R) and we get

w(TPn(R)) = 1.

Assume now n is not of the preceding type. Then, n = 2rm− 1 where m is

an odd number which is strictly greater than 1. In this case 2r ≤ n and

w(TPn(R)) =

(
1 +

(
eZ2

Un(R)

)2r)m

= 1 +m
(
eZ2

Un(R)

)2r

+ · · ·

Since m 6≡ 0 (mod 2) and 2r ≤ dimPn(R), it follows that w(TPn(R)) 6= 1.

To conclude, it remains to note that if Pn(R) is parallelizable then TPn(R)

is trivializable and we have w(TPn(R)) = 1.
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Exercise 3.2.18.

(a) Show that if a manifold M of dimension m can be immersed in Rm+s

then the components of degree k > s of w−1(TM ) vanish.

(b) Deduce from (a) that P2r (R) cannot be immersed in R2r+s with s <

2r − 1.

Solution. (a) Let i : M −→ Rm+s be an immersion. Consider the associated

exact sequence of bundles

0 −→ TM −→ i−1TRm+s −→ TMRm+s −→ 0.

Clearly,

1 = w(i−1TRm+1) = w(TM )w(TMRm+s).

It follows that w(TMRm+s) = w−1(TM ) and since TMRm+s has rank s, the

conclusion follows.

(b) For n = 2r , setting e = eZ2

Un(R), we have

w(TPn(R)) = (1 + e)2
r+1.

Therefore,

w−1(TPn(R)) = (1 + e + e2 + · · ·+ en)2
r+1.

Using the fact that (a + b)2 = a2 + b2 in H·(Pn(R); Z2), we get

w−1(TPn(R)) = (1 + e+ e2 + · · ·+ en)(1 + e2
r

)

= 1 + e + e2 + · · ·+ en−1

and the conclusion follows.

3.3 Homotopical classification of real vector bundles

Definition 3.3.1. Hereafter, we denote Gn,r the Grassmannian formed by

real vector subspaces of dimension r of Rn.

Proposition 3.3.2. The Grassmannian Gn,r has a canonical structure of

compact topological manifold of dimension r(n− r).

Proof. Denote Vn,r the subset of (Rn)r formed by the sequences (v1, · · · , vr)

which are linearly independent. Since (v1, · · · , vr) ∈ Vn,r if and only if there

is i1, · · · ir ∈ {1, · · · , n} such that
∣∣∣∣∣∣∣

v1i1 · · · vri1
...

. . .
...

v1ir · · · vrir

∣∣∣∣∣∣∣
6= 0
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it is clear that Vn,r is an open subset of (Rn)r . Clearly, GLr(R) acts freely

and continuously on the right on Vn,r. Denote q : Vn,r −→ Gn,r the map

which sends a sequence (v1, · · · , vr) to its linear envelope and endow Gn,r
with the associated quotient topology. By construction,

q(v′1, · · · , v
′
r) = q(v1, · · · , vr)

if and only if there is M ∈ GLr(R) such that

(v′1, · · · , v
′
r) = (v1, · · · , vr) ·M

or equivalently if and only if

rk(v′1, · · · , v
′
r, v1, · · · , vr) ≤ r. (*)

It follows that q identifies Vn,r/GLr(R) with Gn,r. In particular, q is open

and since condition (*) is clearly closed we see that Gn,r is separated. Let

L0 be an element of Gn,r and let L1 be a supplement of L0 in Rn. Denote

p : Rn −→ L0 the projection associated to the decomposition Rn = L0 ⊕ L1.

Set U = {L ∈ Gn,r : p(L) = L0}. Clearly, U is an open subset of Gn,r.

Moreover, since p|L : L −→ L0 is bijective, any L ∈ U may be viewed as the

graph of a linear map h : L0 −→ L1. This gives us a bijection

U −→ Hom(L0, L1)

which is easily checked to be an homeomorphism. Since Hom(L0, L1) '

Rr(n−r), it follows that Gn,r is a topological manifold of dimension r(n−r).

To prove that it is compact, remark that Gn,r = q(Sn,r) where Sn,r is the

compact subset of Vn,r formed by orthonormed sequences.

Remark 3.3.3. The reader will easily complete the preceding proposition

to show that Gn,r has in fact a canonical structure of differential manifold.

Definition 3.3.4. We define Un,r as the subset of Rn×Gn,r formed by the

pairs (V, L) with V ∈ L.

Proposition 3.3.5. The canonical projection Un,r −→ Gn,r is a real vector

bundle of rank r.

Proof. The only non obvious part is to show that Un,r has locally a contin-

uous frame. Using the notations introduced in the proof of the preceding

proposition, we construct such a frame by choosing a basis v1, · · · , vr of L0

and associating to any L ∈ U the basis p−1
|L (v1), · · · , p

−1
|L (vr).
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Proposition 3.3.6. Let B be a compact topological space. Assume E is a

vector bundle of rank r on X. Then, there is n ∈ N and a continuous map

f : B −→ Gn,r

such that f−1(Un,r) ' E.

Proof. It is sufficient to construct a commutative diagram of continuous

maps of the type

E
g

//

pE

��

Un,r //

pUn,r
��

Rn × Gn,r

yyrr
rr

rr

B
f

// Gn,r

with g|Eb
injective. Note that in such a diagram f is determined by g.

Moreover, if we denote q1, q2 the two projections of Rn × Gn,r on Rn and

Gn,r, we have (q2 ◦ g)(e) = (q1 ◦ g)(EpE(e)). Therefore, we have only to

construct the continuous map f̂ := q1 ◦ g : E −→ Rn in such a way that f̂|Eb

is injective and linear. To construct this map, let us proceed as follows. We

cover B by a finite number of open subsets U1, · · · , UN on which E has a

continuous frame. For each k ∈ {1, · · · , N} we choose a trivialization

ϕUk
: E|Uk

∼
−→ Rr × Uk

and set hUk
= q1 ◦ ϕUk

. Denoting (ψU1 , · · · , ψUN
) a partition of unity

subordinated to the covering {U1, · · · , UN}, we set

f̂ (e) = ((ψU1 ◦ p)(e)hU1 (e), · · · , (ψUN
◦ p)(e)hUN

(e)) ∈ RrN .

It is clear that f̂ is continuous and linear on the fibers of E. It is also

injective on the fibers of E. As a matter of fact, if e1, e2 ∈ Eb are such that

f̂ (e1) = f̂ (e2), there is k ∈ {1 · · · , N} such that (ψUk
◦ p)(b) 6= 0. For such

a k, we get

hUk
(e1) = hUk

(e2)

and hence e1 = e2.

Definition 3.3.7. We denote R∞ the real vector space formed by the se-

quences

(xn)n∈N

of real numbers for which {n ∈ N : xn 6= 0} is finite and endow it with the

topology of the inductive limit

lim
−→
n∈N

Rn
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corresponding to the transition morphisms

tm,n : Rn −→ Rm

being defined by setting

tm,n(x) = (x, 0).

We denote V∞,r the topological subspace of (R∞)r formed by the sequences

(v1, · · · , vr)

which are linearly independent. We denote G∞,r the set of r-dimensional

vector subspace of R∞ and endow it with the quotient topology associated

with the map

q : V∞,r −→ G∞,r

which sends a sequence (v1, · · · , vr) to its linear envelope. Finally, we denote

U∞,r the subset of R∞ × G∞,r formed by the pairs (v, L) with v ∈ L.

Lemma 3.3.8. Let (Xn, xm,n)n∈N be an inductive system of locally com-

pact topological spaces. Assume that Yn is a closed subspace of Xn and

that

x−1
m,n(Ym) = Yn

and denote ym,n the map xm,n|Yn
: Yn −→ Ym. Then, (Yn, ym,n)n∈N is an

inductive system and lim
−→
n∈N

Yn is a closed subspace of lim
−→
n∈N

Xn.

Proof. Set X = lim
−→
n∈N

Xn and Y = lim
−→
n∈N

Yn and identify Y with a subset of X.

Denote xn : Xn −→ X, yn : Yn −→ Y the canonical maps.

(a) Let v ∈ Y and let V be an open neighborhood of v in Y . We have

to show that there is a neighborhood U of v in X such that U ∩ Y ⊂ V .

We know that v = yn(vn) for some n ∈ N and that Vn := y−1
n (V ) is a

neighborhood of vn in Yn. Let Kn be a compact neighborhood of vn in

Xn such that Kn ∩ Yn ⊂ Vn and let us construct by induction a sequence

(Km)m≥n such that

(i) Km is a compact neighborhood of vm := ym,n(vn) in Xm,

(ii) Km ∩ Ym ⊂ Vm := y−1
m (V ),

(iii) xm+1,m(Km) ⊂ K◦
m+1.

This is possible since if Km is a compact neighborhood of vm in Xm such

that Km∩Ym ⊂ Vm, we can construct Km+1 as follows. Using the fact that

xm+1,m(Km)∩Ym+1 is a compact subset ofXm+1 included in Vm+1 together
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with the fact that any wm+1 ∈ Vm+1 has a compact neighborhood Wm+1

with Wm+1 ∩ Ym+1 ⊂ Vm+1, it is easy to obtain a compact subset Lm+1 of

Xm+1 such that Lm+1∩Ym+1 ⊂ Vm+1, L
◦
m+1 ⊃ xm+1,m(Km)∩Ym+1. Since

xm+1,m(Km)\L◦m+1 is a compact subset of Xm+1 disjoint from Ym+1, it has

a compact neighborhood L′m+1 disjoint from Ym+1. TakingKm+1 = Lm+1∪

L′m+1, we see that Km+1∩Ym+1 ⊂ Vm+1 and that K◦
m+1 ⊃ xm+1,m(Km) as

requested. Now, set K = lim
−→
m≥n

Km. By construction, K∩Y ⊂ V . Moreover,

since xm+1,m(Km) ⊂ K◦
m+1, K is an open neighborhood of v in X.

(b) Let u ∈ X \ Y . We know that u = xn(un) for some n ∈ N and

that for any m ≥ n, um := xm,n(un) 6∈ Ym. Working as in (a), it is clearly

possible to construct by induction a sequence (Km)m≥n such that

(i) Km is a compact neighborhood of um in Xm,

(ii) Km ∩ Ym = ∅,

(iii) xm+1,m(Km) ⊂ K◦
m+1.

Set K = lim
−→
m≥n

Km. By construction, K ∩Y = ∅ and K is an open neighbor-

hood of u; hence the conclusion.

Lemma 3.3.9. Let (Xn, xm,n)n∈N and (Yn, ym,n)n∈N be inductive systems

of locally compact topological spaces. Then,

lim−→
n∈N

(Xn × Yn) ' (lim−→
n∈N

Xn)× (lim−→
n∈N

Yn)

as topological spaces.

Proof. Set Zn = Xn × Yn and set

X = lim−→
n∈N

Xn, Y = lim−→
n∈N

Yn, Z = lim−→
n∈N

Zn.

Denote xn : Xn −→ X, yn : Yn −→ Y , zn : Zn −→ Z the canonical maps. Since

the canonical continuous map

i : Z −→ X × Y

is clearly bijective, it remains to show that if W is a neighborhood of w in

Z and i(w) = (u, v), then there are neighborhoods U , V of u, v in X and

Y such that i(W ) ⊃ U × V . We know that w = zn(wn) for some n ∈ N

and some wn ∈ Zn. Set wm = zm,n(wn) and Wm = z−1
m (W ) for any m ≥ n.

Let un ∈ Xn, vn ∈ Yn be such that i(wn) = (un, vn). Since i(Wn) is a
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neighborhood of (un, vn) in Xn×Yn, there are compact neighborhoods Kn,

Ln of un, vn in Xn and Yn such that i(Wn) ⊃ Kn×Ln. Starting with these

neighborhoods, let us construct by induction sequences (Km)m≥n, (Lm)m≥n
such that

(i) Km (resp. Lm) is a compact neighborhood of um (resp. vm),

(ii) Km × Lm ⊂ i(Wm),

(iii) xm+1,m(Km) ⊂ K◦
m+1, ym+1,m(Lm) ⊂ L◦m+1.

This is possible since i(Wn+1) is a neighborhood of

xm+1,m(Km) × ym+1,m(Lm).

Set

K = lim
−→
m≥n

Km, L = lim
−→
m≥n

Lm.

By construction, K and L are open subsets of X and Y and i(W ) ⊃ K×L.

The conclusion follows.

Proposition 3.3.10. We have

V∞,r ' lim−→
n≥r

Vn,r,

G∞,r ' lim−→
n≥r

Gn,r,

U∞,r ' lim−→
n≥r

Un,r.

In particular, V∞,r is an open subset of R∞ and the canonical projection

U∞,r −→ G∞,r

is a real vector bundle of rank r.

Proof. Thanks to Lemma 3.3.9, (R∞)r ' lim−→
n∈N

(Rn)r and it follows from the

fact V∞,r ∩ (Rn)r = Vn,r that V∞,r is open in (R∞)r and that

V∞,r ' lim−→
n≥r

Vn,r.

The relation

G∞,r ' lim
−→
n≥r

Gn,r
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follows easily. Since Un,r is a closed subspace of Rn × Gn,r, the relation

U∞,r = lim−→
n≥r

Un,r

follows directly from Lemma 3.3.8 together with the relation

R∞ ×G∞,r = lim−→
n≥r

Rn × Gn,r

which follows from Lemma 3.3.9.

Remark 3.3.11. Although we will not prove it here, the space G∞,r is

paracompact (see e.g. [20]).

Lemma 3.3.12. Let B be a topological space and let E be a real vector

bundle of rank r on B. Then, there is a locally finite countable family

(Vk)k∈N of open subsets of B such that

(a)
⋃
k∈N Vk = B;

(b) E|Vk
' Rr × Vk.

Proof. Let U be a locally finite covering of B by open subsets U on which

E is trivializable and let (ϕU )U∈U be continuous partition of unity subor-

dinated to U . For any non-empty finite subset S of U , set

V (S) = {b ∈ B| inf
U∈S

ϕU (b) > sup
U∈U\S

ϕU (b).}

Set also

Vk =
⋃

#S=k

V (S).

One checks easily that V (S) is an open subset of
⋂
S. It follows that E is

trivializable on V (S) and that (Vk)k∈N is a locally finite family. Since

V (S) ∩ V (S ′) 6= ∅

entails that S ⊂ S ′ or S ′ ⊂ S, we see that V (S) and V (S ′) are disjoint if S

and S ′ are distinct finite subsets of U with k > 0 elements. It follows that

E is trivializable on Vk. To conclude, note that we have
⋃

k∈N

Vk = B

since any b ∈ B belongs to V (S) with

S = {U ∈ U : ϕU (b) > 0}.
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Theorem 3.3.13. For any topological space B and any real vector bundle

E of rank r on B, there is a continuous map

f : B −→ G∞,r

such that f−1(U∞,r) ' E. Moreover, such a map is unique up to homotopy.

Proof. Thanks to the preceding Lemma, the first part is obtained by work-

ing as in the proof of Proposition 3.3.6.

For the second part, we have to show that given two commutative dia-

grams of the type

E
g0

//

��

U∞,r //

��

R∞ × G∞,r

xxpppppp
E

g1
//

��

U∞,r //

��

R∞ × G∞,r

xxpppppp

B
f0

// G∞,r B
f1

// G∞,r

where g0 and g1 are injective on the fibers of E, there is a homotopy between

f0 and f1. Setting f̂0 = q1 ◦ g0 and f̂1 = q1 ◦ g1, we get two maps

f̂0 : E −→ R∞, f̂1 : E −→ R∞

which are linear and injective on the fibers of E and whose knowledge makes

it possible to reconstruct the whole diagrams.

(a) Assume f̂0(e) 6∈ {λf̂1(e) : λ < 0} for e ∈ Ė. Then, for t ∈ [0, 1], the

continuous map ĥt : E −→ R∞ defined by setting

f̂t(e) = (1 − t)f̂0(e) + tf̂1(e)

is linear and injective on the fibers ofE. Hence it gives rise to a commutative

diagram

E
gt //

��

U∞,r //

��

R∞ ×G∞,r

xxpppppp

B
ft

// G∞,r

here q1◦gt = ĥt and gt is injective on the fibers of E. The conclusion follows

since ft (t ∈ [0, 1]) is a homotopy between f0 and f1.

(b) In general, consider the maps

α : R∞ −→ R∞, β : R∞ −→ R∞

defined by setting

α(ei) = e2i, β(ei) = e2i+1
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where ei are the vectors of the canonical basis of R∞. Set f̂α = α ◦ f̂0 and

f̂β = β ◦ f̂1 and consider the associated diagrams

E
gα //

��

U∞,r //

��

R∞ × G∞,r

xxpppppp
E

gβ
//

��

U∞,r //

��

R∞ × G∞,r

xxpppppp

B
fα

// G∞,r B
fβ

// G∞,r

here q1 ◦ gα = ĝα and q1 ◦ gβ = ĝβ . By (a), we have f0 ∼ fα, fα ∼ fβ ,

fβ ∼ f1; hence the conclusion.

Corollary 3.3.14. Assume B is a topological space. Then, the map

[B,G∞,r] −→ Isom(VectrR(B))

which associates to the homotopy class of f : B −→ G∞,r the isomorphism

class of f−1(U∞,r) is a bijection.

Proof. Since Lemma 3.3.15 shows that the map considered above is well-

defined, the conclusion follows easily from the preceding result.

Lemma 3.3.15. Assume B is a topological space. Then, for any real vector

bundle F on B × [0, 1], there is a real vector vector bundle E on B and a

non-canonical isomorphism

F ' p−1
B E.

In particular, if h : B × I −→ B′ is a continuous homotopy and E′ is a real

vector bundle on B′, then the isomorphy class of

h−1
t E′

does not depend on t ∈ [0, 1].

Proof. See e.g. [16, p. 28].

3.4 Characteristic classes

Definition 3.4.1. A characteristic class with coefficients in the abelian

group M for real vector bundles of rank r is a law γ which associates to any

real vector bundle E of rank r and base X a class γ(E) ∈ H·(X;A) in such

a way that

γ(f−1(E)) = f∗γ(E)

for any continuous map f : Y −→ X.
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Proposition 3.4.2. Characteristic classes with coefficients in M for real

vector bundles of rank r are canonically in bijection with

H·(G∞,r;M ).

Proof. Thanks to Theorem 3.3.13, we know that any real vector bundle E

of rank r on B may be written as

f−1(U∞,r)

where f : B −→ G∞,r is uniquely determined up to homotopy by E. If γ is

a characteristic class, it follows that

γ(E) = f∗γ(U∞,r)

and γ is uniquely determined by γ(U∞,r ) ∈ H·(G∞,r;M ). Moreover, if

c ∈ H·(G∞,r ;M )

is given, we can construct a characteristic class γ such that γ(U∞,r ) = c by

setting

γ(E) = f∗c

since f∗ depends only on E.

Lemma 3.4.3. Let X be a topological space. Assume (Ai)i∈I is a directed

family of subspaces of X such that

X ' lim
−→
i∈I

Ai.

Then, for any sheaf F on X, we have

Γ(X;F) ' lim←−
i∈I

Γ(Ai;F).

Proof. The fact that the canonical map

Γ(X;F) −→ lim
←−
i∈I

Γ(Ai;F)

is injective is a direct consequence of the fact that X =
⋃
i∈I Ai. Let us

prove that it is also surjective. Let (σi)i∈I be an element of lim←−
i∈I

Γ(Ai;F).

Define the family (sx)x∈X of
∏
x∈X Fx by setting

sx = (σi)x
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for any x ∈ Ai. We have to prove that (sx)x∈X comes locally from a

section of F . Fix x ∈ X. There is i ∈ I such that x ∈ Ai, an open

neighborhood U of x in X and σ ∈ F(U ) such that σ|Ai∩U = σi|Ai∩U . Set

V = {x ∈ U : σx = sx}. Clearly,

V ∩Aj = {x ∈ U ∩Aj : σx = (σj)x}

is open in Aj. Therefore, V is open in X and the conclusion follows.

Lemma 3.4.4. Let X be a topological space and let (Fn)n∈N be an in-

creasing sequence of closed subspaces of X such that

X ' lim−→
n∈N

Fn.

Then, for any sheaf F on X, we have

RΓ(X;F) ' R lim
←−
n∈N

RΓ(Fn;F).

In particular, if

Hk(Fn;F)

satisfies Mittag-Leffler condition for k ≤ l, then

Hl(X;F) ' lim←−
n∈N

Hl(Fn;F).

Proof. It is sufficient to apply Lemma 3.4.3 to a soft resolution of F and to

use the fact that Mittag-Leffler condition implies lim←− acyclicity.

Proposition 3.4.5. For n ≥ r, the Z2-algebra H·(Gn,r; Z2) is generated by

w1(Un,r), · · · , wr(Un,r).

Proof. Recall that the universal bundle of rank r

p : Un,r −→ Gn,r

is defined by setting

Un,r = {(v, L) ∈ Rn × Gn,r : v ∈ L}.

Define

U⊥n,r = {(v, L) ∈ Rn × Gn,r : v ∈ L⊥}

and denote

q : U⊥n,r −→ Gn,r
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the canonical projection. One can check easily that q is a real vector bundle

of rank n − r. Denote U̇n,r (resp. U̇⊥n,r) the space Un,r (resp. U⊥n,r) with-

out its zero section and denote ṗ (resp. q̇) the canonical projection of U̇n,r
(resp.U̇⊥n,r) on Gn,r. Define the map

f : U̇n,r −→ U̇⊥n,r−1

by setting f(v, L) = (v, L∩〉v〈⊥) for v ∈ Rn \{0}. One checks directly that

this application is a homeomorphism; the inverse being given by the map

f−1 : U̇⊥n,r−1 −→ U̇n,r

defined by setting

f−1(v, L′) = (v, L′ + 〉v〈)

for any v ∈ L′
⊥ \ {0}. It follows that the Gysin sequences for Un,r and

U⊥n,r−1 :

· · ·H
k−r

(Gn,r; Z2)
^e

Z2
Un,r

−−−−−−→ H
k
(Gn,r ; Z2)

ṗ∗

−−→ H
k
(U̇n,r; Z2) −→ · · ·

· · ·Hk−n+r−1(Gn,r−1; Z2)

^e
Z2

U⊥
n,r−1

−−−−−−−−→ Hk(Gn,r−1; Z2)
q̇∗

−−→ Hk(U̇
⊥
n,r−1; Z2) −→ · · ·

are connected by the isomorphism

f∗ : Hk(U̇⊥n,r−1; Z2) −→ Hk(U̇n,r; Z2).

Let us prove that

ṗ∗(w(Un,r)) = f∗(q̇∗(w(Un,r−1))). (*)

To this end, consider the commutative diagram

U̇n,r
q̇◦f

// Gn,r−1

ṗ−1Un,r

OO

g
//__ Un,r−1

OO

where the map g is defined by setting

g(v′, v, L) = (v′′, L ∩ 〉v〈⊥)

where L ∈ Gn,r, v ∈ L \ {0}, v′ ∈ L and v′′ is the orthogonal projection of

v′ on 〉v〈⊥. This gives us a morphism

ṗ−1Un,r −→ (q̇ ◦ f)−1Un,r−1
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which is surjective. Its kernel is given by

Ln,r = {(v′, v, L) : (v, L) ∈ U̇n,r, v
′ ∈ 〉v〈}

which is a trivializable line bundle on U̇n,r. From the exact sequence

0 −→ Ln,r −→ ṗ−1Un,r −→ (q̇ ◦ f)−1Un,r−1 −→ 0

we get that

w(ṗ−1Un,r) = w(Ln,r) ^ w((q̇ ◦ f)−1Un,r−1) = w((q̇ ◦ f)−1Un,r−1)

and hence that

ṗ∗w(Un,r) = f∗(q̇∗(w(Un,r−1))).

We will now prove by increasing induction on k ≥ 0 and r ≥ 1 that

for n ≥ r, any ck ∈ Hk(Gn,r; Z2) may be expressed as a polynomial

R(w1(Un,r), · · · , wr(Un,r)) in the Stiefel-Whitney classes of Un,r . The start-

ing point will be the case k = 0, r = 1 which is obvious. From the two “exact

triangles”

H·(Gn,r; Z2)
^e

Z2
Un,r

// H·(Gn,r; Z2)

ṗ∗vvmmmmmm

H·(U̇n,r; Z2)

hhQQQQQQ

H·(Gn,r−1; Z2)

^e
Z2

U⊥
n,r−1

// H·(Gn,r−1; Z2)

q̇∗uukkkkkkk

H·(U̇⊥n,r−1; Z2)

iiSSSSSSS

and Lemma 3.4.6 below, we deduce that

dimIm ṗ∗ =
1

2
dimH·(U̇n,r; Z2)

=
1

2
dimH·(U̇⊥n,r−1; Z2)

= dimIm q̇∗ = dimIm(f∗ ◦ q̇∗).

Moreover, it follows from (*) and the induction hypothesis that

Im ṗ∗ ⊃ Im(f∗ ◦ q̇∗).

Putting these two facts together, we see that Im ṗ∗ = Im(f∗ ◦ q̇∗). Let us

fix a class c in Hk(Gn,r; Z2). From what precedes, we know that there is

c′ ∈ Hk(Gn,r−1; Z2) such that

ṗ∗(c′) = f∗(q̇∗(c)).
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By the induction hypothesis, there is a polynomial relation

c′ = R′(w1(Un,r−1), · · · , wr−1(Un,r−1)).

Using (*), it follows that

ṗ∗(c) = ṗ∗R′(w1(Un,r), · · · , wr−1(Un,r))

and hence that

c−R′(w1(Un,r), · · · , wr−1(Un,r)) = c′′ ^ eZ2

Un,r
= c′′ ^ wr(Un,r)

with c′′ ∈ Hk−2(Gn,r; Z2). By the induction hypothesis,

c′′ = R′′(w1(Un,r), · · · , wr(Un,r))

and the conclusion follows.

Lemma 3.4.6. Let

E
u // E

v����
��

F
w

^^>>>>

be an exact triangle of vector spaces (i.e. Kerw = Im v, Ker v = Imu,

Keru = Imw). Assume E has finite dimension. Then, F has finite dimen-

sion and

dimIm v =
1

2
dimF.

Proof. We know that

Im v ' Cokeru, Coker v ' Imw ' Ker u.

Since

dimImu+ dimKer u = dimE,

we have

dimCokeru = dimKer u.

It follows that

dimIm v = dimCoker v < +∞.

Hence,

dimF = dimIm v + dimCoker v = 2 dimIm v.
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Proposition 3.4.7. The canonical morphism

Z2[W1, · · · ,Wr] −→ H·(G∞,r; Z2)

which sends Wk 7→ wk(U∞,r) is an isomorphism.

Proof. Using the notations introduced in the proof of Proposition 3.4.5,

we get from the Gysin sequences that, for k < n − r, we have the exact

sequences

0 −→ Hk(Gn,r−1; Z2)
q̇∗

−→ Hk(U̇⊥n,r−1; Z2) −→ 0

and

· · ·Hk−r(Gn,r; Z2)
^e

Z2
Un,r

−−−−−→ Hk(Gn,r; Z2)
ṗ∗

−→ Hk(U̇n,r; Z2) −→ · · ·

It follows from the equality Im(f∗ ◦ q̇∗) = Im ṗ∗ that ṗ∗ is surjective in

degree k < n− r. Hence, we get the exact sequence

0 −→ Hk−r(Gn,r; Z2)
^e

Z2
Un,r

−−−−−→ Hk(Gn,r; Z2)
λ
−→ Hk(Gn,r−1; Z2) −→ 0 (*)

where λ = (q̇∗)−1 ◦ f∗−1 ◦ ṗ∗. Thanks to the formula (*) of the proof of

Proposition 3.4.5 we have λ(w(Un,r)) = w(Un,r−1). Since Un,r |Gn−1,r
=

Un−1,r, it follows from Proposition 3.4.5 that the restriction map

Hk(Gm,r ; Z2) −→ Hk(Gn,r; Z2)

is surjective for m ≥ n. Hence, Lemma 3.4.4 shows that

Hk(G∞,r; Z2) ' lim←−
n≥r

Hk(Gn,r; Z2).

Taking the projective limit of the sequences (*) and using the fact that the

Mittag-Leffler condition implies lim←−-acyclicity, we get the exact sequence

0 −→ Hk−r(G∞,r; Z2)
^e

Z2
U∞,r

−−−−−→ Hk(G∞,r; Z2) −→ Hk(G∞,r−1; Z2) −→ 0.

Working by induction, as in the proof of Proposition 3.4.5, we see easily

that any c ∈ Hk(G∞,r; Z2) may be written polynomially as

c = R(w1(U∞,r), · · · , wr(U∞,r)).

To show the uniqueness of such a writing, let us proceed by induction on

k ≥ 0 and r ≥ 1 as follows. Assume

R(w1(U∞,r), · · · , wr(U∞,r)) = S(w1(U∞,r), · · · , wr(U∞,r)). (*)
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Write

R(w1, · · · , wr) = R′(w1, · · · , wr−1) + wrR
′′(w1, · · · , wr)

S(w1, · · · , wr) = S′(w1, · · · , wr−1) + wrS
′′(w1, · · · , wr).

Applying λ to (*), we see that

R′(w1(U∞,r−1), · · · , wr−1(U∞,r−1)) = S′(w1(U∞,r−1), · · · , wr−1(U∞,r−1)).

By the induction hypothesis, we get R′ = S′ and, hence,

wr(U∞,r) ^R′′(w1(U∞,r), · · · , wr(U∞,r))

= wr(U∞,r) ^ S′′(w1(U∞,r), · · · , wr(U∞,r)).

Since wr(U∞,r) = eZ2

U∞,r
and eZ2

U∞,r
^ · is injective, the conclusion follows

by the induction hypothesis.

3.5 Cohomological classification of real vector bundles

Definition 3.5.1. Let G be a topological group and let U be an open

covering of the topological space X. A continuous Čech 1-cochain on U

with values in G is the datum for any U , V ∈ U of a continuous map

ψVU : U ∩ V −→ G.

Such a cochain is a cocycle if

ψWV ◦ ψVU = ψWU on U ∩ V ∩W.

Two continuous 1-cocycles (ψUV )V,U∈U , (ψ′V U )V,U∈U are equivalent if we

can find for any U ∈ U a continuous map

ψU : U −→ G

in such a way that

ψ′VU = ψV ◦ ψVU ◦ ψ
−1
U on U ∩ V.

The set of equivalence classes of continuous 1-cocycles on U is denoted

Ȟ1
cont(U ;G).

If V is an open covering ofX such that V ≺ U , there is a canonical restriction

map

Ȟ1
cont(U ;G) −→ Ȟ1

cont(V;G).
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These restriction maps turn the family Ȟ1
cont(U ;G) (U open covering of X)

into an inductive system and we set

Ȟ1
cont(X;G) = lim−→

U

Ȟ1
cont(U ;G).

Proposition 3.5.2. For any topological space B, there is a canonical bi-

jection

Isom(VectrR(B))
∼
−→ Ȟ1

cont(B; GLr(R)).

Proof. Let E be a real vector bundle with base B and rank r. By definition,

there is an open covering U of B such that E|U has a continuous frame for

any U ∈ U . This gives us a family of trivializations

ϕU : E|U
∼
−→ Rr × U (U ∈ U).

For any U , V ∈ U ,

ϕV ◦ ϕ
−1
U : Rr × (U ∩ V ) −→ Rr × (U ∩ V )

is an isomorphism of real vector bundles. Therefore, the map

v 7→ q2
[
(ϕV ◦ ϕ

−1
U )(v, x)

]

defines an element ψVU (x) of GLr(R). Moreover, it is clear that

ψV U : U ∩ V −→ GLr(R)

is continuous and that

ψWV (x)ψV U (x) = ψWU (x)

for any x ∈ U ∩ V ∩ W . It follows that (ψV U )U,V∈U is a continuous 1-

cocycle on U with values in GLr(R). We leave it to the reader to check that

its class in Ȟ1
cont(X; GLr(R)) depends only on the isomorphy class of E. As

a consequence, we get a well-defined map

Isom(VectrR(B)) −→ Ȟ1
cont(X; GLr(R)).

Its injectivity is almost obvious. To prove its surjectivity, it is sufficient to

consider a continuous 1-cocycle (ψV U)U,V∈U on U with values in GLr(R)

and to show that its equivalence class is the class associated to the real

vector bundle obtained by gluing together the family of trivial bundles

Rr × U
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through the transition isomorphisms

Rr × (U ∩ V ) −→ Rr × (U ∩ V )

(v, x) 7→ (ψV U (x)v, x).

Details are left to the reader.

Lemma 3.5.3. For any x ∈ R∗, set

s(x) =

{
0 if x > 0

1 if x < 0.

Then,

s : R∗ −→ Z2

is a morphism of groups and the sequence of abelian groups

0 −→ R
exp
−−→ R∗

s
−→ Z2 −→ 0

is exact. Moreover, for any topological space X, this sequence induces the

exact sequence of sheaves

0 −→ CR
X −→ C

R∗

X −→ (Z2)X −→ 0

where CR
X denotes the sheaf of real valued continuous functions.

Proof. Direct.

Proposition 3.5.4. Let B be a topological space. The exact sequence

0 −→ CR
B −→ C

R∗

B −→ (Z2)B −→ 0

induces an isomorphism

H1(B; CR∗

B ) ' H1(B; Z2).

There is a bijection

Ȟ1
cont(B; GL1(R)) ' H1(B; CR∗

B ).

The associated bijection

Isom(Vect1
R(B)) ' H1(B; Z2)

may be realized by the map

L 7→ eZ2

L .
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Proof. Taking the long exact sequence of cohomology associated to the se-

quence of sheaves

0 −→ CR
B −→ C

R
∗

B −→ (Z2)B −→ 0,

we get the exact sequence

H1(B; CR
B) −→ H1(B; CR

∗

B ) −→ H1(B; Z2) −→ H2(B; CR
B).

Since CR
B is soft, the first and last terms vanish. Hence the isomorphism

H1(B; CR
∗

B ) ' H1(B; Z2).

Clearly, there is a bijection

Ȟ1
cont(B; GL1(R)) ' Ȟ1(B; CR∗

B )

and using the isomorphism between Čech cohomology and ordinary coho-

mology, we get a bijection

Ȟ1
cont(B; GL1(R)) ' H1(B; CR

∗

B ).

Combining this with the bijection of Proposition 3.5.2, we get a bijection

Isom(Vect1
R(B)) ' H1(B; Z2). (*)

What remains to prove is that this bijection may be realized by the Euler

class. Since this bijection is clearly compatible with the pull-back of bundles

and cohomology classes, Theorem 3.3.13 shows that the result will be true

if the image of U∞ in H1(P∞(R),Z2) by (*) is the Euler class of U∞. We

know that the restriction map

H1(Pm(R); Z2) −→ H1(Pn(R); Z2)

is an isomorphism for m ≥ n ≥ 1. It follows that the restriction map

H1(P∞(R); Z2) −→ H1(P1(R); Z2)

is also an isomorphism. Hence, we are reduced to prove that the image

of U1(R) by (*) in H1(P1(R); Z2) is eZ2

U1(R). Set V0 = {[x0, x1] : x0 6= 0}

and V1 = {[x0, x1] : x1 6= 0}. Clearly, V0, V1 are open subsets of P1(R)

which are homeomorphic to R. Moreover, P1(R) = V0 ∪ V1 and V0 ∩ V1

is homeomorphic to R∗. The line bundle U1(R)|V0
has a continuous frame

given by

[x0, x1] 7→

(
(1,

x1

x0
), [x0, x1]

)
.
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Similarly, the line bundle U1(R)|V1
has a continuous frame given by

[x0, x1] 7→

(
(
x0

x1
, 1), [x0, x1]

)
.

The continuous 1-cocycle on V = {V0, V1} with values in GL1(R) = R∗

associated to U1 is thus given by

ψV0V0 = 1, ψV1V1 = 1, ψV1V0 =
x1

x0
, ψV0V1 =

x0

x1
.

Its image c in Ȟ1(V; Z2) is thus the class of the 1-cocycle

ψ′V0V0
= 0, ψ′V1V1

= 0, ψ′V1V0
= s(

x1

x0
), ψ′V0V1

= s(
x0

x1
).

Let (ψ′V0
, ψ′V1

) be an element of Č0(V; Z2). Then, ψ′V0
(resp. ψ′V1

) is constant

on V0 (resp. V1) and

d(ψ′V0
, ψ′V1

)V1V0 = ψ′V0 |V1∩V0
− ψ′V1 |V1∩V0

is also constant on V1∩V0. Since ψ′V1V0
is not constant on V1∩V0, it follows

that c 6= 0. Using the fact that Ȟ1(V; Z2) ' H1(P1(R); Z2) ' Z2, it follows

that c = eZ2

U1(R).

Corollary 3.5.5. Assume B is a topological space. Then, a real line bundle

L on a B is trivial if and only if

eZ2

L = 0.

In particular, a real vector bundle E on B is orientable if and only if

w1(E) = 0

Proof. Since a real vector bundle E is orientable if and only if the line

bundle Det(E) is trivializable, the result follows directly from the preceding

proposition combined with Corollary 3.2.9.





4

Characteristic classes of

complex vector bundles

In this chapter as in the previous one, all topological spaces are implicitly

assumed to be paracompact.

4.1 Generalities on complex vector bundles

Definition 4.1.1. A complex vector bundle of rank r is the data of a con-

tinuous map

pE : E −→ BE

between topological spaces together with structures of complex vector spaces

on each fiber Eb = p−1
E (b) (b ∈ BE) of PE . These data being such that for

any b ∈ B there is a neighborhood U of b in B and a family (e1, · · · , er)

of continuous sections of pE |p−1
E

(U) : p−1
E (U ) −→ U with the property that

(e1(b
′), · · · , er(b′)) is a basis of p−1

E (b′) for any b′ ∈ U .

As seen from the preceding definition, the notion of complex vector

bundle is completely similar to that of real vector bundle. We just have

to replace R-linearity with C-linearity when appropriate. This is why we

will not define in details the vocabulary concerning complex vector bundles,

assuming the reader can adapt easily what has been done for real vector

bundles.

139
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Lemma 4.1.2. Let u : E −→ E be a morphism of complex vector bundles.

Denote ER the real vector bundle associated to E and

uR : ER −→ ER

the morphism of real vector bundles associated to u. Then,

detRuR = |detCu|
2.

Proof. Let e be an eigenvector of u and denote λ the associated eigenvalue.

Choose F such that E = 〉e〈 ⊕ F and denote p : E −→ F the associated

projection. Denote µ : 〉e〈 −→ 〉e〈 the multiplication by λ and v : F −→ F the

map p ◦ u|F . Then,

detCu = λdetCv

and

detRuR = detRµR · detRvR.

Therefore, an induction argument reduces the problem to the case where

dimC E = 1. In this case, if e is a non-zero vector of E and u(e) = λe, we

have

detCu = λ.

Since (e, ie) is a basis of ER and the matrix of uR in this basis is

(
<λ −=λ

=λ <λ

)

we have detRuR = <λ2 + =λ2 = |λ|2. The conclusion follows.

Corollary 4.1.3. Let E be a complex vector bundle of rank r on B. Then,

the underlying real vector bundle ER is canonically oriented. If (e1, · · · , er)

is a continuous local frame of E, then (e1, ie1, · · · , er , ier) is a continuous

oriented local frame of ER. In particular, the Euler class eZ
ER
∈ H2r(B; Z)

is well-defined.

Exercise 4.1.4. Denote Pn(C) the complex projective space and Un(C)

the complex universal bundle. Set ξ = eZ
Un(C) ∈ H2(Pn(C); Z). Then,

H·(Pn(C); Z) ' Z⊕ Zξ ⊕ · · · ⊕ Zξn.

In particular,

χ(Pn(C)) = n+ 1.

Solution. Work as in Exercise 2.5.6.
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Proposition 4.1.5. Let E be a complex vector bundle of rank r on B. De-

note π : P (E) −→ B the associated complex projective bundle. Let U (E) be

the universal complex line bundle on P (E) and let ξ = eZ
U(E) ∈ H2(P (E); Z)

be its Euler class. Then

H·(P (E); Z)

is a free H·(B; Z)-module of rank r with

1, ξ, ξ2, · · · , ξr−1

as basis.

Proof. Work as in the proof of Proposition 3.1.2.

Corollary 4.1.6. Let E be a complex vector bundle of rank r on the

paracompact base X. Then, there is a proper map

f : Y −→ X

for which the canonical map

f∗ : H·(X; Z) −→ H·(Y ; Z)

is injective and such that

f−1(E) ' L1 ⊕ · · · ⊕ Lr

with L1, · · · , Lr complex line bundles on Y .

Proof. Work as in the proof of Proposition 3.2.1.

4.2 Chern classes

Definition 4.2.1. Using the notations of Proposition 4.1.5, we define the

Chern classes of E as the classes c1(E) ∈ H2(B; Z), · · · , cr(E) ∈ H2r(B; Z)

characterized by the relation

ξr = π∗(c1(E)) ^ ξr−1 − π∗(c2(E)) ^ ξr−2 + · · ·+ (−1)rπ∗ ^ (cr(E)).

By convention, we extend the preceding definition by setting

c0(E) = 1, ck(E) = 0 (k > r).

As for Stiefel-Whitney classes, we also define the total Chern class c(E) as

the sum ∑

k

ck(E) ∈ H·(B; Z).
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Remark 4.2.2. Note that c(E) is in fact an element of

Hev(B; Z) :=
⊕

k∈N

H2k(B; Z)

which is a commutative subalgebra of H·(B; Z).

Proposition 4.2.3. Assume E, F are complex vector bundles on B of rank

r, s and let f : B′ −→ B be a continuous map. Then,

(a) c(f−1(E)) = f∗(c(E));

(b) c(E ⊕ F ) = c(E) ^ c(F );

(c) cr(E) = eZ
ER

.

Proof. Work as in Propositions 3.1.4, 3.1.5 and 3.2.3.

Definition 4.2.4. Let E be complex vector bundle with base B. We denote

E the complex vector bundle obtained from E by changing the C-vector

space structure of each fiber into its conjugate one.

Proposition 4.2.5. Let E be a complex vector bundle with rank r and

base B. Then,

c(E∗) = c(E) = (−1)rc(E).

Proof. Endowing E with a Hermitian structure, one sees easily that

E∗ ' E

and the first equality follows. To get the second one, we may use the splitting

principle and treat only the case where E is a complex line bundle. In this

case, we have only to show that

eZ
E

= −eZE .

In other words, we have to show that that the canonical orientations o and

o of ER induced by the complex structure of E and E are opposite. This

follows from the fact that if e is a complex local frame of E, then e, ie is a

positively oriented local frame for o and e,−ie is a positively oriented local

frame for o.

Exercise 4.2.6. With the notations of Exercise 4.1.4, show that

c(TPn(C)) = (1 + ξ)n+1

and deduce from this formula that
∫

Pn(C)

ξn = 1.
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Solution. The first relation is obtained by working as in Exercise 3.2.17.

From this relation we deduce that

εPn(C) = cn(TPn(C)) = (n+ 1)ξn.

Therefore, using the index theorem for compact manifolds, we get

∫

Pn(C)

(n+ 1)ξn =

∫

Pn(C)

εPn(C) = χ(Pn(C)) = n+ 1.

The conclusion follows.

Proposition 4.2.7. Denote G∞,r(C) the complex infinite Grassmannian

of rank r and U∞,r(C) the associated universal complex vector bundle of

rank r. Assume E is a complex vector bundle of rank r on B. Then, there

is a continuous map f : B −→ G∞,r(C) such that

E ' f−1U∞,r(C).

Moreover, such a map is unique up to homotopy.

Proof. Work as for Corollary 3.3.14.

Corollary 4.2.8. Characteristic classes with values in the abelian group

M of complex vector bundles of rank r are in bijection with

H·(G∞,r(C);M ).

Proposition 4.2.9. The morphism of rings

Z[C1, · · · , Cr] −→ H·(G∞,r(C); Z)

defined by sending Ck to ck(U∞,r(C)) is an isomorphism.

Proof. Work as for Proposition 3.4.7.

Proposition 4.2.10. The exact sequence of sheaves

0 −→ ZB
2iπ
−−→ CB −→ C

∗
B −→ 0

induces an isomorphism

H1(B; C∗B) ' H2(B; ZB).

By this isomorphism, the class of a complex line bundle L is sent to c1(L).
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Proof. Working as in the proof of Proposition 3.5.4, we may assume B =

P1(C), L = U1(C). Set V0 = {[z0, z1] : z0 6= 0}, V1 = {[z0, z1] : z1 6= 0}.

Define v0 : V0 −→ C and v1 : V1 −→ C by setting

v0 =
z1
z0
, v1 =

z0
z1
.

Clearly, U1(C)|V0
has a continuous frame given by s0 defined by

[z0, z1] 7→

(
(1,

z1
z0

), [z0, z1]

)
.

Similarly, U1(C)|V1
has a continuous frame given by s1 defined by

[z0, z1] 7→

(
(
z0
z1
, 1), [z0, z1]

)
.

Since

s0|V0∩V1
= v0s1|V0∩V1

,

the class of L in H1(P1(C), C∗
P1(C)) is the image of v0 by the coboundary

operator

H0(V0 ∩ V1; C
∗
P1(C)) −→ H1(P1(C); C∗P1(C))

of the Mayer-Vietoris sequence associated to the decomposition P1(C) =

V0 ∪ V1. Define Z1
∞ as the kernel of the de Rham differential

d1 : C1∞ −→ C
2
∞

and

dlog : C∗∞ −→ Z
1
∞

by setting

dlog(f) =
df

f
.

The morphism of exact sequences

0 // Z
2iπ//

2iπ
��

C∞
exp

//

id
��

C∗∞
//

dlog
��

0

0 // C // C∞ d
// Z1
∞

// 0

induces the commutative diagram of coboundary operators

H1(P1(C); C∗∞) /o //

dlog
��

H2(P1(C); Z)

2iπ
��

H1(P1(C);Z1
∞) /o // H2(P1(C); C)
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We have to show that the image of [L] in H2(P1(C); Z) is a generator. Hence

it is sufficient to show that

∫

P1(C)

dlog([L]) = 2iπ.

To compute dlog([L]), let us proceed as follows. First, the commutative

diagram

H0(V0 ∩ V1; C
∗
∞) //

dlog
��

H1(P1(C); C∗∞)

dlog
��

H0(V0 ∩ V1;Z
1
∞) // H1(P1(C);Z1

∞)

for the coboundary operators of the Mayer-Vietoris sequences of C∗∞ and

Z1
∞, shows that dlog[L] is the image of

dv0
v0
∈ H0(V0 ∩ V1;Z

1
∞)

in H1(P1(C);Z1
∞). To compute this image, we will use the soft resolution

0 −→ Z1
∞ −→ C

1
∞

d
−→ C2∞ −→ 0

of Z1
∞. We have the commutative diagram with exact rows

0 // Γ(P1(C); C1∞) //

��

Γ(V0; C
1
∞)⊕ Γ(V1; C

1
∞) //

��

Γ(V0 ∩ V1; C
1
∞) //

��

0

0 // Γ(P1(C); C2∞) // Γ(V0; C
2
∞)⊕ Γ(V1; C

2
∞) // Γ(V0 ∩ V1; C

2
∞) // 0

To obtain the image β of
dv0
v0

in Γ(P1(C); C2∞)/dΓ(P1(C); C1∞), we have first

to find (α, α′) ∈ Γ(V0; C1∞) ⊕ Γ(V1; C1∞) such that α|V0∩V1
− α′|V0∩V1

=
dv0
v0

and then to use the relations β|V0
= dα, β|V1

= dα′. Let ϕ be a C∞-function

on C which is zero for |z| ≤ 1/4 and 1 for |z| ≥ 3/4. Clearly, we may take

α = ϕ(v0)
dv0
v0

, α′ = −(1 − ϕ(v0))
dv0
v0

.

Then,

dα|V0∩V1
= dα′|V0∩V1

and these forms have compact supports. Moreover, β is equal to dα on

V0 ∩ V1 and 0 on P1(C) \ (V0 ∩ V1). Therefore, denoting D(0, 1) the unit
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disk in C, we have

∫

P1(C)

β =

∫

V0

dα =

∫

C

d(ϕ(z)
dz

z
)

=

∫

D(0,1)

d(ϕ(z)
dz

z
) =

∫

∂D(0,1)

ϕ(z)
dz

z

=

∫

∂D(0,1)

dz

z
= 2iπ

where the last formula follows from Cauchy’s theorem.

Proposition 4.2.11. Assume E (resp. F ) is a complex vector bundle of

rank r (resp. s) on B. Then,

c(E ⊗F ) = Tr,s(c1(E), . . . , cr(E), c1(F ), . . . , cs(F )).

Proof. Working as in the proof of Proposition 3.2.12, we see that it is suf-

ficient to treat the case r = s = 1. In this case, we have only to prove

that

c1(E ⊗F ) = c1(E) + c1(F ).

This follows easily from the preceding proposition.

4.3 Chern-Weil construction

In this section, p : E −→ B will denote a differentiable complex vector bundle

of rank r on the paracompact differential manifold B. As usual, for such a

bundle, Cp∞(B;E) will denote the space of differentiable p-forms with values

in E (i.e. the differentiable sections of
∧p

T ∗XC ⊗
C
E).

A C-linear connection on E is the data of a C-linear operator

5 : C0
∞(B;E) −→ C1

∞(B;E)

satisfying Leibnitz rule

5(fs) = (df)s+ f(5s)

for any f ∈ C∞(B), s ∈ C∞(B;E). Such an operator gives rise to a family

of operators

5p : Cp∞(B;E) −→ Cp+1
∞ (B;E)

which is uniquely characterized by the fact that

5p(αs) = (dα)s+ (−1)pα ∧ (5s)
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for any α ∈ Cp∞(B;E) and any s ∈ C0
∞(B;E). Let e1, · · · , er be a differen-

tiable frame of E on the open subset U of B. Then,

5ej =
r∑

k=1

ωkjek

where ω is a r× r matrix of differential 1-forms on U . We call ω the matrix

of the connection 5 in the local frame e1, · · · , er. If s is a differentiable

section of E on U , then s may be written in a unique way as

s =

r∑

j=1

sjej .

For such an s, we have

5s =

r∑

j=1

(dsj)ej +

r∑

j=1

r∑

k=1

sjωkjek.

Hence,

(5s)j = dsj +

r∑

k=1

ωjksk.

Moreover,

51 · 50 s

= 51(

r∑

j=1

(dsj +

r∑

k=1

ωjksk)ej)

=

r∑

j=1

r∑

k=1

((dωjk)sk − ωjk ∧ dsk)ej − (dsj +

r∑

k=1

ωjksk) ∧
r∑

l=1

ωljel.

Therefore,

(51 · 50s)j =

r∑

k=1

(dωjk)sk − ωjk ∧ dsk −
r∑

l=1

(dsl +

r∑

k=1

ωlksk) ∧ ωjl

=

r∑

k=1

(dωjk)sk −
r∑

l=1

r∑

k=1

ωlk ∧ ωjlsk

=

r∑

k=1

(
dωjk +

r∑

l=1

ωjl ∧ ωlk

)
sk.

In particular, 51 · 50 : C0
∞(B;E) −→ C2

∞(B;E) is C∞(E)-linear and hence

comes from a morphism of vector bundles

K : E −→
2∧
T ∗XC ⊗

C
E
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whose matrix in the local frame e1, · · · , er is

Ω = dω + ω ∧ ω. (*)

The morphism K is called the curvature of the connection 5. Note that

more generally,

5p+1 · 5p(α ◦ s) = 5p+1((dα)s+ (−1)pα ∧ (5s))

= (−1)p+1(dα) ∧ (5s) + (−1)p(dα) ∧ (5s)

+ (−1)2pα ∧ (51 · 50(s))

= α ∧K(s).

Let f : B′ −→ B be a differentiable map and let 5 be a C-linear connec-

tion on E. Clearly, f−1(E) is a differentiable complex bundle on B′. We

denote f−15 the C-linear connection on f−1E characterized by the fact

that its matrix with respect to the differentiable frame e1 ◦ f, · · · , er ◦ f of

f−1E on f−1(U ) associated to a differentiable frame e1, · · · , er of E on U

is the pull-back by f of the matrix of 5 in e1, · · · , er (i.e. we set

ωf−15 = f∗ω5).

We leave it to the reader to check that this definition is meaningful. From

this definition and formula (*), it follows easily that, if Ωf−15 (resp. Ω5)

denotes the matrix of the curvature of f−15 (resp. 5) in the local frame

e1 ◦ f, · · · , er ◦ f (resp. e1, · · · , er) of f−1(E) (resp. E), then

Ωf−15 = f∗Ω5.

Denote Mr(C) the algebra of r × r matrices of complex numbers. An

invariant homogeneous polynomial of degree k on Mr(C) is a homogeneous

polynomial map

P : Mr(C) −→ C

of degree k such that

P (T−1AT ) = P (A)

for any T ∈ GLr(C) and any A ∈ Mr(C). (Examples of such invariant

polynomials are given by the determinant (degree r) or the trace (degree

1)). Let P be an invariant homogeneous polynomial of degree k on Mr(C)

and let 5 be a C-linear connection on E. Denote Ω5,e the matrix of the

curvature of 5 in a frame e = (e1, · · · , er) of E on the open subset U of B.

Since Cev
∞(U ;E) is a commutative C-algebra, the expression

P (Ω5,e)
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is a well-defined differential form of degree 2k on U . Moreover, since P is

invariant, P (Ω5,e) does not depend on the frame e. It follows that there is

a unique differential form P (K5) characterized by the fact that

P (K5)|U = P (Ω5,e)

for any local frame e = (e1, · · · , er) of E. Moreover, by construction, we

have

P (Kf−15) = f∗P (K5).

Proposition 4.3.1. For any C-linear connection 5 on E and any invariant

homogeneous polynomial P on Mr(C),

P (K5)

is a closed differential form of degree 2k.

Proof. Let us define the matrix P ′(A) by setting

P ′(A)jk =
∂P (A)

∂Akj
.

Then, for any H ∈ Mr(C), we have

LHP (A) =

r∑

j=1

r∑

k=1

∂P (A)

∂Akj
Hkj

= tr(P ′(A)H)

where LH denotes the derivative in the direction H. The fact that P is

invariant entails that P ′(A) commutes with A. As a matter of fact, let

H ∈Mr(C). From the relation

P (A(I + tH)) = P ((I + tH)A)

which holds for any t ∈ R, we deduce by derivation that

tr(P ′(A)AH) = tr(P ′(A)HA) = tr(AP ′(A)H).

Since H is arbitrary, we see that

P ′(A)A = AP ′(A).

Let ω (resp. Ω) be the matrix (resp. the curvature matrix) of the connection

5 with respect to a differentiable frame e1, · · · , er of E on U . A simple

computation shows that

dP (Ω) =

r∑

j=1

r∑

k=1

P ′(Ω)jk ∧ dΩkj = tr(P ′(Ω) ∧ dΩ).
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Since

Ω = dω + ω ∧ ω,

we have

dΩ = dω ∧ ω − ω ∧ dω

= Ω ∧ ω − ω ∧ Ω (Bianchy identity).

Therefore,

dP (Ω) = tr(P ′(Ω) ∧ Ω ∧ ω) − tr(P ′(Ω) ∧ ω ∧ Ω)

= tr(Ω ∧ P ′(Ω) ∧ ω) − tr(P ′(Ω) ∧ ω ∧ Ω)

= 0.

Proposition 4.3.2. Let P be an invariant homogeneous polynomial on

Mr(C) and let 50 and 51 be two C-linear connections on E. Then, the

closed differential forms P (K50) and P (K51) determine the same de Rham

cohomology class.

Proof. Consider the projection

pB : R× B −→ B

and the two connections p−1
B 50, p

−1
B 51 on p−1

B E. Denote t : R × B −→ R

the first projection and set

5 = (1− t)(p−1
B 50) + t(p−1

B 51).

Clearly,5 is a connection on p−1
B E. Denote

i0 : B −→ R ×B, i1 : B −→ R×B

the two embeddings defined by setting

i0(x) = (0, x), i1(x) = (1, x).

Clearly, i−1
0 p−1

B (E) ' E and i−1
1 p−1

B (E) ' E. Moreover, by construction

i−1
0 5 =50 and i−1

1 5 = 51. Therefore,

P (K50) = P (Ki−1
0 5) = i∗0P (K5),

P (K51) = P (Ki−1
1 5) = i∗1P (K5).
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Using the isomorphism between de Rham cohomology and the usual coho-

mology together with the homotopy theorem, we see that the maps

i∗0 = H·dR(R× B; C) −→ H·dR(B; C)

i∗1 = H·dR(R× B; C) −→ H·dR(B; C)

are equal. The conclusion follows directly.

Proposition 4.3.3. There is at least one C-linear connection on E.

Proof. This is clear if E is trivializable. In general, we may find a locally

finite covering U of B by open subsets U such that E|U is trivializable. For

each U ∈ U , fix a connection 5U on E|U . Let (ϕU )U∈U be a partition of

unity subordinated to U . Then,

5 =
∑

u∈U

ϕU5U

is a well-defined C-linear connection on E.

Corollary 4.3.4. There is a canonical way to associate to any invariant

polynomial on Mr(C) a characteristic class for differentiable complex vector

bundles of rank r with values in C.

Proof. Write P = P0 + P1 + · · · + Pk where each Pl is a homogeneous

invariant polynomial of degree l. Let E be a differentiable complex vector

bundle. By Proposition 4.3.3, there is at least one C-linear connection 5 on

E. By Proposition 4.3.1, Pl(K5) is a well-defined closed differential form

of degree 2l. Moreover, Proposition 4.3.2 shows that the cohomology class

γPl
(E) ∈ H2l(B; C)

of Pl(K5) depends only on E. Set

γP (E) = γP0 (E) + · · ·+ γPk
(E) ∈ Hev(B; C).

Since we have clearly

γP (f−1E) = f∗γP (E)

for any differentiable map f : B′ −→ B, the conclusion follows.

Proposition 4.3.5. For any differentiable complex vector bundle E of rank

r on B, we have

c(E) = γCr
(E)

where Cr is the invariant polynomial of A ∈Mr(C) defined by setting

Cr(A) = det(I +
A

2iπ
).
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Proof. (a) Assume first r = 1. Since B is paracompact and has finite

dimension, it is possible to find a differentiable map

f : B −→ Pn(C)

such that E ' f−1Un(C). It follows that we have only to treat the case of

Un(C) on Pn(C). Moreover, since the restriction map

H1(Pn(C); C) −→ H1(P1(C); C)

is injective, we can even assume n = 1. In this case, we have to show that

if 5 is a connection on U1(C), then c1(Un(C)) is represented by
[K5]

2iπ
or in

other words that ∫

P1(C)

K5 = 2iπ.

As usual, set

V0 = {[z0, z1] : z0 6= 0}, V1 = {[z0, z1] : z1 6= 0}

and define the coordinates v0 : V0 −→ C and v1 : V1 −→ C by setting

v0([z0, z1]) =
z1
z0
, v1([z0, z1]) =

z0
z1
.

We know that U1|V0
has a frame s0 defined by setting

s0([z0, z1]) =

(
(1,

z1
z0

), [z0, z1]

)

and that similarly, U1|V1
has a frame s1 defined by setting

s1([z0, z1]) =

(
(
z0
z1
, 1), [z0, z1]

)
.

A connection 5 on U1(C) is thus characterized by the differential forms

ω0 ∈ C1
∞(V0;U1(C)), ω1 ∈ C1

∞(V1;U1(C)) defined by the relations

5s0 = ω0s0, 5s1 = ω1s1.

Moreover, since

s0 = v0s1

on V0 ∩ V1, we have

5s0 = (dv0)s1 + v05 s1

and hence

ω0 =
(dv0)

v0
+ ω1.
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Conversely, the two 1-forms ω0, ω1 are given and satisfy the preceding gluing

condition, we can use them to construct a unique connection 5 on U1(C).

Let ϕ be a differentiable function on C such that

ϕ = 0 on D(0,
1

4
), ϕ = 1 on {D(0,

3

4
).

Set

ω0 = ϕ(v0)
dv0
v0

on V0 and

ω1 =

(
1− ϕ(

1

v1
)

)
dv1
v1

on V1. On V0 ∩ V1, we have

v1 =
1

v0
,

hence,

dv1 = −
1

v2
0

dv0

and
dv1
v1

= −
dv0
v0

.

It follows that

ω0 =
dv0
v0

+ ω1

on V0 ∩ V1 and that the forms ω0, ω1 define a connection 5 on U1(C). For

this connection, we have

Ω0 = dω0 + ω0 ∧ ω0

= d

(
ϕ(v0)

dv0
v0

)

on V0. Since Ω0 has compact support in V0, K5 corresponds to the form

obtained by extending Ω0 by 0 outside V0. Therefore,

∫

P1(C)

K5 =

∫

V0

Ω0 =

∫

C

d

(
ϕ(z)

dz

z

)

=

∫

D(0,1)

d

(
ϕ(z)

dz

z

)

=

∫

∂D(0,1)

ϕ(z)
dz

z

=

∫

∂D(0,1)

dz

z
= 2iπ
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and the conclusion follows.

(b) In the general case, it is easy to find a differentiable map

f : B′ −→ B

such that f−1E ' L1 ⊕ · · · ⊕ Lr with L1, · · · , Lr of rank 1 and for which

f∗ : H·(B; C) −→ H·(B′; C)

is injective. Let 51, · · · ,5r be connections on L1, · · · , Lr and denote

5 = 51 ⊕ · · · ⊕ 5r the associated direct sum connection on f−1E. In the

local frame e1, · · · , er of f−1(E) corresponding to local frames e1, · · · , er of

L1, · · · , Lr, the curvature matrix Ω has the diagonal form



Ω1

. . .

Ωr




where Ωk is the curvature form of 5k with respect to ek. Therefore,

det(I +
Ω

2iπ
) = (I +

Ω1

2iπ
) · · · (I +

Ωr
2iπ

)

and

γCr
(f−1(E)) = γC1 (L1) · · ·γC1 (Lr).

It follows from (a) that

γCr
(f−1(E)) = c(L1) · · · c(Lr) = c(f−1(E)).

Hence

f∗γCr
(E) = f∗c(E)

and the conclusion follows.

Corollary 4.3.6. For any A ∈ Mr(C), denote σ1(A), · · · , σr(A) the com-

plex numbers defined by setting

det(I + tA) = 1 + tσ1(A) + · · ·+ trσr(A).

Then, σ1(A), · · · , σr(A) are invariant homogeneous polynomials of degree

1, · · · , r and we have

γσ1 (E) = 2iπc1(E)

...

γσr
(E) = (2iπ)rcr(E)

for any differentiable complex vector bundle E of rank r on B.
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Proof. This follows directly from the equality

Cr(A) = 1 +
σ1(A)

2iπ
+ · · ·+

σr(A)

(2iπ)r
.

Corollary 4.3.7. There is a one to one correspondence between invariant

polynomials on Mr(C) and characteristic classes for complex vector bundles

of rank r with coefficients in C.

Proof. We know that any characteristic class γ for complex vector bundles

of rank r may be written in a unique way as a polynomial Q(c1, · · · , cr) in

Chern classes. It follows that

γ = γ
Q

(
σ1

2iπ
,··· ,

σr
(2iπ)r

).

Conversely, let P be an invariant polynomial on Mr(C). We know that for

any matrix A ∈ Mr(C) there is T ∈ GLr(C) such that

B = T−1AT =




λ1 0 · · · 0

∗ λ2
. . .

...
...

. . .
. . . 0

∗ · · · ∗ λr




For

S(ε) =




ε

ε2

. . .

εr




the matrix

C(ε) = S(ε)BS(ε)−1

is such that

Cjk(ε) = εj−kBjk.

It follows that

lim
ε−→0

Cjk(ε) = λkδjk.

But since P is invariant, we have

P (A) = P (B) = P (C(ε)) = lim
ε−→0

P (C(ε)) = P (diag(λ1, · · · , λr)).
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It follows that P (A) is a symmetric polynomial in the eigenvalues λ1, · · · , λr
of A. Therefore, there is a unique polynomial Q(S1, · · · , Sr) such that

P (A) = Q(σ1(A), · · · , σr(A)).

It follows that

γP = Q(2iπc1, · · · , (2iπ)rcr).

Hence, the conclusion.

4.4 Chern character

Definition 4.4.1. Let X be a topological space and let F be an abelian

sheaf. Hereafter, we denote

Ĥ·(X;F)

the completion of the topological abelian group obtained by endowing the

graded abelian group

H·(X;F)

with the topology for which
⊕

k≥l

Hk(X;F) (l ∈ N)

is a basis of neighborhoods of 0. Of course, forgetting the topologies, we

have

Ĥ·(X;F) '
∏

k∈N

Hk(X;F).

Remark 4.4.2. Consider a formal series

P (x1, · · · , xr) =

∞∑

k1=0

· · ·
∞∑

kr=0

ak1···kr
xk1

1 · · ·x
kr
r

with coefficients in a ring with unit A. Assume P (x1, · · · , xr) is symmetric

(i.e. such that

P (xµ1 , · · · , xµr
) = P (x1, · · · , xr)

for any permutation µ of 1, · · · , r). Then, the associated homogeneous

polynomials

Pm(x1, · · · , xr) =
∑

|k|=m

akx
k (m ≥ 0).

are also symmetric. As was explained in Remark 3.2.4 all these polynomials

may be written in a unique way as

Qm(Sr,1(x1, · · · , xr), · · · , Sr,r(x1, · · · , xr)).
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This allows us to associate to P and to any complex vector bundle E of

rank r on X a class cP (E) ∈ Ĥ·(X;A) by setting

cP (E) =

∞∑

m=0

Qm(c1(E), · · · , cr(E)).

Note that if f : Y −→ X is a continuous map, then it follows from the

preceding construction that

cP (f−1E) = f∗cP (E).

Definition 4.4.3. The class ch(E) ∈ Ĥ·(X; Q) given by the construction

above for A = Q and

P (x1, · · · , xr) = ex1 + · · ·+ exr ,

is called the Chern character of E.

Proposition 4.4.4. Let X be a topological space. Assume E and F are

complex vector bundles on X. Then,

(a) ch(E ⊕ F ) = ch(E) + ch(F );

(b) ch(E ⊗F ) = ch(E) ^ ch(F ).

Proof. This follows directly from the splitting principle and the definition

of the Chern character.

Proposition 4.4.5. There is a unique extension

ch : K
b(VectC(B)) −→ Ĥ·(B; Z)

of the usual Chern character

ch : VectC(B) −→ Ĥ·(B; Z)

which is invariant by isomorphism and such that

(i) for any E· in Kb(VectC(B)) we have

ch(E·[1]) = − ch(E·)

(ii) for any distinguished triangle

E· −→ F · −→ G·
+1
−−→

of Kb(VectC(B)), we have

ch(F ·) = ch(E·) + ch(G·).
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This extension is given by the formula

ch(E·) =
∑

k∈Z

(−1)k ch(Ek).

Proof. Uniqueness. Let E· be an object of Kb(VectC(B)) and let us prove

that

ch(E·) =
∑

k∈Z

(−1)k ch(Ek).

We know that there are integers a, b such that Ek = 0 if k 6∈ [a, b]. Let us

proceed by increasing induction on b − a. If b − a = 0, the result follows

directly from (i) and the fact that ch extends the usual Chern character.

Assume now that b− a > 0. Remark that E· is isomorphic to the mapping

cone of

Ea[−a− 1]
da

−→ σ>aE·

where σ>aE· denotes the complex

0 −→ Ea+1 −→ · · · −→ Eb −→ 0

with Ea+1 in degree a + 1. It follows from (i) and (ii) that

ch(σ>aE·) = (−1)a−1 ch(Ea) + ch(E·).

Hence, by the induction hypothesis

ch(E·) = (−1)a ch(Ea) +
∑

k≥a+1

(−1)k ch(Ek) =
∑

k∈Z

(−1)k ch(Ek).

Existence. Let us define ch(E·) as
∑

k∈Z(−1)k ch(Ek). Assume first

that E· ' 0 in Kb(VectC(B)). As is well-known, this means that E· is split

exact. Hence, if Zk denotes the kernel of dk : Ek −→ Ek+1, we have

Ek ' Zk ⊕ Zk+1

and

ch(E·) =
∑

k∈Z

(−1)k ch(Ek) =
∑

k∈Z

(−1)k ch(Zk)−
∑

k∈Z

(−1)k+1 ch(Zk+1) = 0.

Assume now that M ·(u·) is the mapping cone of

u· : E· −→ F ·.

By construction,

Mk(u·) = Ek+1 ⊕ F k.
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Hence,

ch(M ·(u·)) =
∑

k∈Z

(−1)k
(
ch(Ek+1) + ch(F k)

)

= ch(F ·)− ch(E·).

Combining the two preceding results, we see that if

u· : E· −→ F ·

is an isomorphism in Kb(VectC(B)), then ch(E·) = ch(F ·). It follows that

ch is invariant by isomorphism and that (ii) is satisfied.

Corollary 4.4.6. The Chern character for complexes has the following

properties:

(i) if E· and F · are objects of Kb(VectC(B)), then

ch(E· ⊗F ·) = ch(E·) ^ ch(F ·);

(ii) if b : B′ −→ B is a continuous map andE· is an object ofKb(VectC(B)),

then

ch(f−1E·) = f∗ ch(E·).

Proof. This follows at once from the definition of ch for complexes and the

similar properties of the usual Chern character. As a matter of fact, for (i),

we have

(E· ⊗F ·)k =
⊕

l∈Z

El ⊗F k−l

and

ch(E· ⊗F ·) =
∑

k∈Z

(−1)k
∑

l∈Z

ch(El) ^ ch(F k−l)

=
∑

k∈Z

∑

l∈Z

(−1)l ch(El) ^ (−1)k−l ch(F k−l)

= ch(E·) ^ ch(F ·).

As for (ii), we have

(f−1E·)k = f−1(Ek)

and hence

ch(f−1E·) =
∑

k∈Z

(−1)k ch(f−1Ek)

=
∑

k∈Z

(−1)kf∗ ch(Ek)

= f∗ ch(E·).
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Definition 4.4.7. The Todd class of a complex vector bundle E with base

X is the class td(E) ∈ Ĥ·(X; Q) given by the construction of Remark 4.4.2

for A = Q and

P (x1, · · · , xr) =
x1

1− e−x1
· · ·

xr
1− e−xr

.

Remark 4.4.8. It follows directly from the preceding definition that

td(E ⊕ F ) = td(E) ^ td(F )

if E and F are complex vector bundles on the same base.

Proposition 4.4.9. Let E be a complex vector bundle of rank r on the

topological space X. Then,

ch(
·∧
E) = cr(E

∗)/ td(E∗).

Proof. By the splitting principle, we may assume that E = L1 ⊕ · · · ⊕ Lr
where L1, · · · , Lr are line bundles. Set x1 = c1(L1), · · · , xr = c1(Lr). We

have
·∧
E = (

·∧
L1) ⊗ · · · ⊗ (

·∧
Lr).

Hence,

ch(

·∧
E) = ch(

·∧
L1) · · · ch(

·∧
Lr) = (1− ex1) · · · (1− exr ).

On the other hand,

c(E∗) = c(L∗1) · · · c(L
∗
r) = (1 − x1) · · · (1− xr)

and

td(E∗) = td(L∗1) · · · td(L∗r ) =
−x1

1− ex1
· · ·

−xr
1− exr

.

It follows that

cr(E
∗) = (−x1) · · · (−xr).

Hence,

cr(E
∗)/ td(E∗) = (1 − ex1) · · · (1− exr)

and the conclusion follows.
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4.5 Local chern character

Definition 4.5.1. Let E· be an object of Kb(VectC(B)) and let S be a

closed subset of B. We say that E· is supported by S if E·B\S ' 0 in

Kb(VectC(B \ S)) and denote

Kb
S(VectC(B))

the subcategory of Kb(VectC(B)) formed by the complexes which are sup-

ported by S.

Assume the object E· of Kb(VectC(B)) is supported by S. Then,

ch(E·)|B\S = ch(E·|B\S ) = 0

in Ĥ·(B \ S; Z). From the exact sequence

Ĥ·S(B; Z)
i
−→ Ĥ·(B; Z)

r
−→ Ĥ·(B \ S; Z)

it follows that ch(E·) is the image of a class in Ĥ·S(B; Z). Although such a

class is in general not unique, we shall prove the following result (cf [17]).

Proposition 4.5.2. There is a unique way to define

chS : Kb
S(VectC(B)) −→ Ĥ·S(B; Z)

for any topological space B and any closed subset S of B in such a way that

(i) if E· and F · are isomorphic objects of Kb
S(VectC(B)), then

chS(E·) = chS(F ·);

(ii) for any E· in Kb
S(VectC(B)) we have

i(chS(E·)) = chE·;

(iii) if b : B′ −→ B is a continuous map and E· is an object of Kb
S(VectC(B))

then

chS′(f
−1E·) = f∗ chS(E·)

for any closed subset S′ of B′ such that f−1(S) ⊂ S′.

Moreover,

(iv) for any E· ∈ Kb
S(VectC(B)) we have

chS(E·[1]) = − chS(E·);
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(v) for any distinguished triangle

E· −→ F · −→ G·
+1
−−→

of Kb
S(VectC(B)) we have

chS(F ·) = chS(E·) + chS(G·).

Proof. Uniqueness. By Lemma 4.5.3 below, we know that to any

E· ∈ Kb
S(VectC(B))

is canonically associated a continuous map

s : B −→ B̃,

a closed subset S̃ and an object Ẽ· of Kb
S̃
(VectC(B̃)) such that

(i) s−1(S̃) ⊂ S;

(ii) s−1Ẽ· ' E·;

(iii) the map

ĩ : Ĥ·
S̃
(B̃; Z) −→ Ĥ·(B̃; Z)

is injective.

It follows that

chS(E·) = chS(s−1Ẽ·) = s∗ chS̃(Ẽ·)

and since chS̃(Ẽ·) is the unique cohomology class such that

ĩ(chS̃(Ẽ·)) = ch(Ẽ·),

we get the conclusion.

Existence. Using the notations introduced above, we define chS(E·) by

setting

chS(E·) = s∗ chS̃(Ẽ·)

where chS̃(Ẽ·) is characterized by the relation

ĩ(chS̃(Ẽ·)) = ch(Ẽ·).

Note that from this definition it follows easily that chS(E·) = 0 ifE· is exact.

As a matter of fact, by construction of S̃ we have in this case s(B)∩ S̃ = ∅.

Let E·1, E
·
2 be two objects of Kb

S1
(VectC(B1)) and Kb

S2
(VectC(B2)). De-

note B̃1, S̃1, Ẽ·1 and B̃2, S̃2, Ẽ·2 the objects associated to E·1 and E·2 by

Lemma 4.5.3 and let s1 : B1 −→ B̃1, s2 : B2 −→ B̃2 be the canonical maps.
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(a) Assume first that b : B2 −→ B1 is a continuous map, that E·2 ' b
−1E·1

in Cb(VectC(B2)) and that b−1(S1) ⊂ S2 and let us prove that

b∗ chS1(E1) = chS2(E
·
2).

By construction of B̃2 and B̃1, we get a continuous map

b̃ : B̃2 −→ B̃1

such that b̃ ◦ s2 = s1 ◦ b and an isomorphism

Ẽ·2 ' b̃
−1Ẽ·1

in Cb(VectC(B̃2)). From the definitions of S̃1 and S̃2, it follows also that

b̃−1S̃1 ⊂ S̃2.

Using Corollary 4.4.6, we see that

ch(Ẽ·2) = b̃∗ ch(Ẽ·1).

This entails that

ĩ2 chS̃2
(Ẽ·2) = b̃∗ĩ1 chS̃1

(Ẽ·1)

= ĩ2(b̃
∗ chS̃1

(Ẽ·1))

and hence that

chS̃2
(Ẽ2) = b̃∗ chS̃1

(Ẽ∗1).

Therefore,

chS2(E2) = s∗2 chS̃2
(Ẽ·2) = s∗2b̃

∗ chS̃1
(Ẽ·1)

= b∗s∗1 chS̃1
(Ẽ·1) = b∗ chS1(E·1

)

and the conclusion follows.

Let E· ∈ Kb
S(VectC(B)). Applying the result obtained above for B1 =

B2, b = id, E·1 = E·, we see that chS(E·) depends only on the isomorphy

class of E· in Cb(VectC(B)). By a similar reasoning, we see also that

chS(E·[1]) = − chS(E·).

(b) Assume now that B1 = B2 and S1 = S2. Denoting B and S these

spaces, let us prove that

chS(E·1 ⊕ E
·
2) = chS(E·1) + chS(E·2).
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Set C̃ = B̃1 ×B B̃2. Denote t : B −→ C̃ the map deduced from from s1 and

s2 and p1 : C̃ −→ B̃1, p2 : C̃ −→ B̃2 the two projections. Set F̃ ·1 = p−1
1 Ẽ·1,

F̃ ·2 = p−1
2 Ẽ·2 and T = p−1

1 (S̃1)∪ p
−1
2 (S̃2). Thanks to Lemma 4.5.5, we know

that

i : Ĥ·T (C̃; Z) −→ H·(C̃; Z)

is injective. Since

i(chT (F̃ ·1 ⊕ F̃
·
2)) = ch(F̃ ·1 ⊕ F̃

·
2)

= ch(F̃ ·1) + ch(F̃ ·2)

= i(chT (F̃ ·1) + chT (F̃ ·2))

it follows that

chT (F̃ ·1 ⊕ F̃
·
2) = chT (F̃ ·1) + chT (F̃ ·2).

Using the fact that t−1(T ) = s−1
1 (S̃1) ∩ s

−1
2 (S̃2) ⊂ S and the isomorphisms

t−1F̃ ·1 ' s
−1
1 Ẽ·1 ' E

·
1, t−1F̃ ·2 ' s

−1
2 Ẽ·2 ' E

·
2,

we get that

chS(Ẽ·1 ⊕ Ẽ
·
2) = t∗ chT (F̃ ·1 ⊕ F̃

·
2)

= t∗ chT (F̃ ·1) + t∗ chT (F̃ ·2)

= chS(Ẽ·1) + chS(Ẽ·2).

(c) With the same notations as in (b), let us now prove that if M ·(u·)

is the mapping cone of the morphism

u· : E·1 −→ E·2

of CbS(VectC(B)) then chS(M ·(u·)) = chS(E·2) − chS(E·1). To this end,

consider the complex vector bundle p : H −→ B whose fiber at b ∈ B is

Hom
Cb(VectC)(E

·
b, F

·
b),

a continuous local frame being obtained by fixing continuous local frames

for each Ek and each F k and associating to a morphism v· the components

of the matrices of the vk’s with respect to the fixed frames. Set F ·1 = p−1E·1
and F ·2 = p−1E·2. By construction, there is a canonical morphism

v· : F ·1 −→ F ·2

and we can associate to u· : E·1 −→ E·2 a section

σu· : B −→ H
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making the diagram

σ−1
u· (F ·1)

σ−1

u·
(v·)

//

�O
��

σ−1
u· (F ·2)

�O
��

E·1 u·
// E·2

commutative. It follows that

σ−1
u· M

·(v·) ' M ·(u·)

in Cb(VectC(B)) and hence that

chS(M ·(u·)) = σ∗u· chS(M ·(v·)).

Since σu· and σ0· are clearly homotopic, we see that

chS(M ·(u·)) = chS(M ·(0·))

= chS(E·1[−1]⊕ E·2)

= chS(E·2) − chS(E·1).

(d) When u· is an isomorphism in Kb(VectC(B)), M ·(u·) is exact and

we get

chS(E·2) = chS(E·1).

It follows that for any distinguished triangle

E·1 −→ E·2 −→ E·3
+1
−−→

of Kb(VectC(B)), we have

chS(E·3) = chS(E·2) − chS(E·1)

and this completes the proof.

Lemma 4.5.3. Let S be a closed subset of the topological space B. Then,

to any object E· of CbS(VectC(B)) one can associate canonically

(i) a continuous projection p : B̃ −→ B with a canonical section s : B −→ B̃;

(ii) a closed subset S̃ of B̃ such that s−1(S̃) ⊂ S and for which the canon-

ical map

ĩ : Ĥ·
S̃
(B̃; Q) −→ H·(B̃; Q)

is injective;
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(iii) an object Ẽ· of Cb
S̃
(VectC(B̃)) such that

s−1(Ẽ·) ' E·.

Proof. The case S = B being obvious, we shall assume S 6= B.

(a) Construction of B̃. Let ν· = (νl)l∈Z be a family of natural integers

for which {l ∈ Z : νl 6= 0} is finite and let V be a finite dimensional complex

vector space. By a flag of nationality ν· of V , we mean an increasing family

V· = (Vl)l∈Z of complex vector subspaces of V such that

dimVl+1 = dimVl + νl+1.

Generalizing what has been done for complex Grassmannians, it is easy

to see that the set Flν·(V ) of flags of nationality ν· of V has a canonical

structure of differential manifold. Working as in the construction of the

projective bundle associated to a complex vector bundle, we see more gen-

erally that any complex vector bundle E −→ B gives rise to the flag bundle

Flν·(E) −→ B.

In the special case where

E = ⊕k∈ZE
k

and

ν· = (rkEl)l∈Z

the flag bundle Flν·(E) −→ B has a canonical section given by

b 7→ El,b

where

El = ⊕k≤lE
k

for any l ∈ Z. Let us define B̃ as the closed subset of Flν·(E) formed by

flags F· such that

El−1,b ⊂ Fl ⊂ El+1,b

for any l ∈ Z if F· ∈ Flν·(E
·)b. We denote p : B̃ −→ B the map induced by

the canonical projection Flν·(E) −→ B.

(b) Construction of Ẽ· and S̃. Denote F̃l the complex vector bundle on

B̃ whose fiber at F· ∈ B̃ is Fl. By construction,

F̃l ⊂ F̃l+1, p−1El ⊂ p
−1El+1, p−1El−1 ⊂ F̃l ⊂ p

−1El+1

for any l ∈ Z. Set

Ẽk = F̃k/p
−1Ek−1.
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Clearly, Ẽk is a complex vector bundle of rank νk on B̃. Denote

d̃k : Ẽk −→ Ẽk+1

the morphism of complex vector bundles deduced from the inclusions F̃k ⊂

F̃k+1, p
−1Ek−1 ⊂ p−1Ek. Since

F̃k ⊂ p
−1Ek+1

we have d̃k+1 ◦ d̃k = 0 and Ẽ· = (Ẽk, d̃k)k∈Z is a complex of complex vector

bundles on B̃. We denote S̃ the support of Ẽ· in B̃.

(c) Construction of s. Let us define s : B −→ B̃ as the map which

associates to any b ∈ B the flag F· ∈ Flν·(E)b defined by setting

Fl = {x ∈
⊕

k≤l+1

Ekb : xl+1 = dlxl}.

One checks easily that s is continuous and that

s−1Ẽ· ' E·

in Cb(VectC(B)). In particular, we see that the support of E· is s−1(S̃) and

hence that s−1(S̃) ⊂ S.

(d) Construction of the sequence (λk)k∈Z if S̃ 6= B̃. Since S̃ 6= B̃, the

complex Ẽ is exact at some point b̃ of B̃. It follows that there is a unique

sequence λ· = (λk)k∈Z of natural numbers such that

νk = λk + λk+1.

As a matter of fact, if Z̃k
b̃

is the kernel of d̃k
b̃

: Ẽk
b̃
−→ Ẽk+1

b̃
, we have

Ẽk
b̃
' Z̃k

b̃
⊕ Z̃k+1

b̃

and we may take λk = dim Z̃k
b̃
. The existence follows. As for the uniqueness,

it is sufficient to note that

λl =
∑

k<l

(−1)k−l+1νk.

(e) Characterization of B̃ \ S̃ if S̃ 6= B̃. Let us prove that a flag F· ∈ B̃

above b ∈ B is not in S̃ if and only if

dim(Fk ∩Ek,b/Ek−1,b) = λk (*)

for all k ∈ Z. To this end, recall that the fiber of Ẽ· at F· is isomorphic to

the complex

· · · −→ Fk−1/Ek−2,b −→ Fk/Ek−1,b −→ Fk+1/Ek,b −→ · · ·
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the k-cocycles of which are given by

Z̃kF· = Fk ∩Ek,b/Ek−1,b.

Hence, if Ẽ· is exact at F·, (*) follows from the construction of λ· in (a). Con-

versely, assume (*) holds for all k ∈ Z and denote B̃kF· the k-coboundaries

of Ẽ·F·. The exact sequence

0 −→ Z̃k−1
F·
−→ Ẽk−1

F·
−→ B̃kF· −→ 0

shows that

dim B̃kF· = dim Ẽk−1
F·
− dim Z̃k−1

F·
= νk−1 − λk−1 = λk.

It follows that dim B̃kF· = dim Z̃kF· and hence that B̃kF· = Z̃kF· .

(f) Cohomology of B̃ \ S̃ if S̃ 6= B̃. Recall that if E is an n-dimensional

complex vector bundle on B and l is an integer such that 0 ≤ l ≤ n, Then

Gl(E) denotes the Grassmannian bundle whose fiber at b ∈ B is the set

of complex vector subspaces of dimension l of Eb. Denote G the fibered

product of the Grassmannian bundles Gλk
(Ek) (k ∈ Z). For any flag F· of

B̃ \ S̃ above b and any k ∈ Z, part (e) shows that

(Fk ∩Ek,b)/Ek−1,b

is λk-dimensional. Since

Ek,b/Ek−1,b ' E
k

this gives us a continuous map

f : B̃ \ S̃ −→ G.

We shall prove that this map is a fiber bundle whose fibers are isomorphic

to Cd with d =
∑
k∈Z λ

2
k. This will entail that

f∗ : H·(G; Q) −→ H·(B̃ \ S̃; Q)

is an isomorphism.

For any k ∈ Z, let Lk be an element of Gλk
(Ek) above b ∈ B. Denote

L· the element of G associated to the family (Lk)k∈Z. A flag F· of B̃ above

b belongs to f−1(L·) if and only if the image of

Fk ∩Ek,b/Ek−1,b
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in Ek is equal to Lk for any k ∈ Z. Assume Fl is known for l ≥ k+ 1, then

Fk may be chosen arbitrarily between the subspaces of dimension
∑

l≤k νl
of Fk+1 ∩Ek+1,b such that

Fk ∩Ek,b = Ek−1,b⊕ Lk.

These subspaces are in bijection with the subspaces Gk of dimension νk −

λk = λk+1 of

Fk+1 ∩Ek+1,b/Ek−1,b⊕ Lk

such that Gk ∩Ek,b/Ek−1,b⊕ Lk = 0. Since

dim(Fk+1 ∩Ek+1,b/Ek+1,b) = λk+1

and

dim(Ek,b/Ek−1,b⊕ Lk) = νk − λk = λk+1,

we have

dim(Fk+1 ∩Ek+1,b/Ek−1,b⊕ Lk) = λk+1 + νk − λk = 2λk+1.

It follows that Gk may be chosen arbitrarily among the supplementary sub-

spaces of a fixed λk+1 dimensional subspace in a space of dimension 2λk+1.

Thanks to Lemma 4.5.4, these subspaces are in bijection with Cλ2
k+1 . The

conclusion follows by decreasing induction on k.

Now, consider the continuous map

g : G −→ B̃ \ S̃

defined by sending an element L· of G above b ∈ B to the flag

(El−1,b ⊕ Ll ⊕ Ll+1)l∈Z .

By construction,

f ◦ g = idG .

Therefore,

g∗ : H·(B̃ \ S̃; Q) −→ H·(G; Q)

is the inverse of

f∗ : H·(G; Q) −→ H·(B̃ \ S̃; Q).

(g) Injectivity of ĩ. A long exact sequence of cohomology shows that the

canonical morphism

ĩ : H·
S̃
(B̃; Q) −→ H·(B̃; Q)
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is injective, if the canonical morphism

j̃∗ : H·(B̃; Q) −→ H·(B̃ \ S̃; Q)

associated to the inclusion j̃ : B̃ \ S̃ −→ B̃ is surjective. Set

G′ =
∏

k∈Z

Gνk
(Ek ⊕ Ek+1)

and denote

f ′ : B̃ −→ G′

the continuous map which sends a flag F· of B̃b to the element

(Fk/Ek−1,b)k∈Z

of G′b. Clearly, f ′ ◦ j̃ ◦ g is the map

h : G −→ G′

which sends an element L· ∈ Gb to the element

(Lk ⊕ Lk+1)k∈Z

of G′b. Since

h∗ = g∗ ◦ (j̃)∗ ◦ (f ′)∗

and since g∗ is an isomorphism, it is sufficient to show that h∗ is surjective.

Denote

pk : G −→ Gλk
(Ek)

the canonical projection and Tk the tautological bundle on Gλk
(Ek). Re-

peated applications of the Leray-Hirsch theorem show that

H·(G; Q)

is a free H·(B; Q)-module generated by the p∗kcl(Tk). Denote

p′k : G′ −→ Gνk
(Ek ⊕ Ek+1)

the canonical projection and T ′k the tautological bundle on Gνk
(Ek⊕Ek+1).

Clearly, we have

(p′k ◦ h)
−1(T ′k) ' p

−1
k Tk ⊕ p

−1
k+1Tk+1.

Therefore,

(h∗ ◦ (p′k)
∗)(c·(T

′
k)) = p∗kc·(Tk) ^ p∗k+1c·(Tk+1).
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It follows that

p∗kc·(Tk) ^ p∗k+1c·(Tk+1)

and its inverse both belong to the image of h∗. Hence, proceeding by de-

creasing induction on k, we see that p∗kc·(Tk) ∈ Imh∗ for all k ∈ Z. This

entails that Imh∗ = H·(G; Q) and the conclusion follows.

Lemma 4.5.4. Let E, F be two finite dimensional complex vector spaces

and set G = E⊕F . Then, the vector subspace H of G such that E⊕H = G

are canonically in bijection with the complex vector space

Hom(F,E).

whose dimension is dimE · dimF .

Proof. Let pE : G −→ E and pF : G −→ F be the two projections associated

to the decomposition G = E ⊕ F . For any vector subspace H of G such

that E ⊕ H = G, the linear map

pF |H : H −→ F

is bijective. Denote q its inverse and set hH = pE ◦ q. By construction,

q(x) = (hH(x), x) and H = {(hH(x), x) : x ∈ F}.

Now, let h ∈ Hom(F,E) and set

Hh = {(h(x), x) : x ∈ F}.

Clearly, E ⊕ Hh = G and one checks easily that the maps H 7→ hH and

h 7→Hh are reciprocal bijections.

Lemma 4.5.5. Let S1, S2 be two closed subsets of B and let E·1, E
·
2 be

two bounded complexes supported respectively by S1 and S2. Denote

q1 : B̃1 −→ B, s1 : B −→ B̃1, S̃1, Ẽ·1

and

q2 : B̃2 −→ B, s2 : B −→ B̃2, S̃2, Ẽ·2

the objects associated to E·1 and E·2 by Lemma 4.5.3. Set C̃ = B̃1 ×B B̃2

and denote p1 : C̃ −→ B̃1, p2 : C̃ −→ B̃2 the two projections. Then the

canonical morphism

H·T (C̃; Q) −→ H·(C̃; Q)

is injective if T is equal to one of the closed subsets

p−1
1 (S̃1), p−1

2 (S̃2), p−1
1 (S̃1) ∩ p

−1
2 (S̃2), p−1

1 (S̃1) ∪ p
−1
2 (S̃2).
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Proof. Thanks to Lemma 4.5.6, we have the following (horizontal) exact

sequence of (vertical) complexes

0 0 0

0 // H·
S̃1×(B̃2\S̃2)

(B̃1 × B̃2 \ S̃2; Q) //

OO

H·(B̃1 × B̃2 \ S̃2; Q)
δ //

OO

H·(B̃1 \ S̃1 × B̃2 \ S̃2; Q) //

OO

0

0 // H·
S̃1×B̃2

(B̃1 × B̃2; Q)
γ

//

α

OO

H·(B̃1 × B̃2; Q) //

β

OO

H·(B̃1 \ S̃1 × B̃2; Q) //

OO

0

0 // H·
S̃1

(B̃1; Q) ⊗ H·
S̃2

(B̃2; Q) //

OO

H·(B̃1; Q) ⊗ H·
S̃2

(B̃2; Q) //

OO

H·(B̃1 \ S̃1; Q) ⊗ H·
S̃2

(B̃2; Q) //

OO

0

0

OO

0

OO

0

OO

where cartesian products (resp. tensor products) are to be understood over

B (resp. H·(B; Q)). The third (vertical) complex being exact, the snake’s

Lemma combined with the fact that β is surjective shows that α is also

surjective. Combining this result with the long exact sequence associated

with the distinguished triangle

RΓS̃1×S̃2
(B̃1 × B̃2; Q) −→ RΓS̃1×B̃2

(B̃1 × B̃2 ; Q) −→ RΓS̃1×B̃2\S̃2
(B̃1 × B̃2 \ S̃2; Q)

+1
−−→

we get that

H·
S̃1×S̃2

(B̃1 × B̃2; Q) −→ H·
S̃1×B̃2

(B̃1 × B̃2; Q)

is injective. Since γ is also injective, we have established the result for

T = S̃1× S̃2 and T = S̃1× B̃2. Since β and δ ◦β are both surjective we also

get the result for T = B̃1 × S̃2 and T = (S̃1 × B̃2) ∪ (B̃1 × S̃2).

Lemma 4.5.6. Let E· be a bounded complex supported by the closed

subset S of B. Let q : B̃ −→ B and S̃ be as in Lemma 4.5.3. Then,

(i) H·(B̃ \ S̃; Q) is a finite free H·(B; Q)-module;

(ii) for any continuous map b : C −→ B, we have the canonical morphism

H·(B̃ \ S̃; Q)⊗H·(B;Q) H·(C; Q)
∼
−→ H·(B̃ \ S̃ ×B C; Q).

Proof. (i) Using the notions introduced in Lemma 4.5.3, we have

H·(B̃ \ S̃; Q) ' H·(G; Q)

and the conclusion follows from Leray-Hirsch theorem.

(ii) Working as in part (c) of this same lemma, we see that

f ×B idC : B̃ \ S̃ ×B C −→ G×B C
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induces an isomorphism

H·(G× C; Q) ' H·(B̃ \ S̃ ×B C; Q)

and the conclusion follows by applying once more Leray-Hirsch theorem.

Proposition 4.5.7. If E·1 and E·2 are complexes of complex vector bundles

on B with support respectively in S1 and S2 then E·1⊗E
·
2 has a support in

S1 ∩S2 and

chS1∩S2 (E
·
1 ⊗E

·
2) = chS1 (E

·
1) ^ chS2(E

·
2).

Proof. Let us use the notations of Lemma 4.5.5. Denote t : B −→ C̃ the map

associated to the canonical maps s1 : B −→ B̃1, s2 : B −→ B̃2 and set

F̃ ·1 = p−1
1 Ẽ·1, F̃ ·2 = p−1

2 Ẽ·2, T̃1 = p−1
1 S̃1, T̃2 = p−1

2 S̃2.

Clearly, F̃ ·1 and F̃ ·2 have support respectively in T̃1 and T̃2 and F̃ ·1 ⊗ F̃
·
2 has

support in T̃1 ∩ T̃2. Since

E·1 = t−1F̃ ·1, E·2 = t−1F̃ ·2

and

S1 ∩ S2 ⊃ t
−1(T̃1 ∩ T̃2)

it follows that

chS1∩S2 (E
·
1 ⊗E

·
2) = t∗ chT̃1∩T̃2

(F̃ ·1 ⊗ F̃
·
2).

By Lemma 4.5.5, we know that the canonical map

ĩ : Ĥ·
T̃1∩T̃2

(C̃; Q) −→ Ĥ·(C̃; Q)

is injective. Since

ĩ(chT̃1∩T̃2
(F̃ ·1 ⊗ F̃

·
2)) = ch(F̃ ·1 ⊗ F̃

·
2)

= ch F̃ ·1 ^ ch F̃ ·2

= ĩ(chT1(F̃
·
1) ^ chT2(F̃

·
2))

we get that

chT̃1∩T̃2
(F̃ ·1 ⊗ F̃

·
2) = chT1(F̃

·
1) ^ chT2(F̃

·
2)

and the conclusion follows since

chS1 (E
·
1) = t∗ chT1(F̃

·
1)

and

chS2(E
·
2) = t∗ chT2(F̃

·
2).
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4.6 Extension to coherent analytic sheaves

Let X be a topological space and let R be a sheaf of ring on X. Recall that

R is coherent if the kernel of any morphism of the type

Rp|U −→ R|U (U open subset of X)

is locally of finite type. In this case, a R-module F is coherent if and only

if it admits locally presentations of the form

Rp1 −→ Rp0 −→ F −→ 0.

Moreover, these sheaves form an abelian category denoted Coh(R). When

X (resp. M ) is a complex (resp. real) analytic manifold, OX (resp. AM ) is

a coherent sheaf of rings and one sets for short

Coh(X) = Coh(OX) (resp. Coh(M ) = Coh(AM ) )

and calls coherent analytic sheaves the objects of this category. Note that

among coherent analytic sheaves on X (resp. M ), one finds the locally free

OX-modules (resp. AX -modules). They correspond to the sheaves of com-

plex (resp. real) analytic sections of complex (resp. real) analytic complex

vector bundles on X and form an additive subcategory of Coh(X) (resp.

Coh(M )) which will be denoted Bnd(X) (resp. Bnd(M )).

Although we will not review in details the theory of coherent analytic

sheaves here, we will feel free to use its main results without proof since the

interested reader can find them in standard texts (see e.g. [12, 13]).

Definition 4.6.1. Let M be a real analytic manifold and let S be a closed

subset of M . We denote Kb
S(Bnd(M )) (resp. Db

S(Coh(M ))) the full tri-

angulated subcategory of Kb(Bnd(M )) (resp. Db(Coh(M ))) formed by the

complexes which are exact on M \ S.

Lemma 4.6.2. Assume M is a compact real analytic manifold. Then,

(a) For any F · ∈ Cb(Coh(M )) there is L· ∈ Cb(Bnd(M )) and a quasi-

isomorphism

u· : E · −→ F ·.

(b) Any exact sequence

0 −→ Ep −→ . . . −→ Eq −→ 0

with Ep, . . . , Eq in Bnd(M ) splits.
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(c) For any closed subset S of M , the canonical inclusion

Bnd(M ) −→ Coh(M )

induces the equivalence of triangulated categories

Kb
S(Bnd(M )) −→ Db

S(Coh(M )).

Proof. (a) As is well known (see e.g. [18, Corollary 1.7.8]), it is sufficient to

prove that:

(i) For any coherent analytic sheaf F on M , there is an epimorphism

E � F

with E ∈ Bnd(M ).

(ii) There is an integer n such that for any exact sequence

0 −→ En −→ En−1 −→ . . . −→ E0

of Coh(M ) with En−1, . . . , E0 in Bnd(M ) we have En ∈ Bnd(M ).

Property (i) may be established as follows. Let F be a coherent analytic

sheaf onM . SinceM has a complex neighborhood which is a Stein manifold,

Cartan’s theorem A shows that F is generated by its global sections. Using

the compactness of M and the fact that F is locally of finite type, one finds

global sections s1, . . . , sN of F inducing an epimorphism

ANM � F .

It follows that any object of Coh(M ) is a quotient of an object of Bnd(M ).

Let us now show that property (ii) holds with n equal to the dimension

of M . Let

0 −→ En −→ En−1 −→ . . . −→ E0

be an exact sequence of Coh(M ) with En−1, . . . , E0 in Bnd(M ). Denote

F the cokernel of the last morphism. The global homological dimension of

AM being equal to n, the flat dimension of F is not greater than n. Since

En−1, . . . , E0 are flat AM -modules, it follows that En is also flat. Applying

Nakayama’s lemma, we see that En is locally free and hence belongs to

Bnd(M ) as expected.

(b) Let

0 −→ E ′ −→ E −→ E ′′ −→ 0 (*)
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be an exact sequence with E and E ′′ in Bnd(M ). Since E ′′ is locally free,

we have

RHomAM
(E ′′, E ′) ' HomAM

(E ′′, E ′).

Moreover, HomAM
(E ′′, E ′) being a coherent analytic sheaf, Cartan’s theo-

rem B shows that

RΓ(M ;HomAM
(E ′′, E ′)) ' Γ(M ;HomAM

(E ′′, E ′)).

Therefore

RHomAM
(E ′′, E ′) ' HomAM

(E ′′, E ′)

and E ′′ is a projective AM -module. In particular, the sequence (*) splits.

Since a direct summand of a flat module is flat, E ′ is flat and hence locally

free. With these results at hand, we can conclude by a simple iteration

procedure.

(c) This follows directly from (a) and (b) thanks to well-known results

of homological algebra.

Proposition 4.6.3. Let M be a compact real analytic manifold and let

S be a closed subset of M . There is a unique way to define a local Chern

character

chS : Db
S(Coh(M )) −→ H·S(M ; Z)

which is invariant by isomorphism and such that

chS(E ·) = chS(E·)

if E · is an object of Kb
S(Bnd(M )) and E· is the associated complex of com-

plex vector bundles. Moreover, such a local chern character is additive and

multiplicative.

Proof. Thanks to Proposition 4.5.2 and Proposition 4.5.7, the result follows

directly from the preceding lemma.

Remark 4.6.4. It follows easily from the additivity of the local Chern

character introduced in the preceding proposition that

chS(F ·) =
∑

k∈Z

(−1)k chS(Hk(F)).

So, the local Chern character for complexes of coherent analytic sheaves may

be reduced to the local Chern character for coherent analytic sheaves. A

similar reduction has however no meaning for complexes of complex vector

bundles since the corresponding cohomology sheaves are not locally free in

general.
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Definition 4.6.5. Let M be a compact real analytic manifold, let S be a

closed subset of M and let F · be an object of Db
coh(AM ) (i.e. a complex of

AM-modules with bounded coherent cohomology). Assume F · is supported

by S. We extend the definition of chS by setting

chS(F ·) =
∑

k∈Z

(−1)k chS(Hk(F))

where the classes

chS(Hk(F)) ∈ H·S(M ; Z)

are defined according to the preceding proposition.

Proposition 4.6.6. Let M be a compact real analytic manifold and let S

and T be closed subsets of M .

(a) Assume

E · −→ F · −→ G·
+1
−−→

is a distinguished triangle of Db
coh(AM ) which is supported by S, then

chS (F ·) = chS(E ·) + chS(G·).

(b) Assume E · and F · are objects of Db
coh(AM ) supported respectively by

S and T . Then E · ⊗L
AM
F · is an object of Db

coh(AM ) supported by

S ∩ T and

chS∩T (E · ⊗L
AM
F ·) = chS(E ·) ^ chT (F ·)

Proof. Part (a) follows from the long exact sequence of cohomology and

the additivity of the local Chern character for coherent analytic sheaves.

Part (b) follows from the multiplicativity of the local Chern character of

Proposition 4.6.3 combined with the fact that any object of Db
coh(AM ) is

isomorphic in Db
coh(AM ) with an object of Db(Coh(M )).

Definition 4.6.7. Let X be a compact complex manifold and let S be a

closed subset of X. Assume F · is an object of Db
coh(OX ) supported by S.

Using the real analytic structure of X, we set

chS(F) = chS(AX ⊗OX
F).

Remark 4.6.8. Since AX is flat over OX , the local Chern character in-

troduced in the preceding proposition is clearly invariant by isomorphism,

additive and multiplicative.





5

Riemann-Roch theorem

5.1 Introduction

Let X be a compact complex analytic manifold of complex dimension n. To

fix the notations, let us recall that

OX = sheaf of holomorphic functions on X

ΩpX = sheaf of holomorphic p-forms on X

KX = sheaf of meromorphic functions on X

A
(p,q)
X = sheaf of real analytic forms of bitype (p, q)

B(p,q)
X = sheaf of hyperfunction forms of bitype (p, q)

C
(p,q)
∞,X = sheaf of smooth forms of bitype (p, q)

Db(p,q)X = sheaf of distribution forms of bitype (p, q)

AnX = sheaf of real analytic n-forms

BnX = sheaf of hyperfunction n-forms

Cn∞,X = sheaf of smooth n-forms

DbnX = sheaf of distribution n-forms

These various sheaves enter in the following well-known resolutions.

179
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Proposition 5.1.1.

Real de Rham resolutions. The sequence

0 −→ CX −→ C
0
∞,X

d
−→ · · ·

d
−→ C2n∞,X −→ 0

is exact and we get analogous exact sequences if we replace C∞,X by

AX , BX or DbX .

Dolbeault resolutions. The sequence

0 −→ ΩpX −→ C
(p,0)
∞,X

∂
−→ · · ·

∂
−→ C(p,n)

∞,X −→ 0

is exact and we get analogous exact sequences if we replace C∞,X by

AX , BX or DbX .

Complex de Rham resolution. The sequence

0 −→ CX −→ OX
d
−→ · · ·

d
−→ ΩnX −→ 0

is exact.

Since X is a canonically oriented compact topological manifold of di-

mension 2n, we have the two following propositions.

Proposition 5.1.2 (Topological finiteness). We have

Hk(X; CX ) = 0

if k 6∈ [0, 2n] and

dimHk(X; CX) < +∞

for any k ∈ [0, 2n].

Remark 5.1.3. It follows from the preceding proposition that the complex

Betti numbers

bk(X) = dimHk(X; CX ) (k ∈ Z)

are well-defined topological invariants associated to X. Another topological

invariant of X is its Euler-Poincaré characteristic. Note that it follows from

the universal coefficient formula that

χ(X) =
∑

k∈Z

(−1)kbk(X).
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Proposition 5.1.4 (Topological duality). By Poincaré duality, we have

an isomorphism

Hk(X; CX)∗ ' H2n−k(X; CX)

which can be made more explicit by means of the pairing

〈·, ·〉 : Γ(X;Db2n−kX ) ⊗Γc(X; Ck∞,X ) −→ C

defined by the formula

〈u, ω〉 =

∫
u ∧ ω.

Remark 5.1.5. It follows directly from the preceding proposition that

b2n−k(X) = bk(X)

for any k ∈ Z. In particular,

χ(X) = (−1)nbn(X) + 2

n−1∑

k=0

(−1)kbk(X)

so that

χ(X) ≡ bn(X) (mod 2).

Finiteness and duality results also holds for coherent analytic sheaves.

Proposition 5.1.6. For any coherent analytic sheaf F on X, we have

Hk(X;F) = 0

if k 6∈ [0, n] and

dimHk(X;F) < +∞

if k ∈ [0, n].

Proof. We will only give a sketch of the proof for the case where F is locally

free. For the general case, we refer to standard texts on complex analytic

geometry.

By tensorization on OX with the Dolbeault resolution

0 −→ OX −→ C
(0,0)
∞,X −→ · · · −→ C

(0,n)
∞,X −→ 0

we obtain the resolution

0 −→ F −→ F ⊗
OX
C

(0,0)
∞,X −→ · · · −→ F ⊗OX

C
(0,n)
∞,X −→ 0.
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Since F ⊗
OX
C(0,k)∞,X is locally isomorphic to a direct sum of a finite number

of copies of C
(0,k)
∞,X , it is a soft sheaf. Therefore,

RΓ(X;F) ' Γ(X;F ⊗
OX
C(0,·)∞,X ).

The vanishing part of the result follows easily. To obtain the finiteness part,

we consider the resolution

0 −→ F −→ F ⊗
OX
A(0,0)
X −→ · · · −→ F ⊗

OX
A(0,n)
X −→ 0

obtained by applying the exact functor F ⊗OX
· to the Dolbeault resolution

0 −→ OX −→ A
(0,0)
X −→ · · · −→ A(0,n)

X −→ 0.

Since F ⊗
OX
A(0,k)
X is a coherent real analytic sheaf on X, it is acyclic.

Hence,

RΓ(X;F) ' Γ(X;F ⊗
OX
A(0,·)
X )

and the canonical morphism

Γ(X;F ⊗
OX
A

(0,·)
X ) −→ Γ(X;F ⊗

OX
C

(0,·)
∞,X)

is a quasi-isomorphism. One checks easily that the components of the first

complex are (DFS) spaces and that the components of the second complex

are (F) spaces. Since the morphism from the left complex to the right

complex is clearly continuous, the conclusion follows from the next lemma.

Lemma 5.1.7. Let

u· : E· −→ F ·

be a morphism of complexes of locally convex topological vector spaces.

Assume that for any k ∈ Z,

(i) Ek is a (DFS) space;

(ii) F k is a (F) space;

(iii) Hk(u·) is surjective.

Then, Hk(F ·) is finite dimensional.

Sketch of proof. The basic idea is to write Ek = lim
−→
i∈N

Eki where Eki is a Ba-

nach space; the transitions being compact and then to use Baire’s theorem

to reduce the result to Schwartz’ compact perturbation Lemma.
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Proposition 5.1.8. For any coherent analytic sheaf F on X, we have the

canonical isomorphisms

Hk(X;F)∗ ' Hn−k(X;RHomOX
(F ,ΩX))

where ΩX denotes as usual the sheaf of holomorphic n-forms.

Proof. We will only sketch the proof in the case where F is locally free.

Working as in the proof of Proposition 5.1.6, we get the two isomor-

phisms

RΓ(X;F) ' Γ(X;F ⊗OX
C

(0,·)
∞,X)

and

RΓ(X;RHomOX
(F ,ΩX)) ' Γ(X;RHomOX

(F ,Db(n,·)X )).

Consider the canonical pairing

[F ⊗OX
C(0,k)∞,X ]⊗

C
[RHomOX

(F ,Db(n,n−k)X )] −→ Db(n,n)
X

which sends (f ⊗ w, h) to w ∧ h(f). Combining it with the integration of

distributions, we get the pairing

Γ(X;F ⊗OX
C(0,k)∞,X ) ⊗

C
Γ(X;RHomOX

(F ,Db(n,n−k)X )) −→ C

and hence the morphism of complexes

Γ(X;F ⊗OX
C

(0,·)
∞,X)′ ' Γ(X;RHomOX

(F ,Db
(n,n−·)
X )).

Using the definition of distributions, one checks easily that this morphism

is in fact an isomorphism. The cohomology of the complexes involved being

finite dimensional, the differentials are strict and we get

Hk(Γ(X;F ⊗OX
C(0,·)∞,X))∗ ' Hn−k(Γ(X;RHomOX

(F ,Db(n,·)X ))).

The conclusion follows.

Example 5.1.9. Since ΩpX is a coherent analytic sheaf, Proposition 5.1.6

shows that the Hodge numbers

hp,q(X) = dimHq(X; Ωp) (q ∈ Z)

are well-defined holomorphic invariants of X which vanish for q 6∈ [0, n]. Of

course, we have

χp(X) := χ(X; ΩpX) =
∑

q∈Z

(−1)qhp,q .
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Moreover, it follows from the complex de Rham resolution that

χ(X) =
∑

p∈Z

(−1)pχp(X).

Note that the canonical morphism

∧ : ΩpX ⊗Ωn−pX −→ ΩnX

induces an isomorphism

Ωn−pX ' HomOX
(ΩpX ,Ω

n
X).

Hence, applying the duality result for coherent analytic sheaves, we see that

hn−p,q = hp,n−q.

The hp,q have many other interesting properties. However, since they are

related to Hodge theory we will not review them here.

Thanks to the results in this section, one sees that the Euler-Poincaré

characteristic

χ(X;F) =

∞∑

k=0

(−1)k dimHk(X;F)

makes sense for any coherent analytic sheaf on a compact complex ana-

lytic manifold. The computation of this number forms what one may call

the generalized Riemann-Roch problem (its link with the original results

of Riemann and Roch will be explained in Sections 2–4 below). In [15],

Hirzebruch solved this problem when X is a projective manifold and F is

the sheaf of complex analytic sections of a complex analytic vector bundle

F of rank r by expressing the number χ(X;F) by means of a formula of

the type

χ(X;F) =

∫

X

P (c1(F ), · · · , cr(F ), c1(TX), · · · , cn(TX))

where P is a polynomial with rational coefficients which depends only on r

and n. In Sections 5–8 we will establish the following slightly more general

result.

Theorem 5.1.10. Let X be a projective complex analytic manifold of

dimension n and let F be a coherent analytic sheaf on X. Then,

χ(X;F) =

∫

X

ch(F) ^ td(TX).
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To better understand the link between this formula and the preceding

one let us write it explicitly in terms of Chern classes in a two simple cases.

Case of line bundles on curves.

We need to compute ch(E) and td(TX) in degrees 0 and 2. We have

x

1− e−x
=

x

1− (1 + (−x) + (−x)2

2
+ o(x2))

=
1

1− x
2

+ o(x)
= 1 +

x

2
+ o(x)

and

ex = 1 + x+ o(x).

Therefore, using the fact that E and TX are line bundles, we get

ch(E) = 1 + c1(E)

td(TX) = 1 +
c1(TX)

2
.

Hence,

[ch(E) ^ td(TX)]
2

= c1(E) +
c1(TX)

2

so that

χ(X; E) =

∫

X

c1(E) +
c1(TX)

2
.

Case of line bundles on surfaces.

We need to compute ch(E) and td(TX) in degrees 0, 2 and 4. We have

x

1− e−x
=

x

1− (1 + (−x) + (−x)2

2 + (−x)3

6 + o(x3))

=
1

1− x
2 + x2

6 + o(x2)

= 1 +
x

2
+
x2

12
+ o(x2)

and

ex = 1 + x+
x2

2
+ o(x2).
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It follows that we have at order 2

x1

1− e−x1
·

x2

1− e−x2
=

(
1 +

x1

2
+
x2

1

12

)(
1 +

x2

2
+
x2

2

12

)

= 1 +
x2

2
+
x2

2

12
+
x1

2
+
x1x2

4
+
x2

1

12

= 1 +
x1 + x2

2
+
x2

1 + 3x1x2 + x2
2

12

= 1 +
(x1 + x2)

2
+

(x1 + x2)
2 + x1x2

12

= 1 +
S2,1(x1, x2)

2
+
S2

2,1(x1, x2) + S2,2(x1, x2)

12
.

Therefore,

td(TX) = 1 +
c1(TX)

2
+
c1(TX)2 + c2(TX)

12

and

ch(E) = 1 + c1(E) +
c1(E)2

2
.

Finally,

[ch(E) ^ td(TX)]
4

=
c1(TX)2 + c2(TX)

12
+
c1(E)c1(TX)

2
+
c1(E)2

2

and

χ(X; E) =

∫

X

c1(TX)2 + c2(TX)

12
+
c1(E)c1(TX)

2
+
c1(E)2

2
.

5.2 Cohomology of compact complex curves

Let X be a connected compact (smooth) complex curve.

Proposition 5.2.1. There is a natural integer g such that

H0(X;OX) ' C H0(X; ΩX ) ' Cg

H1(X;OX) ' Cg H1(X; ΩX ) ' C

Hk(X;OX) ' 0 (k ≥ 2) Hk(X; ΩX ) ' 0 (k ≥ 2)

H0(X; CX ) ' C

H1(X; CX ) ' C2g

H2(X; CX ) ' C

Hk(X; CX ) ' 0 (k ≥ 3)
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Proof. Writing the long exact sequence of cohomology associated to the

short exact sequence

0 −→ CX −→ OX −→ ΩX −→ 0,

we get the exact sequence

0 // H0(X; CX ) // H0(X;OX ) // H0(X; ΩX ) -,*+
/.()

// H1(X; CX ) // // H1(X;OX ) // H1(X; ΩX ) -,*+
/.()

// H2(X; CX ) // // 0.

Since X is connected, H0(X; CX ) ' C and since X is compact, the maxi-

mum principle shows that H0(X;OX ) ' C. Therefore, the morphism

H0(X; CX) −→ H0(X;OX ) (*)

is an isomorphism. By duality, we see that

H2(X; CX ) ' C, H1(X; ΩX ) ' C

and that the morphism

H1(X; ΩX ) −→ H2(X; CX )

is the dual of the isomorphism (*). It follows that the sequence

0 −→ H0(X; ΩX ) −→ H1(X; CX ) −→ H1(X;OX ) −→ 0

is exact. Since

H1(X;OX ) ' H0(X; ΩX )∗,

the spaces H1(X;OX) and H0(X; ΩX) have the same dimension g. It follows

that H1(X;OX ) ' Cg , H0(X; ΩX) ' Cg and that H1(X; CX ) ' C2g.

Definition 5.2.2. The integer g which appears in the preceding table is

called the genus of the Riemann surface X. One defines it classically as the

maximal number of linearly independent holomorphic 1-forms.

Remark 5.2.3. Note that since 2g is the first Betti number of X, g is a

topological invariant of X. One can show that this is the only invariant of

this kind. Note also that it follows from the cohomology table of X that

χ(X) = 2− 2g.
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5.3 Divisors on complex curves

Let A be a commutative integral ring and let K be its field of quotients.

Denote A× the multiplicative monoid formed by the non-zero elements of

A. Define the divisibility relation “|” on A× by

a|b ⇐⇒ ∃c ∈ A× with b = a · c.

This is clearly a preorder relation compatible with the multiplication of

A×. Since A is integral, any element of A× is cancelable and A× has

an associated group. This group may be identified with the group K∗ of

invertible (i.e. non-zero) elements of K. The relation “|” induces a preorder

relation on K∗ defined by

f |g ⇐⇒ ∃c ∈ A× with g = f · c ⇐⇒ g/f ∈ A×.

Remark that if f , g ∈ K∗ are such that

f |g and g|f

then g/f ∈ A∗ and conversely. If follows that D = K∗/A∗ has a natural

structure of ordered commutative group. We denote + the group operation

of D and we denote ≤ its canonical order relation. We denote (f) the

element of D associated to f ∈ K∗. The ordered group (D,+,≤) is called

the group of principal divisors of the ring A. This group enters in the exact

sequence

1 −→ A∗ −→ K∗ −→ D −→ 0.

In the case of a complex curveX, we may consider by analogy the sheaves

of commutative groups O∗X (resp. K∗X) of invertible elements of OX (resp.

KX) and we may define the sheaf of abelian groups DivX as the cokernel of

the canonical inclusion

O∗X −→ K
∗
X .

It follows from the exact sequence

1 −→ O∗X −→ K
∗
X −→ DivX −→ 0

that (DivX)x is the group of principal divisors of the integral ring (OX )x.

So, it is canonically endowed with an order relation (≤)x. Hence, we get an

order relation ≤ on the sections of DivX . A divisor on X is the data of a

global section D of DivX . A divisor coming from a global section f of K∗X is

called principal, we denote it (f). It follows from the construction of DivX
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that a divisor on X is locally principal. It is however not globally principal

in general. To study this phenomenon, one introduces the quotient group

Γ(X;DivX )/Γ(X;K∗X).

This group is called the Picard group of X and denoted Pic(X). Two divisor

which have the same image in Pic(X) are said to be equivalent.

The structure of (DivX )x is very simple. As a matter of fact, if t is a

local coordinate such that t(x) = 0, any meromorphic function f may be

uniquely written in a neighborhood of x as

f = tnh

where n ∈ Z and h ∈ O∗X,x (consequence of Taylor formula). It follows that

(f) = n(t). Moreover, we see easily that if t′ is another local coordinate such

that t′(x) = 0, we have (t) = (t′). Therefore, (t) is a canonically defined

divisor supported by {x}. We denote it by [x] and we denote ordx(f) the

unique integer n such that

(f) = n[x].

We may sum up what precedes by saying that

ordx : (DivX )x −→ Z

is an isomorphism of ordered abelian groups. Any divisor D of X being

locally principal, {x : ordx(D) 6= 0} is locally finite; hence finite (X is

compact). It follows that

D =
∑

x∈suppD

ordx(D)[x].

Thus, there is a bijection between the ordered group of divisors of X and

the ordered group

Z(X).

We define the degree of the divisor D by the formula

degD =
∑

x∈suppD

ordx(D).

To a divisor D on X, one associates the sheaf OX (D) defined by setting

OX (D)(U ) = {f ∈ K∗X(U ) : (f) ≥ −D|U} ∪ {0}

for any connected open subset U of X. One checks easily that OX (D) is an

OX-submodule of KX . Consider a point x ∈ X. This point has a connected
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neighborhood U on which D is principal. So, we find a meromorphic func-

tion g on U such that D|U = (g). It follows that f ∈ OX (D)(U ) if and only

if f = 0 or (f) ≥ −(g). Hence,

OX(D)(U ) = {
h

g
: h ∈ OX (U )}

and OX (D)|U is the free OX -submodule of rank 1 of KX generated by 1/g.

Therefore, OX (D) is a locally free OX -module of rank 1. Remark that if

D, D′ are two divisors on X such that

D′ = D + (g)

with g ∈ Γ(X;K∗X), then

OX(D′) −→ OX (D)

f 7→ fg

is an isomorphism ofOX -modules. Therefore, the isomorphy class ofOX (D)

depends only on the class of D in Pic(X).

5.4 Classical Riemann and Roch theorems

Definition 5.4.1. Let L be a locally free OX-module of rank 1 on X.

Consider a non-zero meromorphic section s of L, i.e. assume that

s ∈ Γ(X;KX ⊗OX
L) \ {0}.

Consider a neighborhood U of x ∈ X on which L is isomorphic to OX and

denote l a generator of L|U . Clearly, we have

s|U = f · l

where f is a meromorphic function on U uniquely determined by this rela-

tion. If l′ is another generator of L|U , we have l = hl′ where h ∈ O∗X(U )

and

s|U = f ′ · l′

where f ′ ∈ KX(U ) is given by f ′ = fh. It follows that (f) = (f ′) and

that this divisor depends only on s|U . We denote it (s|U ). Using a gluing

process, we obtain a well-defined divisor (s) on X.

From this definition it follows easily that
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Proposition 5.4.2. We have an OX -linear isomorphism

L⊗
OX
OX (D) ' L(D)

where L(D) is the subsheaf of K⊗OX
L defined by setting

L(D)(U ) = {s ∈ Γ(U ;KX ⊗OX
L) \ {0} : (s) ≥ −D} ∪ {0}

for any connected open subset U of X.

Proposition 5.4.3. For any locally free OX -module L of rank 1 and any

divisor D on X, we have

χ(X;L(D)) = χ(X;L) + degD.

In particular,

dimH0(X;L(D)) ≥ χ(X;L) + degD.

Proof. Let D and D′ be two divisors on X such that D ≤ D′. By definition,

it is clear that OX (D) is a subsheaf of OX(D′). Denote Q the quotient sheaf

OX(D′)/OX (D). Write D, D′ as

D =

m∑

j=1

nj [xj], D′ =

m∑

j=1

n′j[xj]

where x1, · · · , xm are points of X and n1, . . . , nm;n′1, . . . , n
′
m are elements

of Z (which may be equal to 0). One sees easily that Qx = 0 if x /∈

{x1, . . . , xm}. Now, consider a coordinate neighborhood U of a point xj ∈

{x1, · · · , xm} such that U ∩ {x1, · · · , xm} = {xj}. Let t be a coordinate on

U such that t(xj) = 0. Since D|U = nj(t) and D′|U = n′j(t), we see that

OX(D)xj
= {

h

tnj
: h ∈ (OX )xj

}, OX(D′)xj
= {

h′

tn
′
j

: h′ ∈ (OX )xj
}.

Since n′j ≥ nj , we may write

h′ = a0 + a1t+ · · ·+ an′
j
−nj−1t

n′j−nj−1 + tn
′
j−njh′′

where a0, · · · , an′j−nj−1 ∈ C and h′′ ∈ (OX )j are uniquely determined by

this condition. It follows that

Qxj
= (OX(D′)/OX(D))xj

' Cn
′
j−nj .

The sheaf Q is thus supported by {x1, · · · , xm} and we have

dimQxj
= n′j − nj (1 ≤ j ≤ m).
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Applying L⊗OX
· to the exact sequence

0 −→ OX(D) −→ OX(D′) −→ Q −→ 0

and taking Euler-Poincaré characteristics, we see that

χ(X;L(D)) − χ(X;L(D′)) + χ(X;L⊗OX
Q) = 0

and hence that

χ(X;L(D)) − χ(X;L(D′)) + degD′ − degD = 0.

Therefore,

χ(X;L(D′))− degD′ = χ(X;L(D)) − degD.

If D, D′ are divisors on X, there is a divisor D′′ ≥ D, D′′ ≥ D′. It follows

from what precedes that

χ(X;L(D)) − degD

does not depend on D. The conclusion follows since

L(0) ' L.

Corollary 5.4.4. For any divisor D on X, we have

χ(X;OX (D)) = degD + 1− g.

In particular, degD depends only on the class of D in Pic(X) and

dimH0(X;OX (D)) ≥ degD + 1− g.

Proof. This follows directly from the preceding proposition since

χ(X;OX ) = dim H0(X;OX ) − dimH1(X;OX ) = 1− g.

Remark 5.4.5. Let x1, · · · , xm be distinct points ofX. The problem which

led to the classical Riemann and Roch theorems was the computation of the

dimension of the space of meromorphic functions which are holomorphic on

X \ {x1, · · · , xm} and have poles of order lower or equal to 1 at x1, · · · , xm.

One checks easily that this dimension is nothing but

dimH0(X;OX (D))

for D = [x1] + · · ·+ [xm]. Therefore, the preceding corollary contains Rie-

mann’s inequality in its original form.
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Proposition 5.4.6. Let L be a locally free OX-module of rank 1. Fix

x ∈ X. Then, L has meromorphic sections whose only pole is at x. In

particular, L has non-zero meromorphic sections.

Proof. In the preceding proposition, set D = m[x] and choose m large

enough in order that χ(X;L) + degD > 0.

Corollary 5.4.7. Let L be a locally free OX -module of rank 1. Then, there

is a divisor D on X and an isomorphism

OX (D) ' L.

Moreover, although D is not unique its class in Pic(X) depends only on L.

Proof. Let s be a non-zero meromorphic section of L. Set D = (s). Working

on the open subsets where L is trivial, we see easily that

OX(D) −→ L

f 7→ fs

is a well-defined isomorphism. To see that the class of D in Pic(X) depends

only on L, it is sufficient to note that non-zero meromorphic sections s, s′

of L are always linked by a relation of the type

s′ = gs

with g ∈ Γ(X;K∗X) and that such a relation entails that

(s′) = (s) + (g).

Definition 5.4.8. Let L be a locally free OX module of rank 1 on X. We

denote [L] the class in Pic(X) of any divisor D such that

L ' OX (D).

Example 5.4.9. Since ΩX is a locally free OX-module of rank 1, we may

consider

[ΩX ].

This class is traditionally called the canonical class of divisors of X and

denoted by K.
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Remark 5.4.10. It follows from what precedes that

D 7→ OX (D)

induces a bijection between Pic(X) and the set of isomorphy classes of

locally free OX-module of rank 1 on X whose inverse is the map induced

by

L 7→ [L].

Since

OX(D) ⊗OX
OX(D′) ' OX (D +D′),

the preceding bijection is in fact an isomorphism of abelian groups.

As a consequence of this isomorphism we get that

χ(X;L) = deg[L] + 1− g

for any locally free OX module of rank 1 on X

Let us now look at Roch’s original contribution.

Definition 5.4.11. We denote

` : Pic(X) −→ N

the map induced by

D 7→ dimH0(X;OX (D)).

Example 5.4.12. We have

`(0) = dimH0(X;OX) = 1

and

`(K) = dimH0(X; ΩX ) = g.

Proposition 5.4.13. For any divisor D on X, we have

`([D]) − `(K − [D]) = degD + 1− g

Proof. From the duality theorem for coherent analytic sheaf we deduce that

H1(X;OX (D)) ' H0(X;HomOX
(OX (D),ΩX)).

Using the isomorphism

HomOX
(OX (D),ΩX ) ' OX (D)∗ ⊗ΩX ,
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and the properties of [·], we see that

[HomOX
(OX (D),ΩX )] = K − [D].

It follows that

dimH1(X;OX (D)) = `(K −D).

Since

χ(X;OX (D)) = degD + 1− g,

the proof is complete.

Corollary 5.4.14. We have

degK = 2g − 2.

Proof. Applying the preceding proposition for D = K, we obtain

`(K) − `(O) = degK + 1− g.

Therefore,

g − 1 = degK + 1− g

and the conclusion follows.

Proposition 5.4.15.

(a) If degD < 0, then

dimH0(X;OX (D)) = 0 and dimH1(X;OX (D)) = g − 1− degD.

(b) If degD > 2g − 2, then

dimH0(X;OX (D)) = degD + 1− g and dimH1(X;OX (D)) = 0.

Proof. (a) Thanks to Riemann-Roch formula, it is sufficient to show that

H0(X;OX (D)) = 0.

Let us proceed by contradiction. Assume f is a non-zero section of OX(D).

Then,

(f) ≥ −D

and

deg(f) + degD ≥ 0.

Since [(f)] = 0, we have deg(f) = 0 and we get degD ≥ 0. The conclusion

follows.
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(b) As in (a), we have only to prove the first equality. Using Proposi-

tion 5.4.13, we see that this equality is true if

`(K − [D]) = 0.

Since by the preceding corollary we have deg(K − [D]) = 2g − 2− deg(D),

this follows from directly from part (a).

Remark 5.4.16. Note that the second part of the preceding proposition

contains a complete answer to the original Riemann-Roch problem for high

degree divisors.

Proposition 5.4.17. For any divisor D on X, we have

degD =

∫

X

c1(OX(D)).

Proof. Assume D =
∑m

i=1 ni[xi] where x1, . . . , xm are distinct points of X.

For any i ∈ {1, . . . ,m}, let ti be local coordinate defined on an open neigh-

borhood Ui of xi such that ti(xi) = 0, ti(Ui) ' D(0, 1) and assume that

U1, . . . , Um are disjoint. Set U0 = X \{x1, . . . , xm} and denote U the cover-

ing {U0, . . . , Um}. We know that OX (D) is generated on U0, U1, . . . , Um by

the functions 1, t−n1

1 , . . . , t−nm
m . So, we may represent the class of OX (D)

in H1(X;O∗X ) ' Ȟ1(U ,O∗X ) by the Čech cocycle g defined by setting

gU0U1 = tn1
1 , gU0U2 = tn2

2 , . . . , gU0Um
= tnm

m .

Thanks to the proof of Proposition 4.2.10, we also know that the diagram

H1(X,O∗X )
dlog

//

c1 ((PPPPPP
H1(X,Ω1)

��

H2(X,C)

is commutative. It follows that c1(OX (D)) is the image in H2(X; C) of the

Čech cocycle of Ȟ1(U ,Ω1) defined by

c1U0U1
= dlog gU0U1 = n1

dt1
t1

...

c1U0Um
= dlog gU0Um

= nm
dtm
tm

.

The Dolbeault resolution

0 −→ Ω1 −→ C(1,0)
∞ −→ C(1,1)

∞ −→ 0
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induces an isomorphism

H1(X,Ω1) ' Γ(X, C(1,1)
∞ )/∂Γ(X; C(1,0)

∞ ).

We may follow it in terms of Čech cohomology thanks to the Weil Lemma.

We have to follow the dotted path in the diagram

Γ(X; Ω1) //

��

Γ(X; C(1,0)
∞ ) //__

��
�
�

Γ(X; C(1,1)
∞ )

��

Č0(U ,Ω1) //

��

Č0(U , C(1,0)
∞ ) //

��
�
�

Č0(U , C(1,1)
∞ )

��

Č1(U ,Ω1) //__

��

Č1(U , C(1,0)
∞ ) //

��

Č1(U , C(1,1)
∞ )

��

...
...

...

To write c1 as the Čech coboundary of c0 ∈ Č0(U , C(1,0)
∞ ), we will use a

partition unity (ϕU )U∈U relative to U and set

c0U0
= −ϕU1c

1
U0U1

− · · · − ϕUm
c1U0Um

c0U1
= ϕU0c

1
U0U1

...

c0Um
= ϕU0c

1
U0Um

Then, we may represent the image of c in H2(X,C) by the Čech 0-cocycle

of Č0(U , C(1,1)
∞ ) given by

U0 7→ dc0U0

...

Um 7→ dc0Um

which corresponds to the differential form with compact support

ω = −dϕU1 ∧ n1
dt1
t1
− · · · − dϕUm

∧ nm
dtm
tm

.

It follows that

∫

X

c1(OX (D)) =

∫

X

ω = −
m∑

i=1

ni

∫

Ui

dϕUi
∧
dti
ti
.
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Denote Vi the image in Ui of a disk centered on 0 whose radius is sufficiently

small in order that ϕUi
= 1 on V i ⊂ Ui. Stokes’ theorem shows that

∫

X

c1(OX (D)) = −
m∑

i=1

ni

∫

Ui\Vi

d(ϕUi

dti
ti

)

=

m∑

i=1

ni

∫

∂Vi

ϕUi

dti
ti

=

m∑

i=1

ni

∫

∂Vi

dti
ti

= degD.

Corollary 5.4.18. For any locally free OX-module L of rank 1 on X, we

have

χ(X;L) =

∫

X

c1(L) +
c1(TX)

2
.

Proof. Since TX is a holomorphic line bundle, we know that c1(TX) is the

Euler class of TX and hence of X. Therefore,
∫

X

c1(TX) = χ(X,C) = 1− 2g + 1 = 2(1− g)

and

1− g =

∫

X

c1(TX)

2
.

Since by the preceding proposition, we have

deg([L]) =

∫

X

c1(L),

Remark 5.4.10 allows us to conclude.

Remark 5.4.19. Thanks to the computations at the end of Section 1, the

preceding corollary shows that Hirzebruch-Riemann-Roch formula is true

for compact complex curves.

5.5 Cohomology of coherent analytic sheaves on Pn(C)

Definition 5.5.1. Let

q : Cn+1 \ {0} −→ Pn(C)

be the canonical projection. For any open subset U of Pn(C) and any l ∈ Z,

set

OPn(C)(l)(U ) = {f ∈ OCn+1 (q−1(U )) : f(λz) = λlf(z) (λ ∈ C∗)}.
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From this definition it follows immediately that :

Proposition 5.5.2. For any l ∈ Z,

U 7→ OPn(C)(l)(U )

is a locally free OPn(C)-module of rank 1. Moreover, there are canonical

isomorphisms

OPn(C)(l) ⊗OPn(C)
OPn(C)(l

′) ' OPn(C)(l + l′),

HomOPn(C)
(OPn(C)(l),OPn(C)(l

′)) ' OPn(C)(l
′ − l).

Exercise 5.5.3. There is a canonical isomorphism

ΩPn(C) ' OPn(C)(−n − 1).

Solution. As usual, set

Uk = {[z0, · · · , zn] : zk 6= 0}

and define the map ukl : Uk −→ C by setting

ukl =
zl
zk
.

Then, (uk0, · · · , ûkk, · · · , ukn) gives a biholomorphic bijection between Uk
and Cn. It follows that any ω ∈ Γ(U ; ΩPn(C)) may be written in a unique

way on U ∩ Uk as

ω = fkduk0 ∧ · · · ∧ d̂ukk ∧ · · · ∧ dukn

with fk ∈ OPn(C)(U ∩ Uk). For l < k, we have

ukm =
ulm
ulk

.

Therefore,

dukm =
ulkdulm − ulmdulk

u2
lk

and

duk0 ∧ · · · ∧ d̂ukk ∧ · · · ∧ dukn

=

k−1∑

m=0

dul0
ulk
∧ · · · ∧

−ulmdulk
u2
lk

∧ · · · ∧
d̂ulk
ulk
∧ · · · ∧

duln
ulk

+
n∑

m=k+1

dul0
ulk
∧ · · · ∧

d̂ulk
ulk
∧ · · · ∧

−ulmdulk
u2
lk

∧ · · · ∧
duln
ulk

.
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Since dull = 0, we get

duk0 ∧ · · · ∧ d̂ukk ∧ · · · ∧ dukn

=
dul0
ulk
∧ · · · ∧

−ulldulk
u2
lk

∧ · · · ∧
d̂ulk
ulk
∧ · · · ∧

duln
ulk

=
(−1)k−l

un+1
lk

dul0 ∧ · · · ∧ d̂ull ∧ · · · ∧ duln.

It follows that

fl = fk
(−1)k−l

un+1
lk

.

Hence,
(−1)l

zn+1
l

fl([z0, · · · , zn]) =
(−1)k

zn+1
k

fk([z0, · · · , zn])

on q−1(U∩Uk∩Ul). This shows that there is a unique h ∈ Γ(U ;OPn(C)(−n−

1)) such that

h(z0 · · · , zn) =
(−1)k

zn+1
k

fk([z0, · · · , zn])

on q−1(U ∩ Uk) for k ∈ {0, · · · , n}. We have thus constructed a canonical

morphism

ΩPn(C) −→ OPn(C)(−n − 1).

Since it is clearly an isomorphism, the proof is complete.

Exercise 5.5.4. Denote Un(C) the sheaf of holomorphic sections of the

universal bundle Un(C) on Pn(C). Then, there is a canonical isomorphism

Un(C) ' OPn(C)(−1).

Solution. Using the same notations as in the proof of the preceding propo-

sition, set

sk([z0, · · · , zn]) =

(
(
z0
zk
, · · · ,

ẑk
zk
, · · · ,

zn
zk

), [z0, · · · , zn]

)
.

Clearly, sk is a holomorphic frame of Un(C)|Uk
. Therefore, for any σ ∈

Γ(U ;Un(C)) there is a unique σk ∈ Γ(U ∩ Uk;OPn(C)) such that

σ = σksk

on U ∩ Uk. Since

sk = uklsl
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on Uk ∩ Ul, we have

σl = σkukl

on U ∩ Uk ∩ Ul. It follows that

σl([z0, · · · , zn])

zl
=
σk([z0, · · · , zn])

zk

on q−1(U ∩Uk ∩Ul) and hence that there is a unique h ∈ Γ(U ;OPn(C)(−1))

such that

h(z0, · · · , zn) =
σk([z0, · · · , zn])

zk

on q−1(U ∩Uk). The conclusion follows as in the preceding proposition.

Theorem 5.5.5. The cohomology of the sheaf OPn(C)(l) is given by the

table :

H0(Pn(C);OPn(C)(l)) =

{
C(n+l

l ) if l ≥ 0

0 otherwise

Hk(Pn(C);OPn(C)(l)) = 0 if 0 < k < n

Hn(Pn(C);OPn(C)(l)) =

{
C(−l−1

n ) if l ≤ −n− 1

0 otherwise

In particular,

χ(Pn(C);OPn(C)(l)) =
(l + 1) · · · (l + n)

n!

for any l ∈ Z.

Proof. We will only do the easy part and prove the first equality. We refer

to [26] and [27] for the other results. Note that it follows from definitions

that

H0(Pn(C);OPn(C)(l)) = {f ∈ OCn+1 (Cn+1\{0}) : f(λz) = λlf(z) (λ ∈ C∗)}.

Since the codimension of {0} in Cn+1 is at least 2, any

f ∈ H0(Pn(C);OPn(C)(l))

is in fact holomorphic on Cn+1 and may thus be written as

f(z) =

∞∑

α0=0

· · ·
∞∑

αn=0

aα0,··· ,αn
zα0
0 · · ·z

αn
n
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with aα0,··· ,αn
∈ C. From the relation

f(λz) = λlf(z) (λ ∈ C∗),

we deduce that aα0,··· ,αn
λ|α| = aα0,··· ,αn

λl and hence that aα0,··· ,αn
= 0 if

|α| 6= l. It follows that H0(Pn(C);OPn(C)(l)) is 0 if l < 0 and equal to the

space of homogeneous polynomials of degree l for l ≥ 0. In this case, the

dimension is given by

dn,l = #{(α0, · · · , αn) : α0 ≥ 0, · · · , αn ≥ 0, α0 + · · ·+ αn = l}.

To compute this number, we note that, since
(

∞∑

α0=0

zα0

)
· · ·

(
∞∑

αn=0

zαn

)
=

∞∑

α0=0

· · ·
∞∑

αn=0

zα0+···+αn ,

we have
1

(1 − z)n+1
=

∞∑

l=0

dn,lz
l.

Hence,

dn,l =
1

l!

[
1

(1− z)n+1

](l)

z=0

=
(n + 1)(n+ 2) · · · (n+ l)

l!
=

(
n+ l

l

)
.

To conclude, note that it follows from the cohomology table that

χ(Pn(C);OPn(C)(l)) =





(
n+l
l

)
if l ≥ 0

0 if − n ≤ l ≤ −1

(−1)n
(
−l−1
n

)
if l ≤ −n− 1

and the announced formula holds since for l ≤ −n− 1, we have

(−1)n
(−l − n) · · · (−l − 1)

n!
=

(l + 1) · · · (l + n)

n!
.

Remark 5.5.6. Note that, using the duality theorem for coherent analytic

sheaves, we have

Hk(Pn(C);OPn(C)(l)) ' Hn−k(Pn(C);HomOPn(C)
(OPn(C)(l),ΩPn(C)))

' Hn−k(Pn(C);OPn(C)(−l − 1− n)).

Therefore, the last isomorphism in the preceding theorem follows from the

first since (
n− l − 1− n

−l − 1− n

)
=

(
−l − 1

n

)

if l ≤ −n− 1.
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Corollary 5.5.7. The graded C-algebra

S =
⊕

l∈Z

Γ(Pn(C);OPn(C)(l))

is canonically isomorphic to C[z0, · · · , zn].

Definition 5.5.8. Recall that the homogeneous part of degree l of a graded

S-module M is denoted Ml and that M (l) is the graded S-module charac-

terized by the fact that M (l)l′ = Ml+l′ (l′ ∈ Z).

We denote S the sheaf of graded C-algebras defined by setting

S =
⊕

l∈Z

OPn(C)(l).

For any graded S-module M , consider the graded tensor product

S ⊗
S
M.

This is clearly a graded S-module. We denote M̃ its homogeneous part

of degree 0. By construction, M̃ is an OPn(C)-module. Finally, we denote

PN (resp. PF) the thick subcategory of Mod(S) formed by the graded

S-modules M such that there is l0 ∈ Z with
⊕

l≥l0
Ml isomorphic to zero

(resp. of finite type).

Proposition 5.5.9. The functor

M −→ M̃

from the category of graded S-modules to that of OPn(C)-modules is exact.

Moreover,

(a) S̃(l) = OPn(C)(l),

(b) M̃ = 0 if M is an object of PN ,

(c) M̃ is coherent if M is an object of PF .

Proof. The difficult part is the exactness, for it we refer the reader to [26]

and [27]; the other parts are easier. As a matter of fact, (b) follows at once

from the fact that for x ∈ Uk, any section of (M̃ )x of the form

σl0 ⊗m−l0

with σl0 ∈ (Sl0 )x, m−l0 ∈M−l0 is equal to

σl0z
l0−l
k ⊗ zl−l0k m−l0
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for any l ∈ Z. As for (c), we know that there is a morphism

R0⊕

r0=1

S(lr0 ) −→M

with a cokernel in PN . Since S is noetherian, we get an exact sequence of

the type
R1⊕

r1=1

S(lr1 ) −→
R0⊕

r0=1

S(lr0 ) −→M −→ N −→ 0

with N ∈ PN . This gives us the exact sequence of OPn(C)-modules

R1⊕

r1=1

OPn(C)(lr1 ) −→
R0⊕

r0=1

OPn(C)(lr0 ) −→ M̃ −→ 0

and the conclusion follows.

Definition 5.5.10. Let F be a coherent analytic sheaf on Pn(C). We set

F(l) = OPn(C)(l) ⊗OPn(C)
F

and denote S(F) the graded S-module

⊕

l∈Z

Γ(Pn(C);F(l)).

Proposition 5.5.11. For any coherent analytic sheaf F on Pn(C), the

graded S-module S(F) is an object of PF . Moreover, the functor

F 7→ S(F)

induces an equivalence between the category of coherent analytic sheaves

on Pn(C) and the abelian category PF/PN . The quasi-inverse of this

equivalence is induced by the functor

M 7→ M̃ .

Proof. We refer the reader to [26] and [27].

Corollary 5.5.12. Let F be a coherent analytic sheaf on Pn(C). Then,

(a) there is an exact sequence of the form

0 −→

Rp⊕

rp=0

OPn(C)(lrp
) −→ · · · −→

R0⊕

r0=0

OPn(C)(lr0 ) −→ F −→ 0;
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(b) the OPn(C)-module F(l) is generated by its global sections for l � 0;

(c) we have

Hk(Pn(C);F(l)) = 0 (k > 0)

for l� 0.

Proof. (a) We know that S(F) is an object of PF . It follows that there is

a morphism
R0⊕

r0=0

S(lr0 ) −→ S(F)

with a cokernel N in PN . Since its kernel K is a graded submodule of a

graded S-module of finite type, Hilbert syzygies theorem shows that K has

a presentation of the form

0 −→

Rp⊕

rp=0

S(lrp
) −→ · · · −→

R1⊕

r1=0

S(lr1 ) −→ K −→ 0.

It follows that we have an exact sequence of the form

0 −→

Rp⊕

rp=0

S(lrp
) −→ · · · −→

R0⊕

r0=0

S(lr0 ) −→ S(F) −→ N −→ 0.

The conclusion follows by applying the exact functor ·̃ to this sequence.

(b) follows from (a) since the result is true for F = OPn(C)(l) with l ≥ 0.

(c) follows directly from (a) thanks to Theorem 5.5.5.

Remark 5.5.13. Parts (b) and (c) of the preceding proposition may be

viewed as stating that OPn(C)(1) is an ample locally free OPn(C)-module of

rank 1.

Proposition 5.5.14. Let M be a graded S-module which is in PF . Then,

there is a unique polynomial PM ∈ Q[z] such that

PM(l) = dimMl

for l� 0.

Proof. We know that for M in PF there is an exact sequence of the type

0 −→

Rp⊕

rp=0

S(lrp
) −→ · · · −→

R0⊕

r0=0

S(lr0 ) −→M −→ N −→ 0
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with N in PN . Moreover,

dimS(l0)l = dimSl0+l =
(l + l0 + 1) · · · (l + l0 + n)

n!
.

Hence, the conclusion follows from the additivity of M 7→ dimMl and the

fact that the zeros of a polynomial are in finite number.

Definition 5.5.15. The polynomial PM of Proposition 5.5.14 is called the

Hilbert-Samuel polynomial of M .

Corollary 5.5.16. For any coherent analytic sheaf F on Pn(C) the map

l 7→ χ(Pn(C);F(l))

is the Hilbert-Samuel polynomial PS(F) of the graded S-module S(F) (in

other words

χ(Pn(C);F(l)) = dimΓ(Pn(C);F(l))

for l� 0).

Proof. It follows from Theorem 5.5.5 that

χ(Pn(C);OPn(C)(l0)(l)) =
(l + l0 + 1) · · · (l + l0 + n)

n!
.

Therefore,

χ(Pn(C);F(l))

is a polynomial in l for F = OPn(C)(l0). Part (a) of Corollary 5.5.12 and

the additivity of χ(Pn(C); ·) allow us to extend the result to any coherent

analytic sheaf F on Pn(C). Moreover, using part (c) of Corollary 5.5.12, we

see that

χ(Pn(C);F(l)) = dimΓ(Pn(C);F(l))

if l � 0 and the conclusion follows from the definition of S(F) and of its

Hilbert-Samuel polynomial.

Exercise 5.5.17. Let Z be a closed hypersurface of Pn(C) corresponding

to the zeros of a homogeneous polynomial Q of degree d. Denote OZ the

coherent analytic sheaf on Pn(C) associated to Z. Show that

PS/(Q)(l)

= χ(Pn(C);OZ(l))

=
(l + 1) · · · (l + n)

n!
−

(l − d+ 1) · · · (l − d+ n)

n!



5.6. Hirzebruch-Riemann-Roch theorem for Pn(C) 207

and that in particular

χ(Pn(C);OZ) =

{
1 if d ≤ n

1− (−1)n
(
d−1
n

)
if d > n.

Solution. From the exact sequence

0 −→ OPn(C)(−d)
Q
−→ OPn(C) −→ OZ −→ 0

we deduce that

χ(Pn(C);OZ) = χ(Pn(C);OPn(C))− χ(Pn(C);OPn(C)(−d))

and the first formula follows immediately. For the second one, we note that

(−d+ 1) · · · (−d+ n)

n!
=





0 if d ≤ n

(−1)n
(d− 1) · · · (d− n)

n!
if d > n.

Hence, the conclusion.

5.6 Hirzebruch-Riemann-Roch theorem for Pn(C)

Proposition 5.6.1. Assume F is a coherent analytic sheaf on X = Pn(C).

Then,

χ(X;F) =

∫

X

ch(F) ^ td(TX).

Proof. By Corollary 5.5.12, we know that F has a resolution of the form

0 −→

Rp⊕

rp=0

OX(lrp
) −→ · · · −→

R0⊕

r0=0

OX(lr0 ) −→ F −→ 0.

Using the additivity of both sides of Hirzebruch-Riemann-Roch formula, it is

thus sufficient to treat the case F = OX(l) (l ∈ Z). Thanks to Exercise 4.2.6

we know that c·(TX) = (1 + ξ)n+1 where ξ ∈ H2(X; Z) is the first Chern

class of U∗n(C). Hence, TX and U∗n(C)n+1 have same total Chern class. It

follows that

td(TX) = td(U∗n(C)n+1) = (td U∗n(C))n+1 =

(
ξ

1− e−ξ

)n+1

.

Recall that the sheaf of holomorphic sections of Un(C) is OX(−1). Hence,

for l > 0, we have

ch(OX (l)) = ch(OX (1)⊗ · · · ⊗OX (1))

= ch(OX (1))l = elξ (*)
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Using the fact that

ch(OX (−l)) ch(OX (l)) = ch(OX ) = 1

we see that formula (*) holds for any l ∈ Z. Combining the results, we get

that

ch(OX (l)) td(TX) =

(
ξ

1− e−ξ

)n+1

elξ .

Therefore,

(ch(OX (l)) td(TX))
2n

= ρξn

where ρ is the coefficient of zn in the Taylor expression at 0 of

(
z

1− e−z

)n+1

elz .

Using Cauchy’s formula, we have

ρ = Res

(
elz

(1− e−z)n+1
; 0

)
=

1

2iπ

∫

C

elz

(1− e−z)n+1
dz

where C is a path of C∗ such that Ind(γ, 0) = 1. Using the change of

variables

w = 1− e−z

we get

ρ =
1

2iπ

∫

C

(1− w)−l

wn+1

dw

1− w

=
1

2iπ

∫

C

dw

wn+1(1− w)l+1

=
1

n!

(
1

(1− w)l+1

)(n)

w=0

=
(l + 1) · · · (l + n)

n!
=

(
l + n

n

)
.

By Exercise 4.2.6, we know that
∫
X
ξn = 1. Therefore,

∫

X

ch(OX (l)) td(TX) =

(
l + n

n

)

and the conclusion follows from Theorem 5.5.5.

5.7 Riemann-Roch for holomorphic embeddings

Our aim in this section is to prove the following result.
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Theorem 5.7.1. Let i : X −→ Y be a closed embedding of complex analytic

manifolds. Then, for any F · ∈ Db
Coh(OX ), we have

chX (i!F) = i!(chF
·/ tdTXY )

in H·X(Y ; Q).

We will start by recalling a few facts about Koszul complexes which will

be needed in the proof.

Let R be a commutative ring on the topological space X, let E be locally

free R-module of rank r and let s be a section of E∗. Recall that the Koszul

complex K·(E ; s) is the complex

0 −→
r∧
E

Ls−−→ · · · −→
k∧
E

Ls−−→ · · · −→ E
∂1−→ R −→ 0

where Ls is the interior product with s. As is well-known, the R-linear

morphism Ls is characterized by the formula

Ls(σ1 ∧ · · · ∧ σk) =

k∑

l=1

(−1)l−1 〈s, σl〉σ1 ∧ · · · ∧ σ̂l ∧ · · · ∧ σk.

As a graded R-module, K·(E ; s) is isomorphic to the exterior algebra

·∧
E

and hence has a canonical structure of anticommutative graded R-algebra.

Note that the differential Ls is compatible with this structure in the sense

that

Ls(ωk ∧ ωl) = Ls(ωk) ∧ ωl + (−1)kωk ∧ Ls(ωl)

for any sections ωk ∈
∧k E , ωl ∈

∧l E .
In particular, if µ1, . . . , µp are global sections of R, we have

K·(R
p; (µ1, · · · , µp)) ' K·(R;µ1) ⊗R · · · ⊗R K·(R;µp).

From this formula, it follows easily that if

µl : R/Rµ1 + · · ·+Rµl−1 −→ R/Rµ1 + · · ·+Rµl−1

is injective for l ∈ {1, · · · , p} then K·(Rp; (µ1, · · · , µp)) is a projective reso-

lution of

R/Rµ1 + · · ·+Rµp.

This allows us to prove the following lemma.
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Lemma 5.7.2. Let X be a complex analytic manifold and let E be a locally

free OX -module of rank p. Denote E the associated holomorphic complex

vector bundle. Assume s is a section of E which is transverse to the zero

section. Then,

Zs = {x ∈ X : s(x) = 0}

is a complex analytic submanifold of X. Moreover, if i : Zs −→ X is the

inclusion map, then the Koszul complex

0 −→

p∧
E∗

Ls−−→

p−1∧
E∗ −→ · · · −→ E∗

Ls−−→ Ox −→ 0

is a resolution of the OX -module

i!OZs
.

Proof. The problem being clearly local on X, we may assume X is a coor-

dinated neighborhood U of x0 and E = OpX . Then, E = Cp × U and we

have

s(x) = (f(x), x)

where f : U −→ Cp is a holomorphic map. The fact that s is transverse to the

zero section entails that f is a submersion. So, restricting U to a smaller

neighborhood of x0 if necessary, we may find a holomorphic coordinate

system (z1, · · · , zp) on U with f1 = z1, · · · , fp = zp. For such a coordinate

system, the Koszul complex

K·(E , s) ' K·(O
p
X , (z1, · · · , zp))

and the conclusion follows easily.

With this lemma at hand, we can now prove the following special case

of Theorem 5.7.1.

Proposition 5.7.3. Let p : E −→ X be a holomorphic complex vector

bundle of rank r. Denote i : X −→ E its zero section. Then, for any

F · ∈ Db
Coh(OX ), we have

chX (i!F
·) = i!(chF

·/ tdE)

in H·X(E; Q).

Proof. First, note that since p ◦ i = idX , we have

chX(i!F
·) = chX (i!i

∗p∗F ·)

= chX (i!OX ⊗
L
OE

p∗F ·)

= chX (i!OX)p∗ chF ·
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and the result will be true for any F · ∈ Db
Coh(OX ) if it is true for OX .

To prove the result in this case, let us consider the relative projective

compactification p : E −→ X of E. Recall that

E = P (E ⊕ (C ×X))

and that we have an open embedding

j : E −→ E

and a complementary closed embedding

k : P (E) −→ E

which we can use to identify E and P (E) with subspaces of E. Set i = j ◦ i.

Let us show that

(a) the canonical morphism

ε : H·X(E; Q) −→ H·(E; Q)

is injective;

(b)

ch(i!OX ) = i!(1/ tdE)

in H·(E; Q).

The result will follow since

ε(chX(i!OX )) = ch(i!OX)

and

j∗ chX (i!OX) = chX (i!OX).

(a) Since

H·X(E; Q) ' H·X(E : Q) ' H·p−proper(E; Q)

the injectivity of ε will follow from the surjectivity of

H·(E; Q) −→ H·(P (E); Q).

Denote U (resp. U ) the tautological line bundle on E (resp. P (E)). We

know that H·(E; Q) is a free H·(X; Q)-module with basis

1, c1(U ), · · · , c1(U )r
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and that H·(P (E); Q) is a free H·(X; Q)-module with basis

1, c1(U ), · · · , c1(U )r−1.

Since U |P (E) ' U , the conclusion follows.

(b) Since

U ⊂ p−1(E ⊕ (C×X))

we get a morphism

U −→ p−1E

and hence a section t of

F = Hom(U, p−1E) ' U
∗
⊗ p−1E.

One checks easily that t is transverse to the zero section of F and that

Zt = X. Therefore, Exercise 2.7.8 shows that

cr(F ) = τE/X = i!1.

Moreover, Lemma 5.7.2 shows that the Koszul complex

K·(F, t)

is a resolution of i!OX by locally finite free OE-modules. It follows that

ch(i!OX ) = chK·(F, t) = ch

·∧
F ∗.

Using Proposition 4.4.9, we get

ch(i!OX ) = cr(F )/ tdF.

Note that

cr(F )c1(U
∗
) = cr+1(F ⊕ U

∗
) = 0

since

F ⊕ U
∗
' Hom(U, p−1(E ⊕ (C×X)))

has a nowhere vanishing section. But

td(F )−1 = td(U
∗
)−1p∗ td(E)−1 ≡ p∗ td(E)−1 (mod c1(U

∗
)).

Therefore,

cr(F )/ tdF = cr(F )/p∗ tdE

= (i!1)/p∗ tdE

= i!(1/ tdE).
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Proof of Theorem 5.7.1.

The idea is to use the deformation of X to the normal bundle of Y in

order to reduce the general case to the case treated in Proposition 5.7.3.

Recall that with the complex deformation X̃ of X to the normal bundle

p : TYX −→ Y is given a closed embedding ĩ : Y × C −→ X̃ , a submersion

τ̃ : X̃ −→ C and a projection p̃ : X̃ −→ X such that

(a) the maps

p̃ ◦ ĩ : Y × C −→ Y, τ̃ ◦ ĩ : Y × C −→ C

coincide with the canonical projections;

(b) there is a commutative diagram of the form

Y × {1}
ĩ // τ̃−1(1)

Y

O�
OO

i1
// X

O� j1
OO

(c) there is a commutative diagram of the form

Y × {0}
ĩ // τ̃−1(0)

Y

O�
OO

i0
// TYX

O� j0
OO

with p̃ ◦ j0 = i0 ◦ p.

Since both τ̃ and τ̃◦ ĩ are submersions, it follows that j0 and j1 are transverse

to ĩ. Hence,

Lj∗0 ĩ!(F � OC) = i0!(F)

and

Lj∗1 ĩ!(F �OC) = i1!(F).

Setting G = ĩ!(F �OC), it follows that

chY (i0!F) = j∗0 chY×C(G)

and that

chY (i1!F) = j∗1 chY×C(G).

Hence

j0! chY (i0!F) = j0!(1) ^ chY×C(G)

in H·Y×{0}(X̃ ; Q) and

j1! chY (i1!F) = j1!(1) ^ chY×C(G)
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in H·Y×{1}(X̃ ; Q). We have

j0!(1) = τX̃/τ̃−1 (0) = τ̃∗τC/{0}

in H·τ̃−1(0)(X̃; Z) and a similar formula for j1!(1). Since

τC/{0} = τC/{1}

in H2
c(C; Z), they are equal in H2

D(C; Z) for D a sufficient large compact

disk. It follows that

j0!(1) = j1!(1)

in H·τ̃−1(D)(X̃ ; Z) and we get

j̃0 chY (i0!F) = j̃1 chY (i1!F)

in H·Y×D(X̃ ; Q). Since Y ×D is a p̃-proper closed subset of X̃ ,

p̃! : H·Y×D(X̃ ; Q) −→ H·Y (X; Q)

is well-defined and we get

chY (i1!F) = p̃!j1! chY (i0!F)

= p̃!j0! chY (i0!F).

Using Proposition 5.7.3, we get finally

chY (i1!F) = p̃!j0!i0!(chF/ tdTYX)

= i1! ch(F/ tdTYX)

as requested.

5.8 Proof of Hirzebruch-Riemann-Roch theorem

Using the results in the three previous sections, we can now prove Theo-

rem 5.1.10.

Proposition 5.8.1. Assume i : X −→ Y is a closed embedding of com-

pact complex analytic manifolds. Then Hirzebruch-Riemann-Roch theorem

holds for X if it holds for Y .

Proof. Let F be a coherent analytic sheaf on X. By Theorem 5.7.1, we

have

chX (i!F) = i!(chF/ tdTXY ).
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Therefore,

ch(i!F) tdTY = i!(chF i
∗ tdTY/ tdTXY ).

Thanks to the exact sequence

0 −→ TX −→ i−1TY −→ TXY −→ 0

we have

i∗ tdTY = tdTX tdTXY.

So

chY (i!F) tdTY = i!(chF tdTX)

and the conclusion follows.

Corollary 5.8.2. The Hirzebruch-Riemann-Roch theorem holds for any

complex projective manifold.

Proof. This follows directly from the preceding proposition if one takes

Y = Pn(C) and uses Proposition 5.6.1.
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[5] A. Borel and J.-P. Serre, Le théorème de Riemann-Roch, Bull. Soc.

Math. France 86 (1958), 97–136.

[6] G. E. Bredon, Sheaf theory, McGraw-Hill Series in Higher Mathematics,

McGraw-Hill, New York, 1967.
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Volumes já publicados
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Topologia Algébrica e Teoria elementar dos Feixes, 1998.

12 Owen J. Brison,

Grupos e Representações, 1999.

13 Jean-Pierre Schneiders,

Introduction to Characteristic Classes and Index Theory, 2000



Abstract

This book is based on a course given by the author at the university of

Lisbon during the academic year 1997–1998. Its aim is to give the reader

an idea of how the theory of characteristic classes can be applied to solve

index problems. Starting from the Lefschetz fixed point theorem and its

application to the computation of the Euler-Poincaré characteristic of a

compact orientable manifold, we first develop the theory of Euler classes

of orientable manifolds and real vector bundles. Then, we study Stiefel-

Whitney classes and the general modulo 2 characteristic classes of real vector

bundles. Similar considerations for complex vector bundles lead us to the

Chern classes. We conclude the part devoted to characteristic classes by a

study of global and local Chern characters. The rest of the book is then

centered around the Riemann-Roch theorem. We present first a very simple

proof which works for compact complex curves and allows us to make links

with the original results of Riemann and Roch. Then, we treat in details the

case of compact complex projective manifolds by more advanced methods.
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