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Preface

This book is based on a course given by the author at the university of
Lisbon during the academic year 1997-1998. This course was divided in
three parts dealing respectively with characteristic classes of real and com-
plex vector bundles, Hirzebruch-Riemann-Roch formula and Atiyah-Singer
theorem. In the text which follows, we have decided to treat only the first
two subjects. For an introduction to the last one, we refer the reader to [21]
for the classical point of view or to [22, 23] for recent developments.

The theory of characteristic classes is a very well developed branch of
mathematics and the literature concerning Riemann-Roch theorem is huge.
So, we will not try to give a full view of these subjects. We will rather
present a few basic but fundamental facts which should help the reader to
gain a good idea of the mathematics involved.

Although the reader is assumed to have a good knowledge of homological
algebra and topology, we begin with a chapter surveying the results of sheaf
theory which are needed in the rest of the book. In particular we recall
results concerning acyclic sheaves, taut subspaces, Poincaré-Verdier duality
and Borel-Moore homology, illustrating them by means of examples and
exercises.

We refer the reader who would like a more detailed treatment of this part
to standard texts on sheaf theory (e.g. [11, 6, 28, 18]) and algebraic topology
(e.g. [9, 29, 14]). Older works may also be of interest (e.g. [31, 25, 1, 19]).

Chapter 2 is devoted to Euler classes. As a motivation, we begin by prov-
ing the classical Lefschetz fixed point formula and applying it to compute
the Euler-Poincaré characteristic of a compact oriented topological mani-
fold by means of its Euler class. Next, we study Thom and Euler classes of
oriented real vector bundles. In particular, we consider Thom isomorphism,
Gysin exact sequence and functorial properties of Euler classes. We end
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v Preface

with results on the Euler class of a normal bundle which allow us to link the
Euler class of an oriented differential manifold with the one of its tangent
bundle.

The first part of Chapter 3 deals mainly with Stiefel-Whitney classes.
We define them in the Grothendieck way by means of projective bundles
and Euler classes of associated tautological bundles. Then, we establish the
pull-back and direct sum formulas. Thanks to the splitting principle, we
also obtain a formula for the Stiefel-Whitney classes of a tensor product. In
the second part of the chapter, we study in general the characteristic classes
of real vector bundles. We begin by classifying real vector bundles of rank
r by means of homotopy classes of maps with values in the infinite Grass-
mannian G . This establishes a link between the characteristic classes
of real vector bundles with coefficients in a group M and the elements of
H (Goo,r; M). By computing this last group for M = Zs, we show that the
modulo 2 characteristic classes of real vector bundles are polynomials in
the Stiefel-Whitney classes. We end by explaining the usual cohomological
classification of real vector bundles and deducing from it that line bundles
are classified by their first Stiefel-Whitney class. This allows us to give a
criterion for a real vector bundle to be orientable.

Chapter 4 is centered on Chern classes. We begin by adapting most of
the results concerning Stiefel-Whitney classes to the complex case. Next,
we consider specific results such as the Chern-Weil method of computing
Chern classes using the curvature of a connection. We also treat briefly of
the Chern character. The last part of the chapter is little bit technical. It is
devoted to Iversen’s construction of the local Chern character for complexes
of complex vector bundles (see [17]) and to its application to the definition
of a local Chern character for coherent analytic sheaves.

For more details on the three preceding chapters, the reader may consults
classical books on the theory of fiber bundles (e.g. [30, 20, 16]).

The last chapter of this book is about Riemann-Roch theorem. After
a short review of the finiteness and duality results for coherent analytic
sheaves, we reach the central question of this part i.e. how to compute

X(X; F)

for a coherent analytic sheaf on a compact complex analytic manifold X.
The answer to this question is essentially due to Hirzebruch (see [15]) and
states that
X(X;F) :/ chF —tdTX
b'e
where ch F is the Chern character of F and td T X is the Todd class of the
tangent bundle of X. To better understand the meaning of this formula, we
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devote Sections 2—4 to the easy case of line bundles on complex curves. In
this situation, X is a compact Riemann surface and we can link the gener-
alized Riemann-Roch theorem considered above with the original results of
Riemann and Roch. We end the chapter by proving Hirzebruch-Riemann-
Roch theorem for complex projective manifolds. We follow Grothendieck
approach (see [5]) by reducing the result to the case of the complex projec-
tive space by means of a relative Riemann-Roch formula for embeddings.
However, to treat this relative case, we have not followed [5] but used a sim-
pler method based on the ideas of [2, 3, 4] and the proof of the Grothendieck-
Riemann-Roch formula in [10].

For bibliographical informations concerning the subject treated in this
chapter we refer to [15, 10]. Interesting historical comments may also be
found in [7, §].

It is a pleasure to end this preface by thanking heartily the CMAF for
its hospitality during my stay at Lisbon university. I think in particular to
T. Monteiro Fernandes who invited me to give the course on which this book
is based and suggested to publish it in this collection. I am also grateful
to her for taking a set of lectures notes which served as a first draft for
this work. All my thanks also to O. Neto and to the various people who
attended the course and whose interest has been a strong motivation for
turning the raw lecture notes into a book.

Let me finally thank F. Prosmans whose help was invaluable at all the
stages of the preparation of the manuscript.

March 2000 Jean-Pierre Schneiders
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Survey of sheaf theory

1.1 Abelian presheaves and sheaves

Let X be a topological space and let Op(X) denote the category of open
subsets of X and inclusion maps.

Definition 1.1.1. An abelian presheaf on X is a functor F' : Op(X)°P —
Ab where Ab denotes the category of abelian groups. In other words, an
abelian presheaf is a law which associates an abelian group F(U) to any
open subset U of X and which associates to any open subset V' C U a
restriction morphism

v s F(U) = F(V)

in such a way that
F F F
Twv °Tvu = Twu

for any chain of open subsets W C V C U of X. We often denote {7 (s)
simply by sy; when there is no risk of confusion.

A morphism of abelian presheaves is simply a morphism of the cor-
responding functors. More explicitly, a morphism of abelian presheaves
[ F — G is a law which associates to any open subset U of X a morphism

fU): FU) — G(U)
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in such a way that the diagram

is commutative for any open subsets V C U of X.
With this notion of morphisms, abelian presheaves form an abelian cat-
egory, denoted Psh(X).

Examples 1.1.2.
(a) On X, we may consider the abelian presheaf Cy x defined by setting
Cox(U)={f:U — C: f continuous}

and defining the restriction morphisms by means of the usual restric-
tions of functions.

(b) If X is endowed with a Borelian measure p, we may consider the
abelian presheaves p — L, x defined by associating to an open U of X
the quotient of the abelian group

{f:U—>(C:/ | fIPdV e < 400}
U
by the subgroup
{f:U—C: f=0p—almost everywhere};
the restriction morphisms being the obvious ones.

Definition 1.1.3. An abelian sheaf on X is an abelian presheaf F such
that

(a) we have

F(0) =0;
(b) for any open covering U of an open subset U of X, we have the exact
sequence
0—FU) 2 [ 7o) 25 [ 7vow)
veu V,Weu
where
pu(s) = (Tﬁu(s))\/eu
and

pu((sv)veu) = (rlyamwyy (sv) = Tlvawyw (5w))viweu:-
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A morphism of abelian sheaves is a morphism of the underlying abelian
presheaves. With this notion of morphisms, abelian sheaves form a full
additive subcategory of Psh(X). We denote it by Shu(X).

Examples 1.1.4.

(a)

(b)

Since continuity is a local property, the abelian presheaf Cy x is clearly
an abelian sheaf.

The abelian presheaf u — L, x associated to a Borelian measure p on
X is not in general an abelian sheaf. As a matter of fact, the condition

/ |fIPAV i < +o0
U

may be satisfied locally on U without holding globally. Note however
that the presheaf p — £, x of functions which are locally in p — L, x
is an abelian sheaf.

If X is a differential manifold, the presheaves C%, x and Db% of smooth
and distributional p-forms are clearly abelian sheaves.

Similarly, on a real analytic manifold X, we have the abelian sheaves
A% and BY of analytic and hyperfunction p-forms.

On a complex analytic manifold X, we have the abelian sheaves Ox,
O of holomorphic and antiholomorphic functions and the abelian
sheaves Q% and QPY of holomorphic and antiholomorphic p-forms. We

have also the abelian sheaves Cfg’gz and Dbgf"” of smooth and distri-

butional (p, ¢)-forms and the sheaves Ag?’q) and Bgf’Q) of analytic and
hyperfunction (p, q)-forms.

Definition 1.1.5. The stalk at x € X of an abelian presheaf F' is the
abelian group

F,= lim F(U)
e

U>x
U open

where the inductive limit is taken over the set of open neighborhoods of x
ordered by D. We denote

TfU :F(U) — F,

the canonical morphism and often use the shorthand notation s, for

TfU(S)

when there is no risk of confusion.
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Remark 1.1.6. Let € X and let F' be an abelian presheaf on X. To deal
with elements of F,, we only have to know that:

(a) for any o € F, there is an open neighborhood U of z in X and
s € F(U) such that o = s,;

(b) if U, U’ are two open neighborhoods of z in X and s € F(U), s’ €
F(U’) then s, = s, if and only if there is an open neighborhood U”
of z such that U" C UNU" and sy = SiU”'

Proposition 1.1.7. Let F' be an abelian presheaf on X. Define A(F)(U)
to be the subgroup of [, F» formed by elements o which are locally in
F (i.e. such that for any xg € U there is a neighborhood Uy of xo in U
and s € F(Uy) with s, = o, for any « € Up). Turn A(F') into an abelian
presheaf by setting

[T\égF) (U)} =0z

x

for any x € V' and consider the morphism
a:F — A(F)
defined by setting
[a(U)(s)], = sa

for any x € U. Then, A(F) is an abelian sheaf and for any abelian sheaf
G and any morphism g : F — G there is a unique morphism ¢’ making the
diagram

a

F — A(F)
| 7
N 9

g

commutative. Moreover, a induces an isomorphism
az : Fp — A(F),

for any x € X.
Definition 1.1.8. We call A(F') the abelian sheaf associated to F.

Examples 1.1.9.

(a) The abelian sheaf p1— L, x considered in Examples 1.1.4 is isomorphic
to A(p — Lp,x).
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(b) To any abelian group M, we may associate the constant presheaf
Uw— M.

This presheaf is in general not a sheaf. We denote its associated sheaf
by Mx and call it the constant sheaf with fiber M. For any open
subset U of X, we have

Mx(U)={0:U — M : o locally constant}.

Proposition 1.1.10. The category Shv(X) is abelian. The kernel of a
morphism

f:F—G

is the abelian sheaf
U — Ker f(U);

its cokernel is the abelian sheaf associated to the abelian presheaf
U +— Coker f(U).
Proposition 1.1.11. A sequence of abelian sheaves
0— F EN GLH—0
is exact if and only if the sequence of abelian groups
0—>fxf—’“>gmg—’“>Hm—>0

is exact for any x € X.
Examples 1.1.12.

(a) Ezponential sequence. Let Cj  denotes the (multiplicative) abelian
sheaf formed by non vanishing continuous complex valued functions.
Denote

exp : Co.x — Cp x
the morphism which sends a continuous complex valued function f to
expof and denote

24 ZX —>C()7X

the morphism which sends a locally constant integer valued function
n to a complex valued function 2iwn. Then, it follows from the local
existence on C* of the complex logarithm that

23T exp
0—Zx —Cox —Cyx—0

is an exact sequence of sheaves.
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(b)

de Rham sequences. Let X be a differential manifold of dimension n
and let d denotes the exterior differential. Working by induction on
n, it is relatively easy to show that for any convex open subset U of
R"™ the sequence

0 — Cgn(U) = Co g (U) L -~ L2 pu(U) — 0

is exact. This result, often referred to as the Poincaré lemma, shows
directly that

d d
0—>CX—>Cg07X—>~'—>CQOVX—>O

is an exact sequence of abelian sheaves. Similar results hold with Coo, x
replaced by Dbx (and by Ax or By if X is a real analytic manifold).

Dolbeault sequences. Let X be a complex analytic manifold. Then,
for any smooth (p, ¢)-form w we have

dw = dw + Ow

with dw (resp. Ow) of type (p+1,q) (resp. (p,q+ 1)). This gives rise
to morphisms

0: Cg’gz — Cgf;’q), 9: Cg’gz — Cg’gjl)

such that 9% = 0, 7 = 0, 00 + 00 = 0. If U is a convex open subset
of C", one checks by induction on n that the sequences

0— Q2. (U) = P ) L ... 2 c®m) (1) = 0

0o,Cn oo,Cn
and
0— Q2.(U) = CLR.U) - S C.(U) =0

are exact. Therefore, we see that
0—>Q§(—>C§£’gg iﬁcg:})ﬂo

and

Oﬂﬁ%ecgzﬁgi...ﬁcgy’ﬁgﬂo

are exact sequences of abelian sheaves.
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Proposition 1.1.13.

(a) Let (I;)zex be a family of injective abelian groups. Then, the abelian
sheaf T defined by setting

IU) =[] L

zeU

for any open subset U of X and

T
[TVU(S)]I = Sz
for any open subset V of U and any x € V is injective.

(b) Let F be an abelian sheaf on X. Then, there is a monomorphism
F -1

where T is a sheaf of the type considered in (a). In particular, the
abelian category Shv(X) has enough injective objects.

Remark 1.1.14. As a consequence of the preceding proposition, we get
that any functor F' : Shu(X) — A where A is an abelian category has a
right derived functor. Note that, in general, Shv(X) does not have enough
projective objects.

1.2 Sections of an abelian sheaf

Definition 1.2.1. Let A be a subset of X and let F be an abelian sheaf
on X.
A section of F on A is an element

o€ H]—}

with the property that that for any x¢ € A there is an open neighborhood
Up of zp in X and s € F(Uy) such that

Opr = Sy

for any x € ANUy. When A = X, we call sections of F on A global section
of F.
The support of a section o of F on A is the set

supp(c) ={x € A: 0, #0}.
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It is the relatively closed subset of A.
Sections of F on A form an abelian group that we denote by I'(A; F).
Let B be a subset of X such that B C A and let 0 € T'(A; F). Then,
r% 4(0) is the element of I'(B; F) defined by setting

[rBa(0)], = 0a

for any « € B. We will often use o|p as a shorthand notation for 7% (o).
Of course, we have

supp(o|5) = supp(o) N B.

Remark 1.2.2. Let U be an open subset of X and let F be an abelian
sheaf on X. Then, the canonical morphism

FU)—-T(U;F)

which sends s € F(U) to (sy)zev is an isomorphism. Hereafter, we will
often use this isomorphism to identify F(U) and I'(U; F) without further
notice. Note that if V' is an open subset of U, the two definitions of rﬁU
are compatible with this identification.

Definition 1.2.3. Let X be a topological space and let A be a subspace of
X.

We say that A is relatively Haussdorf in X if for any x # y in A we can
find open neighborhoods U and V of x and y in X such that U NV = 0.

By an open covering of A in X, we mean a set U of open subsets of X
such that for any x € A there is U € U containing . Such a covering is
locally finite on A if any x € A has a neighborhood V in X for which the
set

{Uelu:UnV #£0}

is finite.

We say that A is relatively paracompact in X if it is relatively Haussdorf
and if for any open covering U of A in X we can find an open covering V
of A in X which is locally finite on A and such that for any V € V there is
UeldwithV CU.

Remark 1.2.4. One checks easily that a subspace A of a topological space
X is relatively paracompact if it has a fundamental system of paracompact
neighborhoods. This will be the case in particular in the following cases:

(a) X is completely paracompact (e.g. metrizable);

(b) A is closed and X is paracompact.
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Other examples of relatively paracompact subspaces are given by relatively
Haussdorf compact subspaces.

Proposition 1.2.5. Let A be a relatively paracompact subspace of X and
let F be an abelian sheaf on X. Then,

(a) for any o € T'(A; F) there is an open neighborhood U of A in X and
s € I'(U; F) such that sj4 = 0;

(b) if U, U’ are two open neighborhoods of A in X and s e T(U; F), s’ €
['(U',F) then sj4 = siA if and only if there is an open neighborhood
U" of A such that U C UNU’ and sjyn = siUﬁ_

In other words, we have

D(A;F) = lim T(U;F).

UDA
U open

Proof. See [24]. O

Proposition 1.2.6. Let A be a topological subspace of X and let F be an
abelian sheaf on X. Then, the abelian presheaf F|4 defined by setting

FlalU) =T(U; F)

for any open subset U of A and

Fia _ . F
vu =Tvu

for any chain V' C U of open subsets of A is an abelian sheaf.

Remark 1.2.7. It follows from the preceding results that sections of F on
A may be considered as the global sections of the abelian sheaf 4.

1.3 Cohomology with supports

Definition 1.3.1. A family of supports of X is a set ® of closed subsets of
X such that

(a) if Fy is a closed subset of X included in Fy € ®, then F; € ®;
(b) for any Fy, F» € @, there is F3 € ® such that Fy} U Fy C F.
Let F be an abelian sheaf on X. Then global sections s of F such that
supp(s) € @

form an abelian group that we denote I'g(X; F).
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Examples 1.3.2.

(a) The set ®x of all the closed subsets of X is clearly a family of supports
and we have

Loy (X5 F) = D(X; F)
for any abelian sheaf F.

(b) Let F' be a closed subset of X. Then, the set ®r of all the closed
subsets of F' is a family of supports. In this case we set for short

Lp(X5F) =T (X;F)

for any abelian sheaf F. Note that this special case allows us to recover
the general one. As a matter of fact, we have

Le(X; F) = lim I'p(X; F).
Fed

(b) Let X be a Haussdorf space. Then, the set ®. of all compact subsets
of X is a family of supports. We set for short

Le(X5F) =To (X3 F)
for any abelian sheaf F.
Let ® be a family of supports of X.
Proposition 1.3.3. The functor
Ie(X;:): Shu(X) — Ab
is left exact and has a right derived functor
Rl (X;-) : D (Sho(X)) — D (Ab).

Proof. The left exactness follows directly from the structure of kernels
in Sho(X). The existence of the right derived functor follows from Re-
mark 1.1.14. O

Definition 1.3.4. Let F be an abelian sheaf on X. We define the k-th
cohomology group of X with coefficients in F and supports in ® as the

group
H*[RT(X; F)).

To lighten notations, we denote it by

HE (X; F).
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If @ is the family of all closed subsets of X, we shorten the notation by
dropping the ®. Similarly, if ® is the family & (resp. ®.) considered in
Examples 1.3.2, we replace it by F' (resp. ¢).

An abelian sheaf F is ®-acyclic if H% (X; F) = 0 for any k > 0.

Remark 1.3.5. Let F be an abelian sheaf on X. By a well-known result
of homological algebra

RF@(X;f) ~ F@(X;R.)

if R is a right resolution of F by ®-acyclic sheaves. The aim of the next
section is to give basic examples of such sheaves

1.4 Flabby and soft abelian sheaves

Definition 1.4.1. An abelian sheaf F on X is flabby if for any chain U; C
U, of open subsets of X

15,0, : T(U2 F) — T (U1 F)
is an epimorphism.
Examples 1.4.2.
(a) Any injective abelian sheaf is flabby.

(b) Let (M,).ex be a family of abelian groups. Then,

UHHMI

zeU

is a flabby sheaf.
(c) The sheaf pn — £, x of Examples 1.1.4 is flabby.
(d) The sheaf Bx of hyperfunctions is flabby.

Proposition 1.4.3. A flabby abelian sheaf F is ®-acyclic for any family
of supports ®. Moreover, if in an exact sequence of abelian sheaves

0—-F—=G—H—=0

F and G are flabby, then so is H.

Definition 1.4.4. An abelian sheaf F on X is ®-soft if for any chain
Fy CFyof ®
Tt D(Fo; F) — D(Fy; F)

is an epimorphism.
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Examples 1.4.5.

(a) Assume X is normal. Thanks to Urysohn’s extension result, it is clear
that the abelian sheaf Cy x is ®-soft for any family of supports ®.

(b) If X is a differential manifold, it follows from the existence of partitions
of unity that the abelian sheaves C% - and Dby are ®-soft for any

family of supports ®. The same is true of the sheaves Cfﬁ’gz and Dbg?"”
if X is a complex analytic manifold.

Definition 1.4.6. A family of supports ® is paracompactifying if

(a) any F € ® is paracompact;

(b) for any Fy € ®, there is Fp € ® with F} C Fb.
Examples 1.4.7.
(a) If X is paracompact, then the family formed by the closed subsets of

X is paracompactifying.
(b) If X is alocally compact space, then the family formed by the compact

subsets of X is paracompactifying.

Proposition 1.4.8. Assume the abelian sheaf F is ®-soft and the family
® is paracompactifying. Then, F is ®-acyclic. Moreover, if in the exact
sequence of abelian sheaves

0—-F—-G—-H—0
F and G are ®-soft, then so is 'H.
Corollary 1.4.9 (de Rham and Dolbeault theorems).
(a) For any differential manifold X, we have the canonical isomorphisms
H(X; Cx) >~ HY(D(X; C x)) = HY(D(X; Dby))

and
HE(X;Cx) ~ H*(To(X;Cly x)) ~ HF(To(X; Dby ))
for any k € N.

(b) For any complex analytic manifold X, we have the canonical isomor-
phisms

HF(X; Q%) ~ HY(D(X;CP))) ~ HY(D(X; Db )

and
HE(X; 0%) = HY(Te(X3C03) = HE(Le(X: Db )

for any k, p € N.
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Proof. Thanks to Examples 1.4.5 (b) and Examples 1.4.7, this follows di-
rectly from Remark 1.3.5 and Proposition 1.4.8. O

Exercise 1.4.10. Let B,, denote the open unit ball of R™. Show that for
n>1
C ifk=0

0 otherwise

H*(B,;Cp,) ~{

Solution. Recall that for any convex open subset U of R", the Poincaré
lemma for d shows that the sequence

0 — L(U;Cqn) = D(U;C gn) = - = D(UsChpn) — 0
is exact. Therefore, by the de Rham theorem we have

C ifk=0

0 otherwise

Hk(U; (CU) ~ {
Since B, is convex, the conclusion follows. O

1.5 Cohomology of subspaces and tautness

Definition 1.5.1. Let X be a topological space and let ® be a family of
supports on X. We say that a subspace A of X is ®-taut if the canonical
morphism
lim HI<€I>mU(U§‘7:|U) - HémA(A§f|A)
UDA
U open
is an isomorphism for any k£ > 0 and any abelian sheaf F on X.

Remark 1.5.2. It is easily seen that a subspace A of X is ®-taut if and
only if for any flabby sheaf F on X

(a) the abelian sheaf F|4 is ® N A-acyclic;
(b) the canonical morphism
Fe(X;F) = TanalA; Fla)
is surjective.
In this case, it follows that

F — RI'(A4; Fla)
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is the right derived functor of
F—T(A;F).
One should however be aware that this result is false in general.

Proposition 1.5.3. Let X be a topological space and let ® be a family of
supports on X. Assume A is a topological subspace of X. Then A is ®-taut
in the following cases:

(a) ® is arbitrary and A is open;
(b) @ is paracompactifying and A is closed;
(c) ® is paracompactifying and X is completely paracompact;

(d) ® is the family of all closed subset X and A is both compact and
relatively Haussdorf.

Exercise 1.5.4. Let B,, denote the closed unit ball of R™. Show that for
n>1

C ifk=0
0 otherwise

Hk(En; CEH) ~ {

Solution. Since B, has a fundamental system of neighborhoods formed by
open balls of R”, this follows directly from Proposition 1.5.3 and Exer-
cise 1.4.10 O

1.6 Excision and Mayer-Vietoris sequences

Definition 1.6.1. Let A be a subset of X and let ® be a family of supports
of X. We set
O p={Fecd:FCA}

and
PNA={FNA:Fcd}

Remark 1.6.2. Let A be a subset of X and let ® a family of supports of
X. Clearly, for any abelian sheaf F on X, we have canonical morphisms

F<1>‘A(X;‘7:) —>F<1>(X;‘7:)

and
F@(X;j:) — F@mA(A;j:)

which induce similar morphisms at the level of derived functors.
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Proposition 1.6.3 (Excision). Let A be a subset of X and let ® be a
family of supports of X. Assume either A is open or A is closed and ® is
paracompactifying. Then, for any object F of DT (Shv(X)), we have the
canonical distinguished triangle

Rlg ., (X; F) = RLe(X; F') — Rlana(A; F) T

In particular, for any abelian sheaf F, we have the excision long exact

sequence:
------- Hy 1 (6 F) — Hy (X F) — Hra (4 F) —~
L HEPL (X3 F) = HEP (G F) = HGEL (A5 F)

Proof. Let us recall the proof of this result since a detailed understanding
of its mechanism will be necessary in various parts of this book. We treat
only the case where A is open; the other case being similar.

Assume G is a flabby sheaf and let s € T'(4; G) be such that

supp(s) C FN A

with F' in ®. The zero section on X \ F' and the section s on A coincide on
(X\F)NA= A\ F. Therefore, there is a section s’ of G on (X \ F)U A
such that siX\F =0, siA = s. Since G is flabby and (X \ F')U A is open, we
may extend s’ into a section s’/ of G on X. For this section, we have

Si/X\F =0, 5{14 =S.
Hence, supp s” C F and belongs to ®. These considerations show that
T's(X;6) = Tona(4;G)
is an epimorphism. Moreover, a simple computation shows that
0— F@X\A(X;]:) —Te(X;F) = Tona(4; F)

is exact for any abelian sheaf F. It follows that if G is a flabby resolution
of the complex F°, then

0— F(D\X\A(X;g.) - F<I>(X;g.) - F<I>I'WA(A; g) -0

is an exact sequence of complexes of abelian groups. Since flabby sheaves are
acyclic for the various functors involved, we get the announced distinguished
triangle. The last part of the result follows from the snakes’ lemma. O
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Remark 1.6.4. Let us recall that the snakes’ lemma states that an exact
sequence of complexes of abelian groups

024 B 50 -0
induces a long exact sequence of cohomology

......... Hk(A') &} Hk(B') &)Hk(C')

5k
k+1 w k41 e
(_> Hk+1(A')H—(>)Hk+1(B')H—(>)Hk+1(C') .......

where §* is defined as follows. Let [c*] be a cohomology class in H*(C").

Since v* is surjective, there is b* € B* such that

o (VF) = .

Using the fact that d*(ck) = 0, one sees that d¥(b*) is in Ker v**1. Hence,

there is a**1 € A**! such that u**1(a¥*1) = d*(b*). The cohomology class

k+1

of a**1 is the image of [c¥] by 6¥. A way to remember this definition is to

follow the dotted path in the following diagram:

k k

AF ——— B* —— C*

S

AR+ uktt Bh+1 ot Okl

N /
N e

Proposition 1.6.5 (Mayer-Vietoris). Let A, B be two subsets of X and
let ® be a family of supports on X. Assume that either A and B are open
or A and B are closed and ® is paracompactifying. Then, for any object F-
of DT (Shv(X)), we have the canonical distinguished triangle

Rlgn(aun) (AU B; F') = Rlana(A; F) @ RTanp(B; F) — Rlanans) (AN B; F) X5

In particular, if F is an abelian sheaf, we have the Mayer-Vietoris long exact
sequence

"""" Hgm(AuB)(A UB;F) — HgmA(A?]:) & HémB(B? F) — Hgm(AmB)(A N B; F) j

Q HH (aum) (AU B F) — Hyll (A F) @ Hyl (B F) — Hgllanp) (AN B; F) =
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Proof. The proof being similar to that of Proposition 1.6.3, we will not recall
it in details. We only recall that it is based on the fact that the sequence

0— Tanaun) (AU B;G) 5 Tena(4;9) & Tenn(B; 6) 2 Tanans) (AN B;G) — 0
where «(s) = (s|4,5/4), B(s,5") = s|anB — STAOB is exact when A, B are
open and G is flabby or when A, B are closed, ® is paracompactifying and
g is ®-soft. O

Exercise 1.6.6.

(a) Let S, denotes the unit sphere in R"*1. By using Mayer-Vietoris
sequence and de Rham theorem, show that for n > 1

C ifk=0,
H*(S,; Cg, ) ~ ! "
0 otherwise

(b) Show by excision that for n > 1

C ifk=n

H¥(B,;Cp,) ~
el 5:) {0 otherwise

Solution. (a) Assume n > 1. Set
Str={z €S, xnp1 >0}, S, ={z€S,: 2,41 <0}

and identify S,,_1 with S;' NS, (see figure 1.6.1). Since S,, = S;F US;,, we
have the Mayer-Vietoris long exact sequence

......... H*(S,;C) —— H* (S} C) @ H*(S; ;C) —— H*(S,_1; C) D)

(—>Hk“(Sn;<C) N HkJrl(Sj{;(C) o HkJrl(S;;(C) — Hk+1(Sn71;(C) .......

Recall that, for any e € |0, 1[, {x € S, : p41 > —€} is an open subset of S,
which is diffeomorphic to a ball of R™. Therefore, working as in (a), we see
that

C ifk=0

0 otherwise

H* (S C) {
Of course, there is a similar result for S, . It follows that

H**1(S,; C) ~ H*(S,_1;C) *)
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Figure 1.6.1:

A

Tn+1

if k> 0 and that H°(S,,; C) and H!(S,,; C) are isomorphic to the kernel and
the cokernel of the morphism

HO(SF;C) @ H(S,, ;C) — H°(S,_1;C) (**)

n?

(%) = V15,1 — V1S0_s

Note that since S and S, are clearly connected spaces, the locally constant
complex valued functions ¢ and v are in fact constant.

Let us assume first that n» = 1. Since Sy = {0, 1}, we have
C? ifk=0
0  otherwise.

Hk(So;(C) ~ {

Therefore, the morphism (**) becomes up to isomorphisms the additive
map

C? — C?
(x,y)H(:L’—y,x—y)

It follows that H!(S;;C) ~ C and that H°(S;;C) ~ C. This last isomor-
phism reflecting the fact that the circle S; is connected.
Assume now that n > 1 and that

C ifk=0,n—1

0 otherwise

Hk (Snfl; (C) ~ {



1.6. Excision and Mayer-Vietoris sequences 19

The morphism (**) now becomes equivalent to the additive map
c*-cC
(@,9) > a—y

Hence, H!(S,,; C) ~ 0 and H(S,,; C) ~ C. Moreover, thanks to (*) we see
that for £ > 1 we have

C ifk=n

0 otherwise

H*(S,;C) ~ {

The conclusion follows by induction.
(b) Assume n > 1. Since B,, \ B, = S,_1 and since any closed subset
of B,, is compact, we have the excision distinguished triangle

RT.(B,;C) — RT(B,;C) — RT(S,_1;C) 5

From the associated long exact sequence, we deduce that
H*(S,-1;C) ~ HFY(B,; C)
for k > 0 since in this case
H*(B,;C) ~ H*"(B,;C) ~0.

Moreover, we see also that H%(B,,;C) and H!(B,;C) are the kernel and
cokernel of the morphism

H(B,;C) — H°(S,,_1;C)
P P1Sn_1
For n = 1, this morphism is equivalent to
C — C?
z— (z,2)

and we get H2(B;;C) ~ 0 and H!(B;;C) ~C.
For n > 1, it becomes equivalent to

C—-C

Tr+—x

and we get HY(B,,; C) ~ H.(B,;C) ~ 0. The conclusion follows by induc-
tion on n. O
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Exercise 1.6.7. Let I = [a,b] be a compact interval of R. Show by using
tautness and a suitable Mayer-Vietoris sequence that for any abelian sheaf
F on I, we have

HYI; F)=0
for k > 1. Establish also that this relation holds for k = 1 if

L(LF)— Fs
is an epimorphism for every x € I. As an application compute

H'(1; My)

for any abelian group M.
Solution. Fix k > 0 and assume there is ¢ € H¥(I; F) which is non-zero.

Set
xo =inf{x € I : ¢|jq2) # 0}.

Since by tautness

lim H*([a, z); F) = H*([a, zo]; F)

>0

we see that ¢|[q,z,) 7 0 and hence that zo > a. Since

lim H*([z, zo]; F) = H* ({xo}; F) = 0,

<o

there is x < zg with ¢|[3,4,] = 0. For such an z, the decomposition
[a’a IO] = [a’a I] U [Ia IO]
gives the Mayer-Vietoris exact sequence

------- H* " ([a, zo); F) — H* "' ([a, 2; F) & H* ' ([, z0); F) — H* ' ({a}; F) j

<—> H* ([a, zo); F) —— B ([a,2]; F) & B ([, 20}y F) —— H ({z}; F) =
Ifk>1ork=1and
LI F) — Fo
is an epimorphism, it follows from this sequence that
HE ([a, w0} F) = HE ([a, a); F) & B[z, 2o; F).

This gives us a contradiction since both cjjq 7] and ¢|jz,4,) are 0 although

Cllaswo) 7 0.
The application to F = M7 is obvious. We get

M ifk=0;

0 otherwise.

H*(I; M;) = {
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1.7 Inverse and direct images

Definition 1.7.1. Let f : X — Y be a morphism of topological spaces and
let G be an abelian sheaf on Y.

Let U be an open subset of X. We define f~(G)(U) as the abelian
subgroup of [[, <y Gy(«) formed by the elements o such that for any zo € U
there is an open neighborhood Uy of zg in U, an open neighborhood Vj of
f(Up) and s € G(Vp) such that o, = sf(,) for any x € Uy. Clearly,

U~ f7H(9)0)

is an abelian sheaf on X. We call it the inverse image of G by f. Note that
by construction there is a canonical pull-back morphism

[ D(Y;6) - D(X; £7HG)).

Remark 1.7.2. It follows at once from the preceding definition that we
may identify f~(G), and Gy(y). In particular, the functor

1 Sho(Y) — Sho(X)
is exact.

Proposition 1.7.3. Let f: X — Y and g : Y — Z be two morphisms of
topological spaces. Then,

FH (M) = (g0 /)™ (R)
canonically and functorially for H € Shv(Z). Moreover,
(idx)(F) = F
canonically and functorially for F € Shv(X).
Examples 1.7.4.

(a) Let ax : X — {pt} be the morphism which maps the topological space
X to a point. Identifying sheaves on {pt} with their global sections,
we have

Mx ~ ay' (M)

for any abelian group M.

(b) Combining the preceding proposition with example (a), we get a
canonical isomorphism

1 (My) ~ Mx

for any abelian group M and any morphism of topological spaces
f:X->Y.
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(¢) Let ¢ : A — X be the canonical inclusion of a subspace A of X and
let F be an abelian sheaf on X. One checks easily that

imN(F) = Fa.

Definition 1.7.5. We say that (X;F) is an abelian sheafed space if X is a
topological space and F is an abelian sheaf on X. We say that

(fio) : (X3 F) = (V;0)

is a morphism of abelian sheafed spaces if (X;F) and (Y;G) are abelian
sheafed spaces, f: X — Y is a morphism of topological spaces and

p: TG F
is a morphism of sheaves.
Examples 1.7.6.

(a) Let f : X — Y be a morphism of topological spaces. Then the
canonical isomorphism

[T My — Mx
gives rise to a morphism of sheafed spaces
(fi f5) 2 (X3 Mx) — (Y5 My).
(b) Let f: X — Y be a morphism of topological spaces. Then,
g—gof
induces a canonical morphism of abelian sheaves
[ oy — Cox
and hence a morphism of sheafed spaces
(fi f5) 2 (X;Co,x) — (Y;Coy).

(¢) Similarly, a morphism of differential manifolds f : X — Y induces
morphisms of abelian sheaves

[ fﬁlcgo,y = Ch x

corresponding to the pull-back of differential p-forms. Hence, we have
a canonical morphism of sheafed spaces

(fi )+ (XCE x) — (Y3 Chy)-
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Proposition 1.7.7. A morphism of sheafed spaces

(fi9) : (X5 F) = (Y3 0)
induces a morphism

RI(Y;G) — RI(X; F)
and, in particular, a canonical morphism

(fi)" : H(Y;G) — H (X; F).

Moreover, these morphisms are compatible with the composition of mor-
phisms of sheafed spaces.
Proof. We have a functorial morphism

L(Y;G) = T(X; f7'9) (*)

Since the functor f~! is exact, a standard result of homological algebra
gives us a morphism

RI(Y;G) — RI(X; f7'G).
Composing with the canonical morphism
RI(X; f7'G) — RI(X; F)

induced by ¢, we get the requested morphism. It is possible to visualize
this abstract construction more explicitly as follows. Assume we are given
a quasi-isomorphism

G T
where J" is a complex of T'(Y; -)-acyclic sheaves and a commutative diagram
of the form

16 Y
i v

Fe——T

where [ is a quasi-isomorphism and Z° is a complex of I'(X;-)-acyclic
sheaves. Then, in DT (Ab), we have the commutative diagram
RT(Y;G) 5 T(Y; )
1®
@) (X5 fH(T)
@

RI(X: F) = T(X:T)
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where (1) and (5) are induced by « and 3, (3) is induced by morphism of
the type (*), (4) is induced by v and (2) is the morphism defined abstractly
above. O

Examples 1.7.8.

(a)

Let f: X — Y be a morphism of topological spaces. By applying the
preceding proposition to the canonical morphism of sheafed spaces

(fi f5): (X; Mx) — (Y5 My)
we get a canonical morphism
RI(Y; My) — RT(X; My)
in DT (Ab). The associated morphism
(fs [ H(Y; My) — H (X; Mx)

is often simply denoted by f*. Clearly, f* =id if f is the identity of
X. Moreover, if g : Y — Z is another morphism of topological spaces,
we have f* o g* = (go f)*. This shows that X — H (X;Mx) is a
functor on the category of topological spaces. In particular, X ~ Y
implies H'(X; Mx) ~ H (Y; My).

Let f : X — Y be a morphism of differential manifolds. It is well
known that the pull-back of differential forms is compatible with the
exterior differential. In other words, we have

d(f*(w)) = f*(dw)

for any w € T'(Y;C?_ ). Using what has been recalled in the proof
of the preceding proposition, we see that we have the commutative
diagram

HP(Y: Cy ) —— HP (X Cx)
¥ ks

HP(I(Y;C ) 72 HP(D(X3Co x))

where the first horizontal arrow is the one defined in (a) and the
two vertical isomorphisms come from the de Rham theorem. Thanks
to what has been said in (a), we see also that, up to isomorphism,
de Rham cohomology of X

H(T(X;C x))

depends only on the topology of X and not on its differential structure.
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Definition 1.7.9. Let f : X — Y be a morphism of topological spaces and
let F be an abelian sheaf on X.

The direct image of the abelian sheaf F by f is the sheaf f(F) on Y
defined by setting

FFRWV)=F(H V)

for any open subset V of Y; the restriction morphisms being the obvious
ones.

Example 1.7.10. Let ax : X — {pt} be the morphism which maps the
topological space X to a point. Identifying sheaves on {pt} with their
abelian group of global sections, we have

ax(F) ~=~T(X;F)
for any abelian sheaf F on X.

Proposition 1.7.11 (Adjunction formula). We have a canonical func-
torial isomorphism

Hom g, y(G, f(F)) = Hom g, (f7H(G), F).

This isomorphism is induced by two canonical functorial morphisms

FHUE) - F

and

G — f(f71(9))

Proof. We will only recall the construction of the canonical functorial mor-
phism

Hom Shv(Y)(gaf(j:)) — Hom Shv(X)(fil(g)aj:) (*)
Let h: G — f(F) be a morphism of abelian sheaves. For any open subset
V of Y, we get a morphism

h(V):G(V) = F(fH(V))
and using Remark 1.1.6, it is easy to deduce from these morphisms a mor-
phism
ha,f(@) : Gf@) = Fa

for any = € X. Now, let U be an open subset of X and let o € f~1(G)(U).
One checks directly that (hg f(2)(0z))zev € F(U). Hence, for any open
subset U of X, we have a morphism

W(U) : f7HGU) — F(U).
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These morphisms give rise to the morphism
Wi fTNG) = F
image of h by (*). O

Proposition 1.7.12. Let f : X — Y and g: Y — Z be two morphisms of
topological spaces. Then,

9(f(F)) = (g )(F)
canonically and functorially for F € Shv(X). Moreover,
(idx)(F) = F
canonically and functorially for F € Shv(X).
Proposition 1.7.13. The direct image functor
f:Shv(X) — Shu(Y)
is left exact and has a right derived functor
Rf : DT(Shw(X)) — DT (Shu(Y)).
Moreover, if g : Y — Z is another morphism of topological spaces, then
RgoRf ~R(gof).

Example 1.7.14. Denoting ax : X — {pt} the canonical map, we deduce
from the functorial isomorphism

ax(F) ~=T(X;F)
that
Rax(-) ~RI'(X;-).

Therefore, the second part of the preceding proposition contains the fact
that
RI(Y; Rf(F)) ~ RI'(X; F);

a result which replaces Leray’s spectral sequence in the framework of derived
categories.

Proposition 1.7.15. Assume that

(a) the map f is closed (i.e. such that f(F) is a closed subset of Y if F' is
a closed subset of X);
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(b) the fiber f~1(y) is a taut subspace of X for any y € f(Y).

Then,
[Rf(F)ly = RO(f~ ' (y); F)

for any y € Y and any abelian sheaf F on X.

Example 1.7.16. Thanks to Proposition 1.5.3, it is clear that the condi-
tions on f in the preceding proposition are satisfied if one of the following
conditions holds :

(a) fis closed and X is metrizable;
(b) f isclosed, Y is Haussdorf and X is paracompact;
(¢) f is proper and X is Haussdorf.

Remark 1.7.17. Note that under the assumptions of Proposition 1.7.15,
we have of course

F(P)]y =T () F)
but that this formula may be false in general.
Corollary 1.7.18 (Vietoris-Begle). Assume that
(a) the map f is closed and surjective,
(b) the fiber f~1(y) is a taut subspace of X for anyy € Y,
(c) the fiber f~1(y) is connected and acyclic (i.e.
HE (7 (y); My-1(y)) = 0
for any k > 0 and any abelian group M) for any y € Y.
Then, the canonical morphism
G — RF(fH(9)

is an isomorphism for any G € DT (Shv(Y)). In particular, the canonical
morphism

RI(Y;G) — RI(X; f71G)
is an isomorphism in DV (Ab).
Proof. 1t is sufficient to note that

(f 91w = (Gy) 1)
and that the canonical morphism

M — H(f7H(y); My-1y))

is an isomorphism if f~!(y) is non-empty and connected. O
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Figure 1.7.1:

_A(xla"'7xn)

N e— (U NOX)

Remark 1.7.19. Let us recall a few facts about Stokes’ theorem which
are needed in the following exercise. Let X be an oriented n-dimensional
differential manifold with boundary. As is well-known, the orientation of X
induces an orientation on 0X. This orientation is characterized by the fact
that if z : U — R" is a positively oriented local coordinate system of X on
an open neighborhood of v € X such that

z(u)=0, z(U)={x€Bp:20<0}, z(UNIX)={x€ B, :xz0=0}

(see Figure 1.7.1) then (21, -+, 25)|unax is a positively oriented coordinate
system of 0X. With this orientation of d.X, Stokes’ formula states that

/dw:/ w
X X

for any w € FC(X;C;’;}().
Exercise 1.7.20.

(a) Let X be an oriented n-dimensional differential manifold. Show that
integration of smooth compactly supported n-forms induces a mor-
phism

/ :HZ(X;C) - C
X

(b) Let X be an oriented n-dimensional differential manifold with bound-
ary. Express the various morphisms of the excision long exact sequence

......... H’;(X\@X;(C) L)Hf(X;(C) LH’;(@X;C) —>
5k

(—> HF(X\ 0X;C) s HML(X; C) 2 HEHL(9X; C) -
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in terms of de Rham cohomology. Show in particular that

/5717107171:/ Cnfl
X o0X

for any ¢"~t € H?71(0X;C).

Solution. (a) Integration gives us a morphism

/ :FC(X;CQQX) — C.
X

By Stokes’ theorem, we know that

/dw:/ w=0
X X

for any w € T'.(X; Cgof)l(). Therefore, [, induces a morphism

/ T(X:C0 ) /dTo(X5CR ) — C
X

and the conclusion follows from the de Rham theorem.

(b) Since C, x is a c-soft resolution of the sheaf Cy, the long exact
sequence of cohomology comes from the application of the snake’s lemma
to the exact sequence of complexes

0= Pe(X\ X5 Co0 x 3 ax) = TelX3 0o x) = Te(0X3C x x) — 0

The canonical restriction morphism

C<.>o,X|X\6X - C<.>o,X\6X

is clearly an isomorphism. As for the restriction morphism

Coo,X|6X - Coo,é)X
it is a quasi-isomorphism since in the commutative diagram of complexes

Cxjox == Cox

l |

C —Ch x

éo,X |6X
both vertical arrows are quasi-isomorphisms. It follows that

I (X \8X;C ~Te(X\ 0X;C x\ox)

<.707X|X\6X)
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and that

Te(0X;5Coo x px) 2 T(OX: Co ox)-

Computation of u*. Let & € H¥(X \ 0X;C) be represented by
wh € To(X \ 0X;CE x\ox)-
By extension by zero, w* becomes a class

W/k S FC(X, CEO,X)

and u*(c*) is represented by w’".

Computation of v¥. Let ¢* € H¥(X;C) be represented by
Wk S FC(X, CEO,X)

and let j : 9X — X denotes the inclusion map. Then, v*(w") is represented
by
j* (WF) € Te(8X;CL ox)-

Computation of 6*. Let & € H*(0X;C) be represented by
Wk € Fc(ﬁX;CZfOﬁX).

Set K = suppw®. We know from elementary differential geometry (collar
neighborhood theorem) that there is a neighborhood U of dX in X, a
differentiable map p : U — 0X such that poj = idgx and a smooth
function ¢ equal to 1 on a neighborhood of dX and such that supp ¢ is
a p-proper subset U. Denote w’ ¥ the k-form on X obtained by extending
ep*w by zero outside of U. Clearly, w’ * has compact support and

Therefore, it follows from the snake’s lemma that 6*(c*) is represented by
dw’ rX\a x- As expected, this form has compact support. As a matter of
fact,

dw’fU =dp A p*w® + pprdw® = dp A p*o®
and dy = 0 in a neighborhood of dX. Assuming now that k = n — 1, we
see using Stokes’ theorem that

/ 5nflcn71:/ dw/nflz/ wlnflz/ j*p*wnfl
X\oX X 0X 0X
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1.8 Homotopy theorem

Definition 1.8.1. Let F, G be abelian sheaves on X and Y respectively
and let

() : (X x I;px'F) — (Y36)
be a morphism where I = [0,1] and px : X x I — X denotes the first
projection. Let t € [0,1]. We denote

g X > X x1
the morphism defined by setting i;(z) = (x,¢) and h; the morphism h o 4;.
Applying i; ' to
brhTG -
we get a morphism
i i thTIG — iy P F
Since h oi; = hy and px o4y = idx, this gives us a morphism
Yeih'G— F
and a corresponding morphism
(hasthe) - (X5 F) — (Y3G).
We call (h;1) a homotopy between
(ho; ¥o) : (X5 F) — (Y, G)
and
(hi;¢1) + (X5 F) = (Y5 G).

Two morphisms of abelian sheafed spaces connected by a homotopy are said
to be homotopic.

Proposition 1.8.2. Let F, G be abelian sheaves on X and Y. Assume the
morphisms
(fo;po) + (X5 F) = (V5G)
and
(frion) : (X F) = (Y50)
are homotopic. Then, the morphisms
(fos o)™ + H(Y;G) — H (X3 F)
and
(fison)" 1 H(Y:G) — H(X; F)

are equal.
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Proof. Since the application
px : X xI—X

is proper and surjective and I is connected and acyclic (see Exercise 1.6.7),
Corollary 1.7.18 shows that the canonical morphism

(px;mx) : (X x Iipy' F) — (X; F)
induces the isomorphism
(px;7x)* H(X;F) = H (X x I;p}lf).

If
(ig50e) + (X F) = (X x I;p}lf)

denotes the canonical morphism, we have
(px;mx) o (it; 1) = id.

It follows that (i4;¢)* is the inverse of the isomorphism (px;7x)* and thus
does not depend on t € [0, 1].
Let
() + (X x Lipx' F) — (Y3 G)

be a homotopy between (fo; w0) and (f1;¢1). Since
(h;9) o (i050) = (fo;po),  (B39) o (i1501) = (f15 1),
we see that

(fos0)" = (i0;t0)" o (h;9)" = (i1501)" o (hs )" = (fi51)".

Corollary 1.8.3. If two morphisms
fo: X —>Y and fi: X -V
are homotopic in the topological sense, then, for any abelian group M,
fo +H(Y; My) — H (X; Mx)

and
fi H (Y My) — H(X; Mx)

are equal. In particular, if X and Y are homotopically equivalent, then
H (X; Mx) =~ H(Y; My)

for any abelian group M.
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Examples 1.8.4.
(a) The preceding corollary allows us to show that

M ifk=0

H¥(B,; Mg, ) =
( ) { 0  otherwise
for any abelian group M. As a matter of fact,

h:B, xI— B,
(z,t) — tx

is a homotopy between the constant map

ho: B, — B,
z— 0
and the identity map
hy: B, — B,
T

Therefore, the inclusion map jo : {0} — B, and the projection map
po : By, — {0} are inverse of each other in the category of topological
spaces modulo homotopy. Hence,

H (Bp; Mp,) ~ H ({0}; Myoy)
and the conclusion follows.

Note that in contrast with Exercise 1.4.10, we have not made use of
de Rham theorem. A similar reasoning shows that

_ M ifk=0
s M
0  otherwise

for any abelian group M.

(b) Working as in Exercise 1.6.6 (a) and (b), we can deduce from (a) that,

for n > 1 and any abelian group M, we have
M ifk=0,n
0  otherwise

H*(S,; Ms,) ~{

and
M ifk=n

H¥(B,; Mp,) ~
( B.) {0 otherwise
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Exercise 1.8.5. Assumen > 1. Endow §n+1 with the orientation induced
by the canonical orientation of R" ! and orient S,, as 9B 41. Denote [ the
morphism obtained by composing the morphism

H"(S,;Z) — H"(S,; C)
induced by the inclusion of Z in C with the integral
/ :H"(S,;C) — C
Sn
of Exercise 1.7.20. Show that the group
H"(S,;Z)

has a unique generator vs, such that [vs, = 1 and that [ induces an
isomorphism between H"(S,,;Z) and Z.

Solution. Since H"(S,,; Z) ~ Z, this group has only two generators g; and
g2 = —g1. The uniqueness is thus obvious. Let us prove the existence. We
shall use the same notations as in Exercise 1.6.6. It is clear that we have
the following canonical morphism of distinguished triangles

RIo(Sp; Z) — RLo(SF; Z) @ RTW(S; Z) — RTu(Sh_1; Z) 5

f 1) o

RL(SF\ S,_1;Z) ——— RI(S;;Z) ———— RI'(Sh_1;Z) —

where the first vertical arrow is induced by zero extension of sections. It
follows that we have the commutative diagram

5/71—1

H" (S, 1;7Z) ———— H"(S,; Z)

I T

(S, 152) —— HA(S \ Su-1i2)

where §’% and 6% are the Mayer-Vietoris and excision “coboundary opera-
tors”. Since S, is an oriented manifold with boundary, we get from Exer-
cise 1.7.20 that

/ 5/"*1(67171):/ 5n71(cn71) ::l:/ L
S SH\Sn_1 gn—1

n

where the sign + appears if S"~! is oriented as the boundary of S;" and
the sign — appears in the other case (a simple computation shows that the
sign is in fact (—1)™).
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For n = 1, we have the commutative diagram
10
HO(S132) & HO(ST32) — HO(S0; Z) = H' (S1; Z)
Y] 4l !
2 2
Z (171) A TRy o/

1-1

Therefore, the generators of H!(S1;Z) are the images by &’ % of the functions
1 and @9 defined on Sy by setting

{mn =0 i {wz(l) =1
(1) =1 2(1) =0

Since

g 5" ps = —(p2(1) — p2(-1)) = 1

we may take vg, = 0"%¢o.
Assume now that n > 1 and that we have found vg, , € H*7}(S,_1;7Z)

such that
/ vg, , = 1.
Sn—1

/ 5" s, | = (—1) / vs, ) = (—1)"
Sn S,

n—1

Since

we may choose vg, = (—1)"8"" 'vg,_,. The conclusion follows easily by
induction. O

Exercise 1.8.6. Assume n > 1. Show that if C,, is an open cell of R™ (i.e.
an open subset of R™ which is homeomorphic to B,,) then

HY(Cn; Z) ~ 0
for k # n and [ induces an isomorphism
H (Cp;Z) ~ Z.

In particular, there is a unique class ve, € HY(C,; Z) such that

/vcn =1

Show also that if C], is an open cell of R" included in C,,, then the canonical
morphism

HZ(Cp; Z) — HE (Cns Z)

is an isomorphism which sends vc: to ve,, .
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Solution. Let us first assume that C,, = B,. We start from the excision
distinguished triangle

RT.(Bn;Z) — RT(Bn; Z) — RI(Sp_1;Z) +5

For n =1, we get the exact sequence

— 0
H(B,.; Z) — H'(So; Z) S HY(By; Z) — 0

v 4 ¥
2
2 P o »0

It follows that a generator of H.(B1;Z) is v, = 6°([¢]) where
{ﬂDO
p(1) =1

/sz: (1)) = p(1) — p(~1) = 1,
B B

we see that [ B, induces the isomorphism

Since

/ ‘HY(B;;2) = 7.
B
For n > 2, we get the isomorphism

H (S 1; Z) = H? (By; 7)
i }

"

Setting vp, = §""lvg, ,, we see that

/ vB, :/ 5"7105%1 :/ Ve, _, =1
By By S.

n—1

and the conclusion follows.

Assume now C,, is a general open cell of R™. By functoriality, it is clear
that
Z ifk=n

H¥(C,; Z) ~ H¥(B,; Z) ~
0 otherwise

Let B be an open ball of R” with center 2. By inversion, R"\ B ~ B\ {z}.
Therefore,
RI.(R™\ B;Z) ~ RI(B\ {r};7Z)
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From the excision distinguished triangle
RI(B\ {«};Z) — RT(B; Z) — RT({z}; Z) *
it follows that RI'.(B \ {x}; Z) ~ 0. Hence, R['.(R" \ B;Z) ~ 0 and
RI'.(B;Z) — RI'(R™; Z)

is an isomorphism in the derived category.
It follows that
HZ(B; Z) — HE(R™; Z)

is an isomorphism. If we assume moreover that x € C,, and B C C,,, we see
from the commutative diagram

H(B;Z) ——  H}(Cy; Z)

\/

HI(R™; Z
that
HZ (Cr; Z) — HE(R™; Z)

is surjective. Since these groups are both isomorphic to Z, the preceding
morphism is in fact an isomorphism. Using the commutativity of the dia-
gram

HY (Bn; Z) —=— HZ (R"™; Z)

an\«(C/fmn

we see that fRn induces an isomorphism

/ :HYR™Z) — Z.
A similar argument with B,, replaced by C,, allows us to conclude. O

Exercise 1.8.7. Let ¢ : C,, — C}, be a diffeomorphism between two open
cells of R™. Show that

¢ vey, = sgn(Jp)ve,

where J, denotes the Jacobian of ¢.

Solution. It follows from the preceding exercise that

Y ver = mug,.
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On one hand, we have

/mvcn:m/vcn:m.

On the other hand, using de Rham cohomology, we get

[ e, =sen(s) [ e, = sen(s,).
The conclusion follows. O

Exercise 1.8.8.

(a) Show that the canonical morphism
RI'40y(Bn;Z) — RI(By; Z)
is an isomorphism.
(b) Deduce from (a) that for any open neighborhood U of v in R™ we have

7 ifk=mn;

Bt L (U;Z) =
{u}( ) {0 otherwise.

Show, moreover, that H?u}(U; 7) has a unique generator v,, such that

/vuzl
U

(c) Let ¢ : U — V be a diffeomorphism between open subsets of R™ and
denote J, its Jacobian. Show that for any u € U, the map

" T HY oy (V3 Z) — HY (U3 Z)
sends vy () to sgn(Jy,(u))vy.
Solution. (a) Consider the morphism of distinguished triangles

R (0} (Bn; Z) — RT(B,,; Z) — RI(B,, \ {0};2)

! | Lo

RI.(Bn;Z) — RI'(B,; Z) — RI(S,_1; Z) —

In this diagram, the second vertical arrow is the identity and by the homo-
topy theorem the third vertical arrow is an isomorphism. It follows that the
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first vertical arrow is also an isomorphism. Since this arrow is the compo-
sition of the isomorphism

with the canonical morphism
RI'f0y(Bn; Z) — RI'o(Bn; Z),

we get the conclusion.
(b) The cohomology table follows directly from (a) and Exercise 1.8.6.
Let By C U be an open ball with center u. By (a),

{uy(Us Z) ~ 0y, (Bu; Z) ~ HY(By; Z).

Denote v,, the element of H?u}(U;Z) corresponding to vp, € H?(By;Z).
Since the diagram
(U 2) — HE (UL Z)

l |

HY,y (Bu; Z) — H (Bu; Z)

/ Uu - / UBU -
U By

(¢) Thanks to (b), the result may be obtained by working as in the
preceding exercise. O

is commutative, we get

Exercise 1.8.9. Let B, = {(x0, - ,2n) € Bny1 : ®o < 0} and identify
B,, with
{(Oaxla T ,IEn) : (xla T ,IEn) € Bn}

(see Figure 1.8.1). Denote vp-, B, € Hi 2B, \ Bn;Z) and vp, €
H?(By,;Z) the classes which have an integral equal to 1. Show that

U, \B. =6"(vg,)
where 0™ is the coboundary operator associated to the distinguished triangle

RI.(B.,, \ Bn:Z) — RT(B,,:Z) — RTo(B,; Z) +5

n+1 n+1a

Solution. Thanks to the preceding exercise, this follows directly from Exer-
cise 1.7.20. O
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Figure 1.8.1:

_A(a:la"'axn)

< e— B,

1.9 Cohomology of compact polyhedra

Definition 1.9.1. A finite simplicial complex is a finite set ¥ of non-empty
finite sets called simplezes such that if 0 € ¥ and ¢’ C o then ¢/ € . We
call the finite set S = UX, the set of vertices of 3.

The dimension of a simplex ¢ € ¥ is the number dimo = #o0 — 1.
Simplexes of dimension n € N are called n-simplezes. A p-face of an n-
simplex o is a p-simplex ¢’ such that ¢’ C o. The dimension of the finite
simplicial complex ¥ is the number

dim ¥ = sup dimo.
oex

The n-skeleton of ¥ is the simplicial complex
Yp={o€ X dimo <n}.

The realization of ¥ is the compact subspace |X| of R#S defined by
setting

Z|={a:5S—R: \azO,suppaeE,Za(s) =1}
ses

If 0 € X, we set
lo| = {a € |X| : suppa =o}.

Clearly, |o| N |o’] # 0 if and only if 0 = ¢’ and |X| =, ¢x |0
The data of a finite simplicial complex ¥ and an isomorphism

h: X —X

of topological spaces is a finite triangulation of X. A topological space X
which has a finite triangulation is a compact polyhedron.
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Examples 1.9.2. The set ¥ whose elements are
{A} B} {C}A{D}, {A, B}, {A, D}, {B, D}, {B,C}.{D,C},{A, B, D}

is a finite simplicial complex of dimension 2. It has {A, B,C, D} as set of
vertices and contains

- four O-simplexes ({A}, {B}, {C},{D}),
- five 1-simplexes ({4, B}, {4, D},{B,D},{B,C},{D,C}),
- one 2-simplex ({A, B, D}).

A compact polyhedron homeomorphic to |¥] is

D

A

Compact polyhedra homeomorphic to || and |¥g| are respectively

D D

L]

and

[

A A

Definition 1.9.3. Let ¢ be a k-simplex of 3. Two bijections
/,L:{O,‘”,]C}—)O', V:{Ov"'vk}_)O—

have the same sign if the signature of v~! o u is positive. Clearly, the
relation “to have the same sign” is an equivalence relation on the set of
bijections between {0,---,k} and 0. An equivalence class for this relation
is called an orientation of o. Of course, a k-simplex of ¥ has only two
possible orientations, if o is one of them, we denote —o the other. An
oriented k-simplex is a k-simplex of ¥ endowed with an orientation. If
w:40,---, k} — ois a bijection, we denote by [1(0),- -, u(k)] the oriented
k-simplex obtained by endowing o with the orientation associated to p.

A k-cochain of ¥ is a map ¢ from the set of oriented k-simplexes of ¥ to
Z such that if c¢(,,,) denotes the values of ¢ on the oriented simplex (o, 0),



42 1. Survey of sheaf theory

we have ¢(g,—o) = —C(0,0)- It is clear that k-cochains form a group. We
denote it by C*(%). We define the differential

d¥ . CH(B) — CF (%)

by setting
k+1

(@) wp, wrsa) = (1) Clogro 21 g
=0

One checks easily that the groups C*(X) (k > 0) together with the differ-
entials d* (k > 0) form a complex C"(¥) canonically associated with . We
call it the simplicial cochain complex of .

Lemma 1.9.4. Let 0 = {xg, -, 2k} be a k-simplex of ¥ and let a; be the
point of |X| corresponding to z;. Set

k
Oag o) (t1, o t) = o + th(az — )
=1

and

k
Je={(tr, ) ERF 141 >0, 5 >0, t <1},
=1

Then, Jy is an open cell of R¥ and ¢y, .... 2,y @ Ju — |o| is an homeo-
morphism. Moreover, if v(y,.... z,) is the image of v;, by the isomorphism

w&lo*xk) : H¥(Jy; Z) = HE(|o|; Z), then we have

U(ILLU7"'7Iuk) = (Signu)v(xov“'vxk)
for any permutation p of {0,-- -, k}.

Proof. The fact that ¢ is an homeomorphism is obvious. Let u be a per-
mutation of {0,---,k}. Set

-1
’l/):u' - SD(ILLU,“' ,Iuk) ° SD(IUV“ 7Ik)'
Clearly, 1,, is the restriction to Jj of the affinity of RF characterized by

Yu(Pr) = Py,

where Py = 0, Py = ey, -+, P, = e;. It follows that 1, preserves or
reverses the orientation of R* according to the fact that u is even or odd.
Using Exercise 1.8.7, we see that

"/); (v-]k ) = (Sign H)U-]k .
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Hence,

P (000 = By 5 0)
= (sign )P0y . 4y (V)
and the conclusion follows. O

Lemma 1.9.5. Let 0 = {xo,---,x;} be a k-simplex of ¥ and let ¢/ =
{z1,--+,xzx}. The distinguished triangle

RTc(jo[; Z) = RT<(jo] U o'|: Z) — RT<(|0']; Z) *=
induces a canonical morphism
* v (o' 2) — HE (ol Z)
and we have
e (O e

Proof. The existence of the distinguished triangle follows from the fact that
|o| (resp. |o’|) is open (resp. closed) in |o| U|o’|. Thanks to the morphism
Oz, a1, Of the preceding lemma, we may assume that |o| = Ji, |0'| =
{(tr, - tr) st > 0, ,t), > 0,57ty = 1}. Then, |o| U |o’| appears
as a manifold with boundary and the result follows from Exercises 1.8.9
and 1.7.20 since

1 -1 -1 -1
1 1 0 0
1 0 0 1

O

Proposition 1.9.6. For any k > 0, there is a canonical isomorphism be-
tween HE(|%]; Z) and H*(C ().

Proof. Let us consider the excision distinguished triangle
+1
REc(|5\ [Ep-1l; Z) = RT(|Xp[; Z) = RT(|Epa[;Z2) — (%)

Since |E,] \ [Zp-1] = [_|U€Ep\21771 |o| and |o| is open in |X,| for any o €
Y\ Ep_1, we get

RE(S,\ [Zp-1iZ)~ €D RI(lo];2).
oEXP\Zp—1
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Using the fact that |o| is homeomorphic to an open ball of R? if 0 € X, \
Yp—1, we see that

D H(oz) ifk=p
HE (125 \ [Zp-1]:Z) = { vemp\2pms
0 otherwise.
Using Lemma 1.9.4; we get a canonical isomorphism
HE(|Zp]\ [Bp-1]; Z) = CP(5).

The long exact sequence of cohomology associated to (*) is

......... HE (12, \ [Bp1];2) — HY(|2,]; 2) — HE (2,1, 2) )

(—>H'§“(|Ep| \ 1] Z) = HMHH(S, [ 2) — BM (12,0 ]; 2)
For k > p, we get that
HE(|2,[;2) ~ HY (|1 ] 2).

By decreasing induction on p, we see that H*(|X,|; Z) ~ H¥(|Xo|;Z) ~ 0.
For k < p— 1, we obtain

HE(|2,[;2) ~ Y (|1 ] 2).

By increasing induction on p, this gives us the isomorphism
HY(12)-1];2) ~ HY(IZ); 2).

For k =p— 1, we get the exact sequence

0 ————H (|35 2) = B (1S5 2) D)

(—> HE([Xp] \ [Zp-1; Z) — HP(|3,]; Z) —— HP (|21 Z)
Using the isomorphisms obtained above, we may rewrite this sequence as
0— mP (5 2) 2L P (1m,a2) 2 eP (sl 2 BP(15,152) - 0.

Set 67 = [ o 4P. Clearly, Cokerd?~! ~ Coker fP~! ~ HP(|X,|;Z) and
through this isomorphism, the canonical map

(67)" : Coker 67~1 — CPH(]%))
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becomes the map
8 HP (|5, 2) — CPHL ().

It follows that Ker 67 /Im §P~! is canonically isomorphic to

Ker g7 ~ HP(|X|; Z).
To conclude, it remains to show that 6 = dP. Let [z,

-, Zpt1] be an
oriented (p + 1)-simplex of ¥ and let ¢ € CP(X) be a simplicial p-cochain.

We have to show that

p+1

[5;0(6)][9607“. »Tpt1] - Z(il)lc[mov“ By Zpta ]

=0

Denote A the simplicial complex formed by the finite non-empty subsets of

{IO’ e ’prrl}'

Using the morphisms of distinguished triangles

RIT(JAk| \ |Ak=1|;Z) = RT(|Ak|; Z) — RT(|Ak-1]; Z) *

+1
RE(|Zk| \ | Xk-1]; Z) — RL(|Zk]; Z) — RL(|Xk—1]; Z) —

One sees that we may assume ¥ = A. Moreover, we may assume that

1 ifl=0
C[Iov"'vflv“'vmp‘#l] =

0 otherwise

Set ¢ = {zg, -+ ,xpt1} and 0’ = {x1, -+ ,xp41}. Since |o| U |o’| is open

in |A] and |o'| is open in |A,_1|, we have the morphism of distinguished
triangles

RI.(|o|;Z) —— RI.(|o| U|o’|; Z) — RI.(|0'|; Z) +

| Lo,

RIC([AIN[Ap]; Z) — RIC(|A[ Z) —— RIc(|A[; Z) =
Therefore, the diagram

H(|o"|; Z) ———— HP*(|o]; Z)

HE(1Ap[\ [Ap-1]; Z)

!

HP(|Ay]3Z) —— HEFL(JA\ A, Z)
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is commutative. Since c is the image of the orientation class vig, ... «,] €
H2(|o'|; Z) by the canonical morphism

HY(|o']; Z2) = HZ(|Ap| \ |Ap-1[; Z) ~ CP (%),
6P(c) is the image of ©(v[g, ... «,)) Dy the canonical morphism
HEF (ol Z) — HEFL(JAI\ Ay Z) ~ CPH(D).
But Lemma 1.9.5 shows that
PV, 2y]) = Vlag, )
and the conclusion follows. O

Corollary 1.9.7 (Euler’s theorem). Let X be a finite simplicial complex.
Then, the abelian groups

HY(S);2) k>0
are finitely generated and the Euler-Poincaré characteristic

xX(1B) =Y (-1 ik HY (2] 2)

k

is equal to

S (DF#(ER N Skoa)

k

Proof. The first part follows directly from the fact that

CH () ~ ZH#EAZ-)

is a free abelian group with finite rank.
Denote Z*(X) and B**1(X) the kernel and the image of the differential

d¥ . CH(B) — CF (%)

and set
H*(%) = Z*(%)/B* (D).

From the exact sequences
0— ZF2) = C*Z) — B*(X) =0

0 — B*(%) - Z¥(2) - H*(Z) — 0
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we deduce that
tkCF(2) = 1k Z%(Z) + 1k BF (D)
and that
tk Z8(2) = 1k B*(Z) + rk H*(2).
It follows that
tk C*(2) = rk B¥(2) 4 1k BF1(Z) + rk H* ()
and, hence, that

> (DFrkCHE) =) (—1)F rk HE(E).

k k

The conclusion follows since
tk C*(2) = #(Zk \ Sk-1)

and
H*() ~ H*(|3|; Z).

Examples 1.9.8.
(a) Consider a simplicial complex ¥ with |X| homeomorphic to

Clearly, ¥ has four 0-simplexes, five 1-simplexes and one 2-simplex. Hence,
x(|X;Z)=4—-5+1=0.

(b) Consider a simplicial complex ¥ with |¥| homeomorphic to

We have three 0-simplexes and three 1-simplexes. Therefore, x(|X];Z) =
3 —3 = 0. Note that |X| ~ S; and our result is compatible with the fact
that

Hk(Sl; Z) ~

Z iftk=0,1
0 otherwise

since dimH®(S1;Z) — dimH(S1;Z) =1 —-1=0.
(¢) Similarly, for
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we have x =4 — 6 +4 = 2. This is compatible with the relation

dim H°(Sy; Z) — dim H'(S9; Z) + dimH?*(S2; Z) =1 -0+ 1 = 2.

1.10 Cohomology of locally compact spaces

Definition 1.10.1. Let X be a locally compact topological space. We call
the cohomological dimension of the functor

F—T.(X;F)

the cohomological dimension of X and denote it by dim. X.

Remark 1.10.2. Note that by a well-known result about cohomological
dimensions, dim. X <n (n € N) if and only if

HYX;F)~0

for any k > n and any F € Shu(X). Note also that contrarily to what
may appear at first glance, cohomological dimension is a local notion. More
precisely, if ¢ is an open covering of X, we have

dim, X = sup dim.U.
veu
In particular, dim. U < dim, X for any open subspace U of X. Note that
although a similar majoration holds for closed subspaces, it may be false for
arbitrary subspaces.

Exercise 1.10.3. Show that the cohomological dimension of an open sub-
space of R™ is equal to n. Deduce from this fact that if U and V are
homeomorphic open subspaces of R™ and R™ then n = m.

Solution. Let us prove that dim.R"” < n. The conclusion will follow since
we know that
H(B;Z) =17

for any open ball B of R".
Since

1 1
—+ —arctgz : R —]0, 1]
2
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is a homeomorphism, R™ is homeomorphic to ]0, 1[". Since this last space
is an open subspace of [0,1]", it is sufficient to show that dim,. [0, 1]" < n.
We will proceed by induction on n.
For n = 1, this follows from Exercise 1.6.7. Assuming the result is true
for n, we prove it for n 4+ 1 by using the isomorphism

RI([0,1]"*; F) = RI([0, 1); p(F))

(where p : R"*1 — R™ is a canonical projection) and the fibers formula for
Rp.

The last part follows from the fact that cohomological dimension is
clearly invariant by homeomorphism. O

Remark 1.10.4. It follows at once from the preceding exercise that the
cohomological dimension of a differential manifold is equal to its usual di-
mension.

Exercise 1.10.5. Let ¥ be a finite simplicial complex. Show that the
cohomological dimension of |X| is equal to dim X.

Solution. We will proceed by induction on dim ¥. For dim ¥ = 0, the result
is obvious. To prove that the result is true for dim ¥ = n + 1 if it is true for
dim ¥ < n, it is sufficient to use the excision distinguished triangle

REA(|Zn41] \ [2n]; F) = REe(|Zn41]; F) — REe(|80]; F) e

together with the fact that |X,,11| \ |X.| is a finite union of open cells of
dimension n + 1. O

Definition 1.10.6. The reduced cohomology I:I'(X; Z) of X with coefficient

in Z is defined by setting
. HY(X;Z)/7Z ifk=0,
H*(X;7) otherwise.

A topological space X is cohomologically locally connected (clc for short) if,
for any x € X and any neighborhood U of z, there is a neighborhood V of
z included in U such that all the morphisms

H*(U;Z) — H*(V;Z)
are zero.

Examples 1.10.7. One checks directly that differential manifolds are clc
spaces. With a little more work, one sees also that the same is true of
compact polyhedra.
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Proposition 1.10.8 (Borel-Wilder). Assume X is a locally compact clc-
space. Then, for any pair K, L of compact subsets of X such that L. C K°,
all the restriction morphisms

H*(K;Z) — H*(L; Z)
have finitely generated images.

Proof. We will proceed by increasing induction on k. Denote £ the family
of compact subsets L of K° which have a compact neighborhood L' ¢ K°
for which the image

™ e BYNK;Z) — HF (L, Z)

is finitely generated. It is clear that any point x € K° has neighborhood
in £. Hence, it is sufficient to show that if L1, Ly € £ then L1 U Ly € L.
Choose compact neighborhoods L}, L), of Ly, Lo for which TE/IK and TE/ZK
have finitely generated images. Let LY, L} be compact neighborhoods of
Ly, Ly such that LY C L}°, LY C L,°. Consider the diagram

HY(K: Z) —2— HY(K; Z) @ H* (K 7))
13 Je
HF V(L) N Ly Z) <5 HY (L, U Ly 2) 25 B (L, 2) @ HE (LY: 2)
1 s

HFY(LY N LY;7) = HF (LY U LY; Z)

where the horizontal morphisms come from Mayer-Vietoris sequences and
the vertical ones are restriction maps. We know that Im € is finitely gener-
ated. Since

B'(Imé) C Ime

we see that §'(ImJd) is also finitely generated. Hence, so is Imd/(Imd N
Im o). Using the epimorphism

8 (Imd/(Imd NIma’)) — Im(8" 0 d)/Im(a” ov')

we see that Im (¢’ 0d)/Im(a’ o~') is finitely generated. Since the induction
hypothesis shows that Im~' is finitely generated, it follows that Im(¢’ o §)
is finitely generated. This shows that L; U Ly € L and the conclusion
follows. O

Corollary 1.10.9. Assume X is a compact clc space. Then, the abelian
groups
H*(X;Z)
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are finitely generated. If, moreover, X has finite cohomological dimension,
then the Fuler-Poincaré characteristic

X(X) = Sk A (X3 2)
kEZ

is well-defined.

Remark 1.10.10. It follows from the preceding corollary that a compact
differential manifold has a well-defined Euler-Poincaré characteristic. We
will study it with more details in Chapter 2.

1.11 Poincaré-Verdier duality

Let f: X — Y be a continuous map between locally compact spaces.

Definition 1.11.1. A closed subset F' of X is f-proper if the map
fiIrp =Y

is proper or in other words if F'N f~}(K) is compact for every compact
subset K of Y. Clearly, f-proper subsets of X form a family of supports.
Let F be a sheaf on X and let U be an open subset of Y. We set

FEF)NU) =T p—proper (f (U); ).

One checks easily that fi(F) is a sheaf on Y. We call it the direct image
with proper supports of F by f.

Proposition 1.11.2. The functor
fi: Sho(X) — Sho(Y)
is left exact and has a right derived functor
Rf,: DT (Shw(X)) — D (Shu(Y))
which is computable by means of c-soft resolutions.

Remark 1.11.3. For the canonical map
ax : X — {pt}

we see easily that
Rax (F) ~ RL.(X;F).
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Proposition 1.11.4 (Fibers formula). For any F € D1 (Shv(X)), we
have a canonical isomorphism

[Rf\(F)], ~RL(f (y); F).

Corollary 1.11.5. The cohomological dimension of the functor f, is equal
to

sup [dlmc fil (y)]
yey

Corollary 1.11.6 (Cartesian square formula). Assume

YLX
g/T O TQ
T?Z

is a cartesian square of locally compact spaces. Then, we have the canonical
isomorphisms

g i~ g™ and ¢T'Rf >~ Rf'\g

Proposition 1.11.7. Let g : Y — Z be another continuous map of locally
compact spaces. Then, there are canonical isomorphisms

(gof),~giof and R(go f),~ Rg o Rf,.

Remark 1.11.8. Combining the preceding result with Remark 1.11.3, we
see that
RI.(Y;Rf\F) ~ RI.(X;F).

A result which may be seen as a kind of Leray theorem with compact sup-
ports.

Theorem 1.11.9 (Poincaré-Verdier duality). Assume f, has finite co-
homological dimension (i.e. assume that there is n > 0 such that

H*(Rf\F) =0
for k > n and any F € Shv(X)). Then,
Rf,: DT (Shw(X)) — D (Shu(Y))
has a right adjoint

f DT (Sh(Y)) — DT (Shu(X)).
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In other words, there is a canonical functorial isomorphism

Hom 1 g0y (RFF, G) =~ Hom 14 g0x)) (F5 £1G).

Moreover, for F € D~ (Shv(X)) and G € DT (Shv(Y)), there is a functorial
isomorphism

RHom (Rf,F,G) ~ RHom (F, f'G).

Example 1.11.10. Let F' be a closed subspace of X. Denote I'rG the
abelian sheaf
U Trau(U;G).

Let i : FF — X be the canonical inclusion of F'in X. Then, one checks easily
that 7, is exact and that

RHom (i\F,G) ~ RHom (F,i 'RI'rG).
In particular, there is a canonical functorial isomorphism
i'G ~ i 'RI'#G.

Corollary 1.11.11 (Absolute Poincaré duality). Assume X is a finite
dimensional locally compact space. Then, we have the canonical isomor-
phism

RHom (RT'.(X;Zx),Z) ~ RI'(X; wx)

where wx = a'yZ is the dualizing complex of X.

Proof. Take f = ax, F = Zx, G = Z in Theorem 1.11.9 and use the
isomorphism

RHom (Zx,wx) ~ RI'(X;wx).
O

Proposition 1.11.12. Let g : Y — Z be another continuous map of locally
compact spaces. Then, the canonical isomorphism

R(go f), ~ Rg o Rf
induces by adjunction the canonical isomorphism
(gof) = flog"

Corollary 1.11.13 (Alexander duality). Assume X has finite cohomo-
logical dimension and let F' be a closed subset of X. Then, there is a
canonical isomorphism

RHom (RT'.(F;2Z),Z) ~ RT'p(X;wx).
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Proof. Tt is clear that F' is locally compact and has finite homological di-
mension. Moreover, thanks to Example 1.11.10 and Proposition 1.11.12, we
have

WE = a!FZ ~ i!a!XZ ~ 'Rl pwyx

where i : ' — X is the canonical inclusion. Hence, the conclusion follows
from Corollary 1.11.11 with X replaced by F'. O

Proposition 1.11.14. For R™ there is a canonical isomorphism
WRn =~ ZRn [n] .
Proof. Using Corollary 1.11.11, we see that

(wrn)y ~  lim  RHom (RI'.(U;Z),Z).

Usx
U open ball

Thanks to Examples 1.8.4, we know that
RI.(U;Z) ~ Z]—n)].

Hence,
(Wrn )z =~ Z[n].

This shows in particular that
H(wgn) ~ 0
for k # —n and that the sheaf
orgn = H™" (wgn)

has all its fibers canonically isomorphic to Z. Moreover, it follows from
Corollary 1.11.11 that for any open ball U of R”,

RI(U; orgn) ~ RHom (RT'.(U; Zy)[n], Z) ~ Z.
Using the fact (see Exercise 1.8.6) that the canonical diagram

RIc(U; Z)[n] %ﬁ

!

RIL(U';Z)[n) > 7Z

is commutative if U C U’ are open balls of R™, we see that orgn is canoni-
cally isomorphic to Zgn. O
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Corollary 1.11.15. Let U (resp. F') be an open (resp. a closed) subset of
R™. Then, we have the canonical isomorphisms

RHom (RI'.(U;Z),Z) ~RT'(U; Z)[n|

and
RHom (RT.(F;Z),Z) ~ R p(R"™; Z)[n].

In particular, there are exact sequences of the form

0 — Ext'(H*Y(U; Z),Z) — H"*(U; Z) — Hom (H*(U;Z),Z) — 0
and

0 — Ext'(H*Y(F; 2),Z) — H% (R, Z) — Hom (HX (F; Z),Z) — 0.

Proof. The first part follows from Corollary 1.11.11 and Corollary 1.11.13
combined with the preceding proposition.

As for the second part, it follows from the fact that for any complex C"
of abelian groups we have an exact sequence of the form

0 — Ext'(H*1(C"),Z) — H~*(RHom (C", Z)) — Hom (H*(C"),Z) — 0
for any k € Z. O

Exercise 1.11.16. Let f : S| — R? be a continuous map and set C =
f(S1). We define the multiplicity of z € C to be pu, = #f~1(x). A point
x € C is simple if p, = 1 and multiple otherwise. Assume C has a finite
number of multiple points each of which has finite multiplicity. Compute
the cohomology of C' and R? \ C. In particular, show that the number of
bounded connected components of R*\ C' is 1+ - (pe — 1) generalizing
in this way the well-known theorem on Jordan curves. For example in

D
e
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we have
HPzy = Pay = Hzg = 2, Pzy = 3
and

1+ Y (o~ 1) =1+1+1+1+2=6.
zeC

Solution. Let g : S; — C be the map induced by f. We have
Rg(Zs,)s ~ R (g™ (2); Z) =~ Z** (*)

for any « € C. In particular, Rg(Zs,) ~ ¢g(Zg,). Consider the canonical
morphism Z¢c — g(Zs, ). Since g is surjective, it is a monomorphism. More-
over, (*) shows that its cokernel is supported by the set of multiple points
of C'. Therefore, we get the exact sequence of sheaves

0— Ze — g(Zs,) = P Zay ' —
zeC
pz>1
where Zj,y is the direct image of the constant sheaf on {x} in C. Applying
RI(C;-) we get the distinguished triangle

0 — RI'(C; Zc) — RI(C; Ry(Zs,)) — RI(C; @ 242,71)
zeC
Ha>1

Moreover,

RI(C; Rg(Zs,)) ~ RU(S1;Zs,) and RI(C; € Ziay ") =~ @ 27"
zeC zeC
g >1 Ha>1

Taking cohomology and setting

v = Z(Mﬂﬁ*l)v

zeC
pa>1

we get the exact sequence
0— H(C;Z¢) — HO(S1;Zs,) — 2" — H'(C; Zc) — H' (815 Zs,) — 0
and the isomorphisms
HY(C; Ze) ~ HY(S1; Zs,) ~ 0

for k > 1. Since S is connected, so is C and HY(C; Z¢) ~ H°(S1; Zs, ) ~ Z.
Through these isomorphisms, the first morphism appears as id : Z — Z.
Hence, using the fact that H!(S1;Zs,) ~ Z, we get the exact sequence

0— 272" — HYC;Z¢) — 7 — 0.
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The last group being projective, we get
HYC;Z¢) ~ 77+,

The cohomology table for C' is thus

Z if k=0,
H*(C;Z0) ~ 21 if k=1,
0 otherwise.

Since all these groups are free, Corollary 1.11.15 shows that

HZ *(R?; Zg:) ~ Hom (H*(C; Z), Z.).

Therefore,
7\ if k=1,
HE(R?; Zps2) ~ { Z if k=2,
0 otherwise.

Consider the excision distinguished triangle
RI¢(R?;Z) — RI(R?; Z) — RI(R2\ C; Z) 5

Taking cohomology and using the fact that H*(R?; Z) ~ 0 for k > 0, we get
the exact sequence

0 — HX(R% Z) — HO(R* Z) — HO(R? \ C;Z) — HE(R%Z) — 0
and the isomorphisms
HF(R?\ C;Z) ~ HET (R?; 2)

for k > 0. Since R? is connected, a locally constant function in R? is
constant and we have HY(R?;Z) ~ Z and HX(R%* Z) ~ 0. It follows that
the sequence

0—7Z—HR*\C;Z) - Z' — 0

is exact. From these results we deduce that

72 if k=0,
H*R?2\ C;Z)~< 7 if k=1,
0 otherwise.

Hence the number of connected components of R? \ C' is 2 4+ v. Since C
is compact, R? \ C has exactly one non bounded connected component. It
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follows that the number of bounded connected components of R?\ C'is 1+v.
Moreover, our method of proof shows also that

HY(R?\ C;Z) — H'(R?\ B; Z)

is an isomorphism if B is a closed ball of R? containing C. It follows that,
for any bounded connected component U of R?\ C, we have

Z ifk=0,

0 otherwise

H*(U;Z) ~ {

and that
Z ifk=0,1
HAUZ)= g 0
0 otherwise
if U is the non bounded connected component of R?\ C. (|

1.12 Borel-Moore homology

From the point of view of sheaf theory, cohomology is more natural than
homology. However, to make the link with classical homology theories, it is
convenient to introduce the following kind of co-cohomology.

Definition 1.12.1. Let ® be a family of supports of X. We define the
Borel-Moore homology Hf (X; Z) of X with integer coefficients and supports
in ® by setting

HP (X;7Z) = Hy*RT(X; wx).

Remark 1.12.2. Note that thanks to Corollary 1.11.11, we have a canon-
ical epimorphism
Hy(X;Z) — Hom (H¥(X;Z),Z)

which becomes an isomorphism when H**1(X;Z) has no torsion.

Proposition 1.12.3. If X is a Homologically Locally Connected space in
the sense of singular homology (HLC for short), then there are canonical
isomorphisms

HS(X;Z) ~SHy(X:Z)  (keN)

where SHy,(X; Z) denotes the singular homology with integer coefficients of
X.

Corollary 1.12.4. Assume X is a HLC space and K is a compact subset
of X. Then, there are canonical isomorphisms

H"RI(K;wx) ~ SHy(X, X \ K;Z).
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Proof. This follows from the preceding proposition combined with the dis-
tinguished triangle
RT.(X \ K;wx) — RTe(X;wx) — RT(K;wx) =
O

Proposition 1.12.5. Let f : X — Y be a continuous map and assume
X, Y are locally compact spaces of finite cohomological dimension. Then,
there is a canonical morphism

Rf wx — Wy.
This morphism induces a morphism
fe i HA(X;Z) — HX(Y; Z)
which is compatible with the usual push-forward morphism
f« :SHX;Z) — SH.(Y; Z).

Proof. We have
floy ~ flayZ ~ a\Z ~ wx.

Thanks to Poincaré-Verdier duality,
Hom gy (R 1wx, wy) =~ Hom 1 g, xy) (wx, flwy).
Hence, to the isomorphism wx ~ f'wy corresponds a canonical morphism
Rfiwx — wy.
Applying RT'.(Y7;-) to this morphism, we get a morphism
RIc(Xjwx) — RI(Ywy)

which induces f. at the level of cohomology. For the link with singular
homology, we refer to standard texts. O

Remark 1.12.6. For f = ax, we see that
(ax)- : H§(X;Z) — Z
corresponds to the classical augmentation
# :SHy(X;Z) — Z.
which associates to a singular 0-cycle ¢ = Z'j]:l mj[z;] the number #c =

Z'j]:l m;. This is why we will often use # as a shorthand notation for

(ax)s
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1.13 Products in cohomology and homology

Definition 1.13.1. Let F, G be two abelian sheaves on the topological
space X. We define the tensor product of F and G to be the abelian sheaf
associated to the presheaf

U~ FU)®GU).

Let ® and ¥ be families of supports on X. Since FF NG € & NV for any
F € ® and any G € ¥, we have a canonical morphism

—:Te(X5F) Ty (X5G) — Tonu (X5 F ®@G).
Proposition 1.13.2. The functor
® : Sho(X) x Shv(X) — Sho(X)

is right exact, left derivable and has finite homological dimension. Moreover,
if ® and ¥ are families of supports on X, we have a canonical morphism

—: Rls(X; F) @ RT'y(X;G) — Rlapnu(X; F 0L G)
which induces the generalized cup-products
= Hy (X F) ® Hy (X3 G) — Hghy (X5 F @ G)
at the level of cohomology.

Remark 1.13.3. For F = G = Zx, we have F L G ~ Zx and one can
show that the morphisms

< HE (X Zx) @ HY (X Zx) — HELL (X Zx)

given by the preceding proposition coincide with the classical cup-products.
On can also recover the usual formulas

(F—c)y—em=ct— (d — ™) and &= ()M — P

For F = Zx and G = wy, we have F @ G = wx and we get the
morphisms

— Hy (X5 Zx) @ Hy (X5 wx) — HjRG (X5 wx).

Using the equality Hy™(X;wx) = HY%(X;Zx), we recover the classical
cap-products

—~: Hf%(X;ZX) ®H;p(X;ZX) — H?fkkp(X;ZX).
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Thanks to the associativity of the generalized cup-products, we also recover
the cup-cap associativity formula

(" — ) ~cm=c" ~( ~cn).

If the elements of ® N ¥ are compact, we also get a pairing
() s H (X5 2) @ By (X3 Z) — Z
by composing
~: H§(X;Z) @ By (X; Z) — Hg™ (X Z)

with
# H(X;Z)— Z.
This pairing is a natural generalization of the classical pairing between ho-

mology and cohomology. Thanks to the cup-cap associativity formula, we
have

<Ck ~ Cl, Ck+l> = <Ck, Cl ~ Ck+l> .

Proposition 1.13.4 (Projection formula). Let f : X — Y be a contin-
uous map between locally compact spaces. Then, for any F € DT (Shv(X))
and any G € DT (Shv(Y)), there is a canonical isomorphism

G @' RfWF = Rf(fTIG " F).

Corollary 1.13.5 (Universal coefficient formula). Let X be a locally
compact space. Then, for any M € DT (Ab), we have the canonical isomor-
phism

RI.(X; M) ~ M @F RI.(X;Z).

Remark 1.13.6. Thanks to the preceding proposition, one can prove that
if f: X — Y is a morphism of locally compact spaces we have

Fo(F5() ~a) = ~ fula)

for any ¢* € H*(Y;Z) and any ¢; € Hf(X;Z). In particular, we get

(f(),a) = (", fular))
ifk=1

Definition 1.13.7. Let X, Y be topological spaces and let F (resp. G) be
a sheaf on X (resp. Y'). Denote px, py the canonical projections of X x Y
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on X and Y. We define the exterior tensor product F X G of F and G by
the formula

FRG=py' Fop,'G.

Let ® and ¥ be families of supports on X and Y. Denote ® x ¥ the family
of supports on X x Y formed by the closed subsets of the products of the
form F x G with F € ® and G € V. By definition of F X G, we get a
canonical morphism

X :Te(X; F)@Tw(Y;6) = Toxw(X x Y; FXG)

Proposition 1.13.8. Assume X, Y are topological spaces. Then, the func-
tor
X : Sho(X) x Sho(Y) — Sho(X xY)

is right exact and left derivable. It has finite homological dimension and if ®
and ¥ are families of supports on X and Y, we have a canonical morphism

RIe(X;F) @ RIy(Y;G) — Rlgxw(X x YV; FRL G)
which induces the generalized cross-products
x :HE(X; F) @ HY (Y;G) —» HEV (X x V; FRG)
at the level of cohomology.

Remark 1.13.9. If F =Zx and G = Zy, we get F X G ~ Zx«y and the
generalized cross-products

x :HE(X;Z2) @ HY (Y;Z) — HEY (X x Y3 Z)

corresponds to the classical cross-products in cohomology. Note that this is
not really a new operation since

et x el = p(c?) = py(c).

So, most of the properties of cross-products in cohomology may be deduced
from this formula. In particular, if f : X — X’ and g : ¥ — Y’ are
continuous maps, we have

(f x g)* (" x ) = f*(c¥) x g*(a).

Proposition 1.13.10 (Kiinneth theorem for cohomology).
Assume X, Y are locally compact spaces. Then, the canonical morphism

RI.(X; F) @ RT.(Y;G) — RI(X x Y; FR" G)

is an isomorphism for any F in DV (Shv(X)) and any G in DT (Shv(Y)).



1.13. Products in cohomology and homology 63

Proof. This follows directly from the projection formula and the cartesian
square formula. O

Lemma 1.13.11. Assume X and Y are locally compact spaces. Denote
py : X XY =Y
the second projection. Then, there is a functorial canonical morphism
L !
wx X* G — pyg

for G € DT (Shv(Y)). This morphism becomes an isomorphism if X is a clc
space.

Proof. We have the chain of morphisms

Rpy(wx B" G) ~ Rpy(px'wx ®" py'G) (1)
~ Rpy,(px'wx) @" G (2)
~ a;lRaX!wX olg (3)

where (1) comes from the definition of X, (2) follows from the projection
formula and (3) from the cartesian square formula. Using the canonical
morphism

Raxwx — Z,

we get a canonical morphism
Rpy,(wx B G) — G.
By adjunction, this gives us the requested morphism
L ! *
wx X* G — pyg- ( )

At the level of sections, these morphisms may be visualized as follows. Let
U, V be open subsets of X and Y. Then, on one hand, we have

RI(U x V,pyG) ~ RHom (Zva,p!ygw)
~ RHom (Rpv\Zy xv,G|v)
~ RHom (RT'.(U; Zy), RI'(V; G)).

On the other hand,

RI(U;wx) ®F RI(V;G) ~ RHom (RT.(U; Zy), Z) @F RI(V; G)
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and the canonical morphism
RI(U;wx) @ RT(V;G) — RI(U x V;py.G)
induced by (*) corresponds to the canonical morphism
RHom (RT'.(U; Zy), Z) @ RT'(V; G) — RHom (RT'.(U; Z), RT(V; G)).

The last part of the result follows by taking limits and cohomology and
using the fact that

RHom (C",Z) ®* P" ~ RHom (C", P’)
if C" is a bounded complex with finitely generated cohomology. O

Proposition 1.13.12. Let X and Y be locally compact topological spaces.
Then, there is a canonical morphism

wx &LWY—MUXxY- (1)

If ® and ¥ be families of supports on X and Y, this morphism induces a
canonical morphism

RF@(X;W)()@)L RF\IJ(Y;WY) —>RF<I>><\IJ(WX><Y) (2)
and, hence, cross-products in homology

x :HY (X;2) o HY (Y3 Z) — Hy Y (X x Y3 Z).

Moreover, if X or'Y is a clc space and ® (resp. ¥) is the family of all
compact subsets of X (resp. Y ), then both (1) and (2) are isomorphisms.

Proof. This follows directly from the preceding lemma and the fact that
Pywy = wxxy- (|

Remark 1.13.13. A link between the cross-products in homology and co-
homology is given by the formula

(P x ) ~ (¢ X ¢5) = (=1)PED (P ~ ¢,) x (¢4 ~ )
which entails the formula
<Ck X Cl, Cr X Cl> = <Ck, Ck> <Cl, Cl> .

Note also that homology cross-products are compatible with push-forwards.
Namely, if f: X — X’ and g : Y — Y’ are morphisms of locally compact
spaces, then

(f x @)«(ck x ) = fuler) X g«(cr).
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1.14 Cohomology of topological manifolds

Definition 1.14.1. A topological manifold of dimension n is a Haussdorf
topological space which is locally isomorphic to R™.

Proposition 1.14.2. A topological manifold X of dimension n is a clc
locally compact space. Its cohomological dimension is n, wx is concentrated
in degree —n and H™"(wx) is a locally constant sheaf with fiber Z.

Proof. This follows directly from the definition and Proposition 1.11.14. [

Definition 1.14.3. We define the orientation sheaf orx of X by setting
orx =H "(wx).

The manifold X is orientable if and only if the sheaf orx is constant. In
such a case, an orientation of X is an isomorphism

ZX :—>0Tx.

The manifold X endowed with an orientation forms an oriented manifold.
The orientation class of the oriented manifold X is the section

ux € T'(X; orx)

image of the section
1x e T(X;Zx)

by the orientation of X.

Proposition 1.14.4. Assume X is a topological manifold. Then,
I(K;orx)~SH, (X, X\ K;Z)

canonically for any compact subset K of X. In particular, the notions
related to orientability considered above are compatible with the ones con-
sidered in singular homology.

Proof. As a matter of fact, orx ~ wx[—n] and
I'(K;orx) ~ HRI'(K;wx|[-n]) ~ H"RI(K; wx)

and the announced isomorphism follows from Corollary 1.12.4. Recall that
an orientation of X from the point of view of singular homology corresponds
to the data of a generator p, € SH,(X,X \ {z};Z) for any z € X in
such a way that for any x¢o € X there is a neighborhood K of zy and
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pux € SH, (X, X\K; Z) such that p15 is the image of px in SH,, (X, X\{z}; Z)
for any x € K. Using the isomorphism

ID(K;orx)~SH, (X, X\ K;Z)

one sees easily that the family (u;)zex corresponds to a section p of orx
on X which generates (orx), for any € X and the conclusion follows. O

Remark 1.14.5.
(a) If X is orientable and connected, we have

Hom (Zx,Zx) ~T(X;Zx) ~ Z.

It follows that the sheaf Z x has only two automorphisms (+id). Therefore,
X has exactly two orientations. If px is the class of one of them, —ux is
the class of the other.

(b) Any open subset U of a topological manifold X is a topological
manifold. If yx is an orientation class of X, ux , is an orientation class for
U.

(¢) We may restate Proposition 1.11.14 by stating that the topological
manifold R” is canonically oriented. We will denote pg~ the corresponding
orientation class.

(d) Since wx = orx|[n], we have

T'(U;orx)=H"(U;wx).
Thanks to Corollary 1.11.11, we get that
I'(U; orx) =H "(RHom (RI'.(U;Zx), Z)).
Since H?TH(U;Zx) ~ 0, we obtain a canonical isomorphism
I'(U; orx) ~Hom (HZ (U; Zx), Z).
This provides a more explicit way to view the sheaf orx.

Definition 1.14.6. A homeomorphism ¢ : X — Y of oriented topolog-
ical manifolds is oriented if the orientation class of X corresponds to the
orientation class of Y through the canonical isomorphism

<,071 ory >~ orx .

Lemma 1.14.7. A diffeomorphism ¢ : U — V between open subsets of R™
is oriented if and only if its Jacobian J, is strictly positive.
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Proof. Let g and yy be points of U and V. Denote uy and py the canonical
orientation classes of U and V and denote vy the image of py by the

Lory ~ ory. Let By (resp. By) be an open ball

canonical isomorphism ¢~
of U (resp. V') containing xg (resp. yo). Assume that ¢(By) C By. Using
part (d) of Remark 1.14.5, we see that vy, = +uv,, ~according to the

fact that the diagram
" Ju
H}(By;Z)————Z
w*ﬁ
HZ (¢(Bu); Z

H (Bv; Z)

v

commutes or anticommutes. Using Exercise 1.8.6, we know that if

Vo(By) € HL (p(Bu); Z)

has integral 1 then so has i(vy,(p,)). Let m be an integer such that

0" (Vp(By)) = Moy

where vy € H?(By;Z) is a class with integral 1. On one hand, we have

/W(W(Bm) =m.

On the other hand, representing the classes by means of de Rham complexes,
we get

/‘P*(W(Bw) :i/%wu) ==+1

according to the fact that J, is positive or negative in By. The conclusion
follows. (]

Proposition 1.14.8. Let (¢; : U; — V;)ier be a family of homeomorphisms
such that X = Uiel V; each U; being an open subset of R™. Assume that
the homeomorphism

e o H(VinVy) = o (VinVy)

is oriented for any i,j € I. Then, there is a unique orientation of X such
that @; : U; — V; is oriented for any i € I. Moreover, any orientation of X
may be obtained in this way.
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Proof. The first part is obtained by gluing the isomorphisms
Zy, ~ ory,

induced by the isomorphisms Zy, ~ ory, corresponding to the canonical
orientations of the U;’s.

As for the second part, it follows directly from the definition if one keeps
in mind that it is always possible to reverse the orientation of a homeomor-
phism

p; U =V, (U; open subset of R™)

by composing it with the reflection
(xla e ,IEn) = (xla e afxn)-
O

Corollary 1.14.9. On a differential manifold, the topological and differ-
ential notions of orientation coincide

Exercise 1.14.10. Let F be an abelian sheaf on the topological space X

(a) Assume U and V are two open subsets of X with X = U UV and
U NV non-empty and connected. Show that if the abelian sheaves
Flv and Fy are constant, then so is F.

(b) Deduce from (a) that a locally constant sheaf on [0,1]™ is constant.

Remark 1.14.11 (Classification of locally constant sheaves).

Let X be a topological space which is path-connected and locally path-
connected, let F be a locally constant sheaf on X and let 4 : [0,1] — X be
a continuous path between x and y. It follows from the preceding exercise
that we have

’)/71‘7 ~ M[O,l]

where M is an abelian group. Hence, the canonical morphisms
A0 = (vIF)y  and  (vIA(0,1) = (vTIF),
are isomorphisms. This gives us a canonical isomorphism
(7 F)y = (071 F),
and consequently a canonical isomorphism

my @ Fp — Fy.
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which is called the monodromy along . A simple computation shows that
if 4" is a path from y to z then m. o m, = m,so,. If the path vy and v, are
connected by a homotopy A : [0, 1]2 — X i.e. if

h’(ta 0) = ’YO(t) and h(ta 1) =M (t)a
then h=1F is constant on [0, 1}2 and one sees easily that the morphisms
My, + Fp — Fy and My, + T — Fy

are equal. In particular, v — m, induces a representation of the Poincaré
group 71 (X, x) of X at x on F, which is called the monodromy representa-
tion of F at z.

It can be shown that the functor from the category of locally constant
sheaves on X to the category of representations of m1(X,x) on abelian
groups obtained by associating to a locally constant sheaf F on X its mon-
odromy representation at x is an equivalence of categories.

A trivial consequence is that locally constant sheaves on X are constant
if X is simply path-connected.

Another consequence is that locally constant sheaves with fiber Z on X
correspond to representations of 71(X,x) on Z. Since the only automor-
phisms of Z are +id, these representations may be classified by morphisms

7Tl(Xa JC) - ZQ;

non trivial representations corresponding to epimorphisms. Therefore, non
constant locally constant sheaves with fiber Z on X are classified by invari-
ant subgroup of index 2 of 71 (X, x).

In particular, if X is a topological manifold and 71 (X, «) has no invariant
subgroup of index 2, then X is orientable.

Proposition 1.14.12. Let X be an oriented topological manifold of di-
mension n. Denote pux its orientation class. Then, ux may be viewed as
an element of H,(X;Z) and

-~ px s Hg (X5 2) — Hy i (X57Z)
is an isomorphism.

Proof. Since wx = orx|[n|, we have

I'X;orx)=H "RI'X;wx)) = Ho(X;Zx)
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and px may be viewed as an element of H,,(X;Zx). By the functoriality
of the cup product, we have the following commutative diagram

HE(X;Zx) @ H (X wx) ——— HE (X wy)

id ®H"(X;V)T TH{;"(X;V)

HE (X; Zx) @ H"(X; Zx [n]) — Hy ™" (X; Zx([n])

where v : Zx[n] — wx is the isomorphism associated to px. Since px is
the image of 1x € I'(X;Zx) = H"(X;Zx[n]) by H"(X;v), the diagram

HE (X Zx) — 2 HE (X wx)

id]\ TH’;"(X;V)

HY (X3 Zox) — o By (X3 Zx [n])

is commutative and the conclusion follows. O

Remark 1.14.13. When we work with oriented topological manifolds, the
preceding proposition allows us to transform operations on cohomology into
operations on homology and vice-versa. In particular, if f : X — Y is a
continuous map between oriented topological manifolds of dimension nx,
ny, then

feo 1 HG(X3Z) — Hg (Y3 Z)

and
f*HMY;Z) - HM(X; Z)

induce canonical morphisms

fi s B Z) — B RV 2)
and

fiHu, x(Y:Z) - H, _1(X; 7).
Moreover,

—: H3(X;Z) @ Hy (X; Z) — Hely (X5 2)

gives rise to the intersection product

CHY L (XZ)eHY, (X;Z) -  HEOY, (X 7).

’nxfk ’nxfl ’nxfkfl

Among the many compatibility formulas relating these operations, let us
just recall that
[(ffe? =) =" — fic
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or dually that
f*(f!cp “¢q) = cp - fulcq)
and that

(e x ¢q) - (er X c5) = (1) D= (e, . 0) x (g - c,).

Definition 1.14.14. Let X, Y be oriented topological manifolds of dimen-
sion n and p. Assume Y is a closed subspace of X and denote i : Y — X
the inclusion map. Then, the fundamental homology class of Y in X is the
class

Y] =i (py)

of HZ(X; 7). Dually, the fundamental cohomology class (or Thom class) of
Y in X is the class

Ty x = it(ly)
of Hy (X Z) which is also characterized by the formula
Ty/X ™ UX = [Y]

Proposition 1.14.15. Let X be an oriented differential manifold of dimen-
sionn and let Y, Z be closed oriented differential submanifolds of dimension
p and g of X. Assume Y and Z meet transversally. Then Y N Z is a closed
differential submanifold of dimension p + q — n of X which is canonically
oriented. Moreover, for this orientation, we have

Ynzl=[y]-[Z]

and

Tynz/X =TYy/X ~ Tz/X-

Proof. We will only treat the case where n > p, n > q, p+ q > n, leav-
ing the adaptation to the other cases to the reader. Since Y and Z meet
transversally, we have

T.X=T,Y+T,Z and T,(YNZ)=T,YNT,Z

at any point x € Y N Z. It follows that it is possible to find an oriented
basis of T, X of the form

Uty ..y Un—gq, W1, ..., Wptq—n,;V1y.-.,Un—p
where

ULy .oy Un—g, Wi, -+ oy Wpig—n aNd Wi, ..., Wptg—n, V1, -, VUn—p
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are oriented bases of T,,Y and 71,7 and
Wi, .. Wptqg—n

is a basis of T, (Y N Z). We define the canonical orientation of Y N Z as the
one corresponding to such a basis.
Let us now prove that
Ynzl=[Y]-[Z]
in HY,, ,(X;Z). Since

U ™ (U3Z), U H(U;Z), U B0 (U5 Z)

are sheaves on X, the problem is of local nature. Therefore, we may assume
that
X =R" 9 x RPTI" x R?P
and that
Y =R" I x RPTI™ x {0}, Z={0} x RPFTI™™ x R"P

the orientations being the products of the canonical orientations of the fac-
tors. In this case,
Y NZ={0} x RPTI=" x {0}
with the orientation given by the canonical orientation of RPT4=", There-
fore,
V] = e X pigoea—s X [0, [Z] = [0] X pigosamn X fipn—s
and
[Y NZ] =[0] X pge+a—n x [0].
Since by Remark 1.14.13 we have

(s X prmsa—n X [0]) - (0] X oo X prgn-r)
= (prn—a - [0]) X (Ump+a—n - pirpta—n) X ([0] - pgn—»)
= [0] X o x [0]

the conclusion follows. O

1.15 Sheaves of rings and modules

In order to focus the survey contained in the preceding sections on the basic
ideas of sheaf theory, we have chosen to deal only with sheaves of abelian
groups. In the rest of this book, we will however need to use sheaves of
rings and modules. The adaptation of the theory reviewed above to this
more general situation being rather mechanical, we will not do it explicitly
here and refer the interested reader to standard texts on the subject.



Euler class of manifolds and
real vector bundles

2.1 Lefschetz fixed point formula

Let X, Y be two compact oriented topological manifolds of dimension n.
Recall that a correspondence between X and Y is a subset C' of X x Y.
The image of a subset A C X by the correspondence C' is the set

CA)={yeY:JxecA (x,y €C}
which may also be described as

py(px' (A NO).

Following Lefschetz, we will introduce similar notions in the framework of
homology.
Definition 2.1.1. A homological correspondence from X to Y is a class
Y €EHy(X X Y Z).

For any abelian group M, the image of a class ¢, € Hy(X; M) by 7, is
the class

Yn(cp) = (pY)*(p!X(Cp) ) € Hp(Y; M).

Let f : X — Y be a continuous map. As usual, set d¢(z) = (z, f(z))

and let

Af :Im5f = {(oz,y) ‘Y= f(l’)}

73
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denote the graph of f. Clearly,
d0p: X =X xY

induces a homeomorphism between X and Ay which turns Ay into a com-
pact oriented manifold of dimension n. We will denote

i Ay =X xY

the canonical inclusion. As is well-known, we may recover f from the cor-
respondence Ay. A similar result is true in homology.

Proposition 2.1.2. The class

Vr = (05 )« (x) = (i)« (1a,)

is a homological correspondence from X toY for which we have

Yr(ep) = filep).

Proof. Recall that

[Ag] = (if)x(pay) = (J5)«(px)-

Recall also that ¢, - ux = cp. As a matter of fact, for ¢, = ¢ ~ pux, we
have

cppx = ("P ~px) px = (" — 1) ~ px = cp.

Therefore, keeping in mind that
px o0y =idx, py o0y = f,

we have successively

77 (ep) = (v ) (Pxcp - (7)(11x))
= (py)«(87)+(0ypx ¢ - px)
[

(cp - px)

O

Forp € N, let o, (r =1,---,Rp) be a basis of the finite dimension
vector space H,(X;Q). Thanks to Poincaré-Verdier duality, we know that
the pairing

H,(X;Q) xH,_,(X;Q) - Q
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which sends (¢p, ¢n—p) to #(cp- cn—p) is perfect. Therefore, there is a unique
basis ooy, (r=1,---,Rp) of Hy(X;Q) such that

p,T
#(Oé;/m : O‘nfp,r/) = Opp/

for any v, 7' € {1,---, R,}. Denote §q, 5
for the rational homology of Y.

v _ o .
s (s =1,--+,5;) similar basis

Proposition 2.1.3. Let v be a homological correspondence from X toY.
Then,

=

P SP

Z(FZD)STO[xfp,T X ﬂpvs

1s=1

"y:

n
p=

1r

where I', is the matrix of

7(+) s Hp(X;Q) — Hy(Y;Q)
with respect to the basis o, (r=1,---,Rp) and Bps (s=1,---,5p).
Proof. Thanks to Kiinneth theorem, we know that the classes

O‘;\D/,rxﬂnfpyﬁ (p:1,~~~,n;rzl,---,Rp;5:1,«~,Sp)

form a basis of H,, (X x Y; Q). Hence
n Rp Sp
v = Z(Fp)sro%\:—p,r X Bp,s
p=1r=1s=1

where the (I'p)s» are rational numbers. Let us compute (., ). Note that

Px(cp) = (*1)n(n7p)cp Xy -
As a matter of fact, we may assume ¢, = ¢" 7P ~ ux. Hence,
Px(cp) = PX (") ~ pxxy

= (""" x1y) ~ (ux x py)

= (="~ ux) x (ly ~ py) (1)

=Cp X Uy (2)
where in (1) we have used the formula

(P x ) ~ (¢ X ¢5) = (=1)PED (P ~ ¢,) x (¢4 ~ )

and in (2) the formula
ly —~¢cp = cp.
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Therefore, y(ap,.r,) is equal to

n P SP

R
ZZ n(n po) )sr(pY)* [(O‘poﬂ“o X [y ) - (a::ipyr X ﬂp,s)] .

p=1r=1s=1

Using the formula

(O‘p X O‘q) ’ (ﬂr X 55) = (71)(717]0)(”75)(0‘? ’ ﬂr) X (O‘q 55)

we see that

(Py)s [(@po,ro X 1y) - (A X Bp.s)]
= (1) PP py ), [ape,r - (5 _pa) X (y - Bp.s))]

= (=)0 PP (g g -t ) Bps (*)

= (—1)(n—po)(n=p)(_1)p(n— po)(gp 200770 Bp.s

where (*) follows from the formula (f x ¢)«(ap X og) = filap) X g«(ag).
Therefore,

n Rp 5%
'Y(O‘poﬂ“o = E ST P:DU TTUBPS
p:lr:ls:l
Rp Sp
= (FPU )STU ﬂpo ,8
r=1s=1
and the conclusion follows. O

Recall that a fixed point of a correspondence C from X to X is a point
x € X such that © € C(z). Such a point is characterized by the fact that
(z,z) € C'N A where A is the diagonal of X x X.

Definition 2.1.4. Let v € H,,(X x X;Z) be a homological correspondence
from X to X. We define the algebraic number of fized points of v as the
number

#(v - [A])
and the Lefschetz number of v as the number

n

=Y (=P tr[y() s Hy(X;Q) — Hy(X; Q).

p=0
Theorem 2.1.5 (Lefschetz fixed points formula). Assume

vyeH, (X x X;2)
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is a homological correspondence from X to X. Then,

#(v - [A]) = A,

\Y

Proof. Using the classes oy, o,

we see that

introduced above and Proposition 2.1.3,

Z Z(FZD)STO[::fp,T X Qp,s

1r=1s=1

"y:

n Rp Rp
p:

where I'y, is the matrix of

7(+) s Hp(X;Q) — Hy(X;Q)

with respect to the basis o, (r=1,---, R,). Similarly, we have
n Rp Ry
Yid = § g E 55/7T/a7\:7p/,r/ X Qp/ -
p'=1r'=1s'=1

Let ~: X x X — X x X be the morphism defined by setting
~ (z,2") = (@', x).

We have

P RP

n R
~x (’Yid) = Z Z Z(71):0/(”7#)55/,7“/04;0/,5/ X axfp/ﬂ«/

p'=1r'=1s'=1

and
~y (Mid) =nk Oufbx = Oufbx = Yid-
Therefore,
n Rp Rp
[A] = Z Z (—1)P PGy ay o x gyt -
p'=1r'=1s'=1
Since

and the conclusion follows since p? = p (mod 2). O
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Corollary 2.1.6.
(a) Let f: X — X be a continuous map. Set Ay = A,. Then,

n

#(vr - [A]) = Ay =Y (=17 tr(fu s Hy(X; Q) — Hy(X;Q)).

p=0
In particular, Ay = 0 if f has no fixed point.
(b) For f =idx, we get

n

#([A]- [A]) = Aia = ) _(=1)" dimg H,,(X; Q) = x(X).

p=0

Exercise 2.1.7. Assume n € Ny. Let f : S, — S, be a continuous map.
Define the degree of f as the unique integer deg(f) making the diagram

*

H(S,; Z) 15 H(S,; 2)

vs, Tvs,

—7
-deg(f)

commutative.

(a) Show that
A =14 (—1)"deg(f).

(b) Deduce from (a) that f has a fixed point if deg(f) # (—1)"*1.

(c) Apply (b) to show that if there is a homotopy connecting f to idg,
and n is even then f has a fixed point.

(d) As an application, show that any vector field 6 of class Cy on S,, must
vanish at some x € S,, if n is even.

Solution. (a) follows directly from the definition of deg(f) and the fact that

HH(S,:Z) = {Z if k=0,n;
0 otherwise.

(b) Since Ay = 0 if and only if deg(f) = (—1)"T!, the conclusion follows
directly from Corollary 2.1.6.

(¢) When f ~ idg,, we have f* = (idg, )* = id. Hence, deg(f) = 1 and
the conclusion follows from (b).

(d) Let ¢¢(x) be the flow of the vector field §. From (c), we know that
¢ has a fixed point z; € S, for any t € R. Since S,, is compact, we may
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find a sequence t;, — 0% such that xt, — o € Sp. Let t € R and choose
the sequence my of integers such that myty — t. Clearly,

@t(xo) = kli_IPOO Pmyty (:rtk) = kli>néo Ly, = X0-
It follows that ¢ (z¢) = xo for any ¢ € R and hence that 6(zo) = 0. O

Exercise 2.1.8.
(a) Let X be a compact oriented manifold of dimension n. Show that

x(X)=0

if n is odd.
(b) Let X be a compact oriented C1 manifold. Show that if X has a
nowhere vanishing Cy vector field then x(X) = 0.

Solution. (a) Set
R, = dimH,(X; Q).

By Poincaré duality, we have R, = R,,_,. Therefore, if n =2k + 1 (k € N)
we have

n k 2k+1
X(X) =D (F1PR, =) (~1)PR,+ Y (-1)'R,
p=0 p=0 p=k+1

I
WE

k
(~DPRy+ Y (~1)" PRa_y
p=0

(=)

=

(b) Working as in Exercise 2.1.7, we see that x(X) # 0 entails that any
C'1-vector field on X vanish for some x € X. The conclusion follows. O

Corollary 2.1.9. Let X be a compact differential manifold of dimension
n.

(a) Assume C' is a closed differential submanifold of dimensionn of X x X
which meets A transversally. Then C' N A is finite and

(z,x)eCNA

where i, .)(C, A) is equal to 1 if the canonical orientation of
T(IVI)C ¥ T(Iyx)A

coincides with that of T(, (X x X) and to —1 otherwise.
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(b) Assume f: X — X is a differentiable map with a non-empty set F' of
fixed points. Assume that for any = € I,

fg’c T, X - T, X
does not fix any non-zero tangent vector. Then, the set F' is finite and

Ap = sgn(det(id —f})).

zeF

Proof. (a) Thanks to Theorem 2.1.5, the result follows directly from Propo-
sition 1.14.15.
(b) Clearly, (z,z) € Ay N A if and only if z € F. Moreover, for any

r € F, we have
Tiww) Ay = (0, f2(0)) : 0 € T X}

and
T(Iyx)A = {(9, 9) 10 € TIX}.

Hence, we have
T(Iyx)Af N T(Iyx)A = {(9, 9) 0eT, X, f;(G) = 0}.

It follows that Ay and A meet transversally. If 6y,...,60, is an oriented
basis of T, X, then
(01, £2(01)), - -, (O, f2(0n))
and
(01,61),...,(0n,0,)
are oriented bases for T(, ,)Ay and T(, ,)A. Therefore,
(01, f2(61)), - s (Ons f2(00)), (01,01), ..., (0r, 0,)

is an oriented basis for T(, )Ay @ T(, 2)A. This basis has the same orien-
tation as the basis

(Oa falﬁ(el) - 91)) AR (Oa falc(en) - on)a (91; 91)) te (Gn; on)

Using the assumptions, we know that f, —id is injective and hence bijective.
It follows that
fo(01) =01, f2(0n) — O
is a basis of T, X. Hence,
(Oa f;(el) - 01)5 SRR (Oa f;(en) - on)a (915 O)a BREE) (Gn, 0)
is an oriented basis for T(, ;) Ay @ T(z,2)A and
i) (Ag, A) = (—=1)" sgn(det(f; — id)) = sgn(det(id —f)).

The conclusion follows from (a). O
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2.2 Euler classes of manifolds and index theorem

Definition 2.2.1. The FEuler class of an oriented topological manifold X
is the class

— 5*
€EX =0 TA/XxX

Proposition 2.2.2. For any oriented compact topological manifold, we
have

Proof. We know that

Therefore,
X(X) = #((TA/XxX ~ TA/XxX) /\ MXxX)

:/ TA/XxX = TA/XxX :/ Ta/xxx ~— 0i(1x)
XxX XxX

:/ 5!(5*TA/XxX):/ €x
XxX X

2.3 Basic notions on real vector bundles
A (continuous) real vector bundle of rank r is the data of a continuous map
pe: I — Bg

between topological spaces together with structures of real vector spaces of
dimr on each fiber E, = p'(b) (b € B) of p. These data being such that
for any b € B there is a neighborhood U of b in B and a family (eq,- - ,e;)
of continuous sections of PEp- ) pgl(U) — U with the property that
(ex(V'), -+ ,er(V)) is a basis of p'(b) for any b’ € U. We call pg (resp.
E, Bg) the projection (resp. the total space, the base) of the vector bundle.
A family like (e1,- - ,e,) is called a (continuous) frame of the real vector
bundle over U. We will often refer to a vector bundle by giving its total
space alone assuming that the projection and the basis are clear from the
context.

Let E be a real vector bundle of rank r and let U be an open subset of its
base Bg. Then, PEp- ) pgl(U) — U has clearly a canonical structure
of real vector bundle of rank r. We call it the restriction of E to U and
denote it by F|y.
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A morphism between two real vector bundles E, F' with common base B
is a continuous map f : £ — F such that ppof = pg, the map f;, : By — Fp
induced by f being R-linear for any b € B. Clearly, morphisms of real
vector bundles may be composed and R-linearly combined in a natural way.
Hence, real vector bundles with base B form a category. We will denote it
by Vectr(B). One sees easily that this category is additive, the direct sum
E & F of two real vector bundles E and F' with base B being characterized
by the fact that

(E® F)y=Ey @ F,

a local frame of F @ F being given by (e1, -+, er, f1,+-+, fs) if (e1,--- ,¢€;)
and (f1, -, fs) are local frames of E and F.
A trivial vector bundle is a vector bundle of the form

pp:V xB—B

where V is a real vector space. A vector bundle is trivializable if it is
isomorphic to a trivial vector bundle. By definition, any vector bundle is
locally of this type.

A sub-bundle of a vector bundle F' with basis B is the data of a vector
bundle E with basis B together with a morphism ¢ : £ — F for which
ip : By — Fp is injective for any b € B.

A quotient bundle of a vector bundle E with basis B is the data of a
vector bundle F' with basis B together with a morphism ¢ : £ — F for
which ¢ : B, — F} is surjective for any b € B.

Let i : E — F be a sub-bundle of F. Then, i has a cokernel in Vectg(B)
characterized by the fact that

(Coker i), = Coker iy,

a local frame of Coker ¢ being obtained by considering a local frame of F' of
the type (i(e1),- - ,i(er), fra1, -+, fs) with (e1, -, e.) alocal frame of F
and taking the images of f,41, -, fs in Coker:. From this construction, it
follows that Cokeri together with the canonical morphism F' — Coker+ is
a quotient bundle of F' that one often denotes F'/E when i is clear from the
context.

Let ¢ : E — F be a quotient bundle of . Then, ¢ has a kernel in
Vectr(B) characterized by the fact that

(Ker q)» = Ker g,

a local frame of Ker ¢ being obtained by considering a local frame of E of the
type (f1, -, fry fra1, -+, fs) where (q(frs1),- -+ ,q(fs)) is a local frame of
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F and viewing (f1,---, fr) as local sections of Ker g. Clearly, Ker ¢ together
with the canonical morphism j : Keri — FE is a sub-bundle of FE.

Note that if i : E — F (resp. ¢ : E — F) is a sub-bundle of F' (resp. a
quotient bundle of E) then

E ~ Ker(F — Cokeri) (resp. F' ~ Coker(Ker ¢ — E)).

Note also that when the base space B is paracompact, one can show,
using a partition of unity, that for any sub-vector bundle E of F' one has
F~EaoF/E.

Finally, let us recall that the inverse image of vector bundle E of base
B by a continuous map f : B’ — B is the vector bundle f~!(E) with base
B’ characterized by the fact that

7 B = )
for any b’ € B’, a frame of f~1(E) on f~1(U) being given by (e1of, -+ ,e,0
f) where (e1,---,e-) is a frame of E on U.

2.4 Orientation of real vector bundles

Let A be a noetherian ring with finite global homological dimension and let
E be a real vector bundle of rank r and base B.

Definition 2.4.1. The relative dualizing complex of B in E for sheaves of
A-modules is the complex

wh/p = (RCpAR)|5.
Proposition 2.4.2.
(a) The canonical restriction morphism
Rp(RT'pAEg) — (RI'BAER)|B
is an isomorphism. In particular,
RI(U;wgp) ~ RTu(p~ ' (U); A)
for any open subspace U of X.
(b) The canonical restriction morphism
(w/m)s — RT 5y (Ep; A)

is an isomorphism. In particular, wg /E is concentrated in degree r.
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Proof. (a) One checks easily by working at the level of fibers that
p(CpF) = (TpF) s

is an isomorphism for any flabby sheaf F on E. The first part follows. As
for the second part, it is a consequence of Leray theorem.

(b) The problem being local on B, we may assume E = R" x B. Consider
the morphism of distinguished triangles

[Rp(RTw Agextr)]o — [Rp(Agr i)y —— [Rp(A )]y —

o @ 1@ B

R (R" x {b}; A) — RI'(R" x {b}; A) — RI'(R" \ {0} x {b}; A) —

We will prove that (2) and (3) are isomorphisms. This will show that (1) is
also an isomorphism and the conclusion will follow.
By simple homotopy arguments, one gets the isomorphisms

[Rp(Agrrxu)]p ~ A

and
RI(R"™ x {b}; A) ~ A.

Since these isomorphisms transform (2) into the identity, (2) is also an
isomorphism.

Denote ¢ : S,—1 x U — U the second projection. Working as above one
sees that (3) will be an isomorphism if the canonical morphism

[Rq(As, ,xu)lp = RE(S,—1 x {b}; A)

is an isomorphism. Since S,_; is compact, the fiber of ¢ at b is compact
and relatively Haussdorf in S,_; x U. It is thus a taut subspace and the
conclusion follows from the fiber formula for Rq O

Definition 2.4.3. The relative A-orientation sheaf of B in E is the sheaf
A A
org g =H'wp/p
Proposition 2.4.4.

(a) We have
RT(U;org,5) ~ Ry (p~ " (U); A)lr]

and in particular

D(U;org, ) =~ Hy (p7 (U); A)
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(b) The canonical restriction morphism
[Org/E]b - H’{b} (Ep; A)
is an isomorphism.
(c) Any frame (e, - ,e,) of E on U induces a canonical isomorphism
w(el,m,er) : Ay = (Org/E)IU-
In particular, org /E is a locally constant sheaf with fiber A.

(d) Let (e1,---,er) and (€}, -+ ,el) be two frames of E on U. Set
¢;(u) = i Sji(u)e;(u)
s=1
fori=1,---,r. Assume det S(u) 2 0 on U. Then,
Yler o rer) = E(er, e en)-

Proof. (a) It follows from part (b) of the preceding proposition that

wg/Ezorg/E[—r].

Therefore,
RIN(U; org/E) &~ RF(UQW?;/E)[T]

and the conclusion follows from part (a) of preceding proposition.
(b) This follows directly from part (b) of the preceding proposition.
(c) Let (e1,---,er) be a frame of E on U. Consider the morphism

0:R"x U —p Y (U)

defined by setting
90(1115 sy Ty ’LL) = ZIEJSJ(U)
j=1

Clearly, ¢ is an isomorphism of real vector bundles. It follows that the
canonical morphism

A A
@ Ty /p—1(U) = OTu/Rr xU (*)

is an isomorphism. By pull-back through the first projection, the canonical

generator
vgoy € Hyp (R 4)
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gives the canonical class
Pr-vi0y € H(R" x U3 A).
Thanks to the second isomorphism of (a), we get a canonical class

purexu € T(U; Orf}/wxu)-
This class induces a morphism
Av = O1f ze vy (**)
which corresponds at the level of fibers to the isomorphism
A— HT{”O}(RT; A)

induced by vgy. It follows that (**) is an isomorphism. By combining it
with (*), we get the conclusion.
(c) Consider the isomorphism

c:R"xU—-R"xU

defined by setting o(z’,u) = (S(u)z’,u) and assume det S(u) > 0 (resp.
det S(u) < 0) on U. To conclude, it is sufficient to prove that the canonical
morphism
* . A A
0 Oy /prxu — OTy /R xU
sends py/rrxu to itself (resp. minus itself). At the level of the fiber at w,
this amounts to show that the pull-back by the linear bijection

' S(u)a’

of vygy is equal to itself (resp. minus itself). This follows from Exercise 1.8.8.
O

Definition 2.4.5. The vector bundle E is A-orientable if the sheaf org/E
is constant. An A-orientation of E is the data of an isomorphism

Ag = org /E
or of the corresponding A-orientation class
A A
wp/e € T(B;orpp).

An orientation of the vector bundle E is the data of an orientation on
every fiber F} (b € B) in such a way that for any point b € B there is a
neighborhood U and a frame (eq, -+ ,e,) of E on U with the property that
the basis (e1(V'), -+, e, (b)) is positively oriented in Ey for any & € U. The
vector bundle F is orientable if it can be given an orientation.
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Proposition 2.4.6.
(a) Any vector bundle E is canonically Zs-oriented.

(b) A vector bundle E is Z-orientable if and only if it is orientable. More-
over, any Z-orientation of ¥ corresponds to a canonically determined
orientation and vice-versa.

Proof. We use the notations of Proposition 2.4.4. Denote

1. €T(U; 0r )

the section corresponding to the isomorphism .. Clearly,
A A
Hujer = :l:uU/e

if det S(u) 2 0 on U. Therefore, in case (a), we get ,u?f/e/ = u?f/e and there
is a unique class u%/E e I(U; OT%/E) such that “ZBZ/EW = u?f/e for any
frame e of E on U.

To prove (b), let us proceed as follows. Assume F is Z-orientable and
let pp,/Ep be a Z-orientation class of E. Let b € B and let e be a frame of
E on a neighborhood U of b. The only generators of Z being 1 and —1, we
know that

(B/E)o = (U /e )b-

Hence, restricting U if necessary, we may assume that

1B/U|; = THU /e

Changing the sign of one of the sections of e if necessary, we see that for
any b € B there is a neighborhood U of b and a frame e of E on U such
that

HB/E\y = HU/e-
Choosing the orientations of the fibers Ej in order to make all these frames

positively oriented gives us a canonical orientation of E. The reverse pro-
cedure is similar. O

2.5 Thom isomorphism and Gysin exact sequence

Definition 2.5.1. Let F be an A-oriented real vector bundle with base
B. The Thom class of E is the image of the orientation class ug/E by the
canonical isomorphism

F(B;org/E) ~ HE(E; A).

We denote it by 77.
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Proposition 2.5.2 (Thom isomorphism). Let E be an A-oriented real
vector bundle with base B. Then,

H"(B; Ap) — H (E; Ap)
& TR UpH ()
is an isomorphism.
Proof. This follows directly from part (a) of Proposition 2.4.4. O

Definition 2.5.3. The Euler class of an A-oriented vector bundle £ with
base B is the class e € H"(B; Ag) defined by setting eff = (T’§)|B where
7’;‘3 is the image of 74 in H"(E; Ag).
Proposition 2.5.4. Let E be an A-oriented real vector bundle. Then, a
necessary condition for the existence of a nowhere vanishing section of E is
that

eg =0.
Proof. Set E = E\ B and denote sq : B — F the zero section of E. Assume
s : B — FE is a nowhere vanishing section of E. Thanks to the homotopy
theorem, we know that

s =s;.
It follows that ey = 537’2 = s*7/p. Using the inclusion s(B) C E, we see
that ep = S*((T/g)IE)' Since 7§ € Hy(E; A), it is clear that (T’g)m =0.
Hence, eg = 0 and the conclusion follows. O

Proposition 2.5.5 (Gysin exact sequence). For any A-oriented vector
bundle E with rank r and base B, there is a long exact sequence of the form

--------- W ) T B ) ) — ()

(—> A7 (B AT R (3 A) D R (5 4)
Proof. Consider the excision distinguished triangle
RI'5(E; Ap) — RI(E; Ap) — RD(E; Ap)
Taking cohomology, we get the long exact sequence

""""" HE (E; Ap) — H*(E; Ap) — H(E; Ap) D) (**)

[—>H%+1(E;AE)—>H}€+1(E;AE) —)Hk+1(E;AE) .......
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We know by Proposition 2.5.2 that
it — - H*77(B; Ap) — H(E; Ap)
is an isomorphism. Moreover, the homotopy theorem shows that
p*: H¥(B; Ap) — H*(E; Ap)
is an isomorphism, its inverse isomorphism being
sy H¥(E; Ap) — H*(B; Ap).
Using these isomorphisms, we transform easily (**) into (*). O

Exercise 2.5.6. Let n € Ny. Consider the real projective space of dimen-
sion n

P,(R) = {d : d line of R™ ™' through 0} ~ (R"**\ {0})/R*
and the tautological real line bundle on P, (R)
U, (R) = {(v,d) € R"" x P,(R) : v € d}

the projection p : U,(R) — P, (R) being defined by p(v,d) = d. Show by
using a suitable Gysin exact sequence that the morphism of graded rings

Lo X]/(X"H) — H (P (R); Z2)
defined by sending X to e[[Zji @) € H'(Pn(R); Z2) is an isomorphism.

Solution. For short, set e = e[[Zji (®)" Consider the Gysin exact sequence

_______ HE1(B, (R); Zo) S H (o (R); Zs) —— HF (1, (R); Zo) D)

(_’ H* (P, (R); Zo) = HFFL(P, (R); Z>) LN HA (1, (R); Zg)

Clearly, the first projection U,(R) — R™*'\ {0} is a homeomorphism.
Hence, H*(U,(R); Z2) ~ H¥(R"*! \ {0};Z2). Moreover, by homotopy, we
know that

Zo ifk=0,n;

H*¥(R™ 1\ {0}; Zy) ~ H*(S,,; Zy) ~
0 otherwise.

Assuming n > 1 and denoting ¢ : S,, — P, (R) the canonical map, we get
the exact sequences

0 — HO(P,, (R); Z3) o, H%(S,;Z2) — HY (P, (R); Z3) <=5 H' (P, (R); Z2) — O
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0— H"fl(Pn(R);Zz) =L H (P (R); Z2) 2 H™(Sn;Z2) < H™" (Pn(R); Z2) — 0

and isomorphisms
HY (B, (R); Z3) <= H¥ (P (R); Z2)

for 1 <k <n-—1. We know that P, (R) is a compact connected topological
manifold of dimension n. Therefore, H’(P,, (R); Zz2) ~ Zy and

q": HO(Pn(R); Ls) — HO(Sn; vzy
is an isomorphism. Hence,
HO (P (R); Z2) <= H! (Po (R): Zo)
is an isomorphism. By Poincaré duality, we have
H" (P, (R); Zs) ~ H(P,,(R); Zs) ~ Zs.
The morphism « being surjective is thus an isomorphism. It follows that
H" (P, (R); Z2) = H"(P,(R); Z2)
is also an isomorphism. Summing up, for n > 1, we have established that

H* (P, (R); Zs) == HF1(P,,(R); Zs)

is an isomorphism for k = 0, -+ ,n— 1. Since we have also H°(P,,(R); Z2) ~
Zy and H¥(P,,(R); Z2) ~ 0 if k > n, the conclusion follows easily. The case
n =1 is treated similarly. O

2.6 Euler classes of inverse images and direct sums

Proposition 2.6.1. Let f : Y — X be a continuous map and let E be a
vector bundle on X. Then, there is a canonical isomorphism

— A ~ A
f L OTx/E — 0Ty f-1(E) -

In particular, any A-orientation of E on X induces an A-orientation of
fYE)onY.

Proof. Consider the commutative diagram

e S E
al Ir
Y

—
7 X
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where
gip-1e),  FTHE)y — Ef)

is the canonical isomorphism, p and g being the projections of the vector
bundles E and f~1(E). Since g is continuous, it induces canonical pull-back
morphisms

RIy (Ejr; Ag) — RUv(fH(E) v Ap-1(m))

for any open subsets U, V of X, Y such that V C f~}(U). Taking coho-
mology, we obtain in the same conditions a canonical morphism

L(Us orgp) = T(V; 01y 1m))-
This gives us a morphism of sheaves of A-module
fhork g — Oﬁé/ffl(E) (*)

It remains to prove that this is an isomorphism. At the level of fibers, (*)
may be visualized through the commutative diagram

(OT?(/E)f(y) — (Or}é/ffl(E))y

} )

s (Brws 4) =2 By (17 (B)y; 4)

Since gj5-1(p), : Y E), — Ey(y) is a homeomorphism, grf,l(E)y is an
isomorphism and the conclusion follows.

Remark 2.6.2. In the situation of the preceding proposition, assume FE
is oriented. Then, it is canonically Z-oriented and we get a canonical Z-
orientation on f~!E. One checks easily that one can characterize the cor-

responding orientation by the fact that if eq, ..., e, is a positively oriented
frame of E on U then ejo f,...,e.of is a positively oriented frame of f~'F
on f~HU).

Proposition 2.6.3. Let f : Y — X be a continuous map and let E be an
A-oriented vector bundle of rank r on X. Assume f~!(FE) is endowed with
the A-orientation induced by that of E. Then,

ef-1m) = [k

Proof. Tt follows from the proof of the preceding proposition that the image
by
9" Hx (B; A) — HY (f7H(E); 4)
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of 7g is 7y-1(g). Therefore, denoting so x and sy the zero sections of £
and f~}(E), we have

A o 1A o x 1A
€r-1(r) = S0,YT f-1(B) = S0,y9Y T E
* % 1A * A
=f 507XTE:f eq.
O

Exercise 2.6.4. Let E be a real vector bundle of rank r on X with e% # 0.
Show that if E can be represented as an inverse image of a real vector bundle
on S,, then n =r.

Solution. This follows directly from the preceding proposition and the fact
that
H*(S,;Z2) = 0

for k ¢ {0,n}. O

Proposition 2.6.5. Let E (resp. F') be a vector bundle of rank r (resp. s)
on X. Then, there is a canonical isomorphism

A A ~ A
TX/E ®A OTx/Fp — OTX/EQF -

In particular, given A-orientations for I/ and F', we can construct canonically
an A-orientation for E @ F'.

Proof. Denote pgp : F® F — FE, prp : E® F — F the canonical projections.
For any open subset U of X, consider the pull-back morphisms

RI'u(Ejy; Ap) = RE -1y (E & F)ju; Aper)

RFU(F|U; AF> — RFP?(U)((E D F)|U; AE{BF)-

Combining them with a cup product, we get a canonical morphism
Ry (Ejy; Ag) ® RLy(Flu; Ap) — RUu((E & F)u; Apar)

since p' (U) N pp'(U) is the zero section of (E & F)y. This gives us a
canonical morphism

L(U; ork 5) ® 4, T(U; ory/p) = T(Us 0% e )

and consequently a morphism of sheaves of A-modules

A A A
0rx/p ¥y OTXx/F = OTX/EaF -
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To prove that it is an isomorphism, we will work at the level of fibers. Using
the commutative diagram

(OT?(/EM @4 (OT?(/F>I — (OT?(/EEBF)I

! b
we see that it is sufficient to establish that the second horizontal arrow is
an isomorphism. This follows directly from the commutative diagram

L ¥

H)(Ey; A) ® , Hi(Fy; A) — H. 7 (E, & Fy; A)

and Kiinneth theorem. (There is no torsion problem since both HZ(E,; A)
and H:(F,; A) are isomorphic to A.) O

Remark 2.6.6. In the situation of the preceding proposition, assume FE
and F are oriented. Then, the canonical Z-orientations of F and F' induce a
canonical Z-orientation of E®F. One checks easily that one can characterize
the corresponding orientation by the fact that if eq, ..., e, (resp. f1,..., fr)
is a positively oriented local frames of E (resp. F') then

ela"'aeTafla"'afT
is a positively oriented local frame of £ @ F'.

Proposition 2.6.7. Let E and F' be two A-oriented vector bundles of rank
r and s on X. Assume E & F' is endowed with the A-orientation induced
by that of £ and F'. Then,

A _ A A
eE@F—eE veF.

Proof. Tt follows from the proof of the preceding proposition that

A % _A * _A
TEer = PETE ~— PFTF-
Therefore, denoting so per, So,r and sg r the zero sections of E® F, E
and F', we get
* 1A ok w 1A * * 1A
SO,E@F(T EEBF) = 50,60FPET E ~ 50,EaFPFT F
ok A '
=3S0,ET E — S0,FT F

Ceh e
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Exercise 2.6.8. Show that an oriented real vector bundle E on S,, with
ek # 0 has no proper sub-bundle.

Solution. Let us proceed by contradiction. Assume F' is a proper sub-bundle
of rank s of E. Denote G the quotient bundle E/F and ¢ its rank. The
assumption on £ combined with the cohomology table

Z ifk=0,n

H*(S,;7Z) ~
(5 2) {0 otherwise,

shows that the rank of E is n. It follows that 0 < s < n and 0 < t < n.
Since m1(S,) ~ 1, F and G are orientable. Moreover, we may choose their
orientations in such a way that

E~FaoG
as oriented real vector bundles. In this case, we have e% = e% — €Z.
Since both €% and eZ are 0, we get e% = 0 contrarily to what has been
assumed. O

2.7 Euler classes of normal bundles

Proposition 2.7.1. Let X and Y be topological manifolds of dimension
dx and dy. Assume Y is a closed subspace of X and denote i :Y — X the
canonical inclusion. Then,

iT'RIy Ay ~i'Ax ~ ory ® i~ (ory)Y[dy — dx].

Proof. We know that w4 = org[dx] and that wi} = or{[dy]. Since wif =

i!wﬁ, and since or‘)“( is locally isomorphic to Ax, the conclusion follows. [

Definition 2.7.2. In the situation of the preceding proposition, we call
o1y = o1y @i (org)”

the relative A-orientation sheaf of Y in X. A relative A-orientation of Y
in X is the datum of an isomorphism

AY :—> OI'}A//X .
The associated relative A-orientation class is the image

wyx € H(Y; 09 x)
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of 1y by this isomorphism. The Thom class of a relative A-orientation of
Y in X is the class
) x € Y T (X; Ax)

corresponding to u{} /X through the isomorphism of the preceding propo-

sition. The restriction of T}é/X to Y is called the Euler class e{}/x of the
relative A-orientation.

Remark 2.7.3. If, in the situation considered above, X and Y are both
oriented, then we have isomorphisms

Zx ~orx , 2Ly >~ ory
and consequently an isomorphism
Zy >~ OI‘y/X .

We leave it to the reader to check that the Thom class of the corresponding
relative orientation of Y in X is

u(1).
In particular, the preceding definition is compatible with Definition 1.14.14.

Proposition 2.7.4. Let Y be a closed differential submanifold of dimension
dy of the compact differential manifold X of dimension dx. Then, there is
a canonical isomorphism

A oA
Oly,x = Oy 1y X -

In particular, relative A-orientations of Y in X correspond to A-orientations
of the real vector bundle Ty X — Y. Moreover, for corresponding orienta-
tions, we have

A _ A
Cy/x = ey x-

Proof. Endow X with a Riemannian metric and identify Ty X with the
orthogonal complement of 7Y in T'X|y. For any € > 0, set V. = {v, €
(Ty X)y : |vy| < €}. As is well-known, for e sufficiently small, the map

0 : Ve = (Vo)

which sends v, € V, to exp, (v,) € X is a diffeomorphism such that ¢(y) =y
for any y € Y. It follows that

(p* . RFY (AW(V<)> d Rry(AVE>
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is an isomorphism. Since
Ry (Ay(v,)) = Ry (Ax) = o1y} x [dy — dx]

and
Rry(AVE) ~ Rry(ATyx) ~ Oré/TyX[dY - dx],

©* induces an isomorphism

A~ A
Y Ory,x — Oy 1y x (*)

A priori, this isomorphism depends on the chosen Riemannian metric. How-
ever, since two such metrics are homotopic, it is not difficult to see that the
associated maps

QOO:VEU_>X ) 901:‘/61_>X

become homotopic when restricted to an appropriate neighborhood V' of Y
in Ty X. One can even request that the homotopy h : V x [0,1] — X is
such that h(y,t) =y for any y € Y. It is then clear that the isomorphisms

oA LA DA LA

Yot o1y x 2 Orp, x/y and Yy iory,x X orp x y
associated to ¢y and ¢; are equal. Moreover, by construction, for corre-
sponding A-orientations, we have
A A
e ((ry)x)10(v)) = (71 x) v

Hence,

A A A A

ey x = [<P*((Ty/x)|¢(vg)]|y = (TY/X)IY = Cy/x-

O

Remark 2.7.5. In the preceding proposition, assume X and Y oriented
and take A = Z. Thanks to Remark 2.7.3, there is a canonical relative
orientationof Y in X. By working locally, one checks easily that this relative
orientation corresponds to the orientation of Ty X obtained by quotienting
the orientation of (T'X)|y by that of T'Y.

Corollary 2.7.6. Let X be a compact oriented differential manifold. Then,
€EX — Eerx.

In particular,

x(X) = /XeTX.
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Proof. The orientation of X induces canonical orientations on A and X x X.
If we give Ta(X x X) its usual quotient orientation, Remark 2.7.5 and
Proposition 2.7.4 show that

EA/XxX = €TA(XxX)-
Since the canonical isomorphism
TX = 67 'TaA(X x X)

defined by sending 6 € T, X to the class of (0,0) € T(;,,)(X x X) modulo
T(z,2)A is compatible with the orientations, we get

erx = 0 er,(XxX)-
The conclusion follows Definition 2.2.1. O

Exercise 2.7.7. Show that the tangent bundle T'S,, to an even dimensional
sphere S,, has no proper sub-bundle.

Solution. Assume E has a proper sub-bundle. It follows from Exercise 2.6.8
that 6%@” = 0 and hence that

But for n even, we have x(S,) = 14 (—1)" = 2 and we get a contradiction.
O

Exercise 2.7.8. Let p : E — X be an oriented differential real vector
bundle of rank r on an oriented manifold X of dimension n. Assume s :
X — FE is a section of E transverse to the zero section which vanishes at
some points of X. Then,

Zs={x € X :s(x)=0}

is a closed oriented differential submanifold of X of codimension r and the
image of
77,/x € Hy (X;Z)

in H"(X; Z) is the Euler class of E.

Solution. It follows from our assumptions that E has a canonical structure
of oriented differential manifold. Therefore, the zero section sg : X — F of
F induces canonical morphisms

so1: H¥(X;2) — B (E;2) (k€ Z).
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Since
so1(c®) = soi(spp*c®) = p*er — s0i(1)

and sg(1) = Tx/g = 7Tg, these morphisms coincide with Thom isomor-
phisms. Therefore, we have only to show that

soi(er) = 50Tz, /x) = Tz, /E-

Since
Tyx)E ~ (p7'E)jsx)

as oriented vector bundles, we have
. * . * . * .
€E =S €T, E = S Ts(X)/E = S0Ts(X)/E;

the last equality coming from the fact that sy and s are homotopic. There-
fore,

soi(es) = s0155(Ts(x)/E)
= Ts(X)/E ~ (s011)

= Ts(X)/E =~ TX/E

and the conclusion follows from Proposition 1.14.15. O



Characteristic classes of
real vector bundles

For the sake of simplicity, all the topological spaces in this chapter will be
implicitly assumed to be paracompact.

3.1 Stiefel-Whitney classes

Lemma 3.1.1 (Leray-Hirsch). Let f : X — Y be a proper map. Assume
the classes

g1 € HM(X; A), -+ gn € H"(X; A)
are such that
=1y Injf=1(y)

form a free family of generators of H'(f~1(y); A) as an A-module for any
y €Y. Then,

g1, s 9n

form a free family of generators of H' (X; A) for the H (Y'; A)-module struc-
ture given by the left action

(a, ) = f*(a) — B.

99
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Proof. Using the isomorphisms
RHom , (Ay[—k], Rf(Ax)) ~ RHom ,(f ' Ay, Ax)[k] ~ RT(X; Ax)[k]
we associate to g1, -+, gn canonical morphisms
hi: Ay[=ki] = Rf(Ax), -+, hyn : Ay[—kn] — Rf(Ax).

This gives us a morphism

h: @AY[*]@] — Rf(Ax).

Jj=1

Its fiber at y € Y is the morphism
hy : @ Al-kj] = [Rf(Ax)], =~ RT(f 7} (y); A)
j=1

associated to the cohomology classes g1|¢-1(y), ", gn|f-1(y). Therefore, our
assumption ensures that A is an isomorphism. Applying RT'(Y;-), we see
that h induces the isomorphism

éRF(Y; Ay)[—k;] = RT'(Y; Rf(Ax)) ~ RI'(X; Ax).

j=1

It follows that the morphism of graded A-modules
P (v; Ay)[—k;] — H(X; Ax)
j=1

(a1, an) = (p™(on) — g1+ -+ p*(an) — gn)
is an isomorphism, hence the conclusion. O

Let E be a vector bundle of rank r based on X. As usual, we define the
real projective bundle P(FE) associated to E by setting

P(E)={(d,z):z € X,d line of E; trough 0.},
the projection 7 : P(E) — X being defined by setting
m(d,x) = x.

Of course, P(E) ~ E/R* where the action of R* on E is defined fiberwise
using the real vector space structure of E; (x € X). As is well-known, P(E)
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has a canonical topology. For this topology, 7 is continuous and using local
frames of E, we see that for any x € X there is a neighborhood U of = and
a commutative diagram of the form

a1 (U)——P,_1(R) x U ()

N

In particular, 7 is proper and its fibers are homeomorphic to P,.—1 (R). Recall
that

B xx P(E) = {(e. (d,2)) : ple) = x}
and denote U(E) the subset of E x x P(FE) defined by
U(E)={(e,(d,x)) : ple) = x,e € d}.
One checks easily that the second projection
pre) : U(E) = P(E)

turns U(E) into a line bundle with base P(E). By construction, a homeo-
morphism

7N U) ~P,_1(R) x U
of the type (*) transforms U(E) -1 () into a line bundle isomorphic to
p§T171(R)UT71(R)'
Proposition 3.1.2. Let E be a vector bundle of rank r on X. Set
¢ = ef ) € H'(P(E); Zo).

Then,
1555”' 757071

form a free family of generators of H' (P(FE);Zs2) as an H (X; Zs)-module.
In other words, any 8 € H (P(FE);Z2) may be written in a unique way as

B=mrap+ T — {4 T — T
with «g, -+, a1 € H(X; Zs).
Proof. We know from Exercise 2.5.6 that the morphism

Zo[X]/(X") = H (P 1 (R); Z2)
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which sends X to e = e[[Zfil(R) is an isomorphism. It follows that

is a free family of generators of H (P,_;(R);Zs3) as a Zy-module. Since
§|x—1(x) corresponds to e through the canonical isomorphism

U(E) Urfl(R)a

Pt (@) =

we see that

r—1
1, £|7r*1(x)a T a§|,r—1(m)

form a free family of generators of H (7~ !(x);Zz) for any z € X and the
conclusion follows from Lemma 3.1.1. O

Definition 3.1.3. Let E be a vector bundle of rank r based on the space
X. Using the preceding proposition, we define the Stiefel- Whitney classes
w1 (E), -+, w.(E) of E by the formula

¢ =" (wp(E)) + 7" (wr—1(B)) — €+ + 77 (wi(E)) — £
We also set wo(E) =1 and wi(F) = 0 for k > r. By construction,
wi(E) € H*(X; Zs)

for any k € N. We also define the total Stiefel-Whitney class w(E) of E by
the formula

w(E) =wo(E) + -+ w,(F) € H(X;Zs).

Proposition 3.1.4. Let f : Y — X be a morphism of topological spaces.
Assume F is a vector bundle of rank r on X. Then,

w(f~H(E)) = frw(E).

Proof. Consider the canonical diagram

FUB) S E
]
Y T}X

Define P(g) : P(f~'(E)) — P(FE) as the map

(d,y) = (9(d), f(v))
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and U(g) : U(f~Y(E)) — U(E) as the map

(e, (d,y)) — (g(e), (9(d), f(y)))-

We get the commutative diagram

Since g|5-1(p), : YE), — Ey(y) is an isomorphism, so is
U@ w12y U (E)w — UE) o).
It follows that U(f~(E)) ~ P(g)"'U(F) and hence that
fffl(E) = 6%2(f71(E)) = P(g)*e%f(E) = P(g)*§E~
Applying P(g)* to the relation
&g = 7 (w(B)) + 7" (wr—1(E)) — & + -+ 7" (wi(E)) — &7,
we get
§r-1(m)

=" M (wr(E)) + @ [ (wr-1(E)) = &-10m) + -+
+ @ (w1 (E)) — g;jll(E)

and the conclusion follows from the definition of the Stiefel-Whitney classes
of f~Y(E). O

Proposition 3.1.5. Let E, ' be vector bundles of rank r and s on the
topological space X. Then,

wE® F)=w(E) — w(F).

Proof. Consider the map
i F—-FE®F

defined at the level of fibers by setting

i(ex) = (e4,0)
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and denote j : P(F) — P(E @ F) the map induced by 4. Consider also the
map
p:E®F —F

defined at the level of fibers by setting
pm(ema fm) = fz
and denote
q: P(E® F)\j(P(E)) — P(F)
the map induced by p. Finally, denote
p: P(E® F)\j(P(E) — P(E& F)
the inclusion map. One checks easily that

i'U(E® F)~U(E)

and that

p lU(E® F)~q 'UF).
Set

a = ZWE@F (wi(E gEEBkF
and

g = ZW*E@F(U’Z ))SEEBF
1=0
Clearly, we have

Ja= ZJ*W*E@F(U’IC( NI* fE@F
k=0

72 WEwk rk

=0

and

pB= ZP*WE@F(W( NP e r

—Zqﬂpwz NG Er

o)

=0.
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From the second relation, it follows that 8 = o(v) where
H pp)(P(E® F); Z2) - H(P(E® F); Z2)
is the canonical morphism. Using the fact that for
= H(j(P(E)); Z2) @ Hj p(g))(P(E & F); Zz) — Hjp(y) (P(E ® F); L)
we have

a—o(y) =o(ja—7),

we see that
a—pF=0
in H(P(E @ F); Zs). Tt follows that

2 mhor(wi(E) — wi(F)EGER" =0

k=0 1=0
and hence that

r4+s

ZWE@F (Z wi(E) — wp—i(F )) Epor =

This shows that

r4+s
EJEBSF Z 7TE@F w(F)],,) EHBSI;H
and the conclusion follows. O

Exercise 3.1.6. Let E be a vector bundle of rank r on the topological space
X. Show that a necessary condition for E to have a trivial sub-bundle of
rank s is that

wp(E) ="+ =wr—s4+1(E) =0.

In particular, a necessary condition for E to be trivial is that
w(F)=1.
Solution. Assume first that F is trivial. It follows that
E~R" x X ~ay'(R")
where ax : X — {pt} is the canonical map. Hence,

w(E) = axw(R") = akwo(R") = 1.
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Assume now that E has a trivial sub-bundle T of rank s. From the isomor-
phism
E~To®E/T

we deduce that
w(E) =w(T) — w(E/T)=w(E/T).

Since E/T has rank r — s, the conclusion follows. O

3.2 Splitting principle and consequences

Proposition 3.2.1 (Splitting principle). Let E be a real vector bundle
of rank r on the space X. Then, there is a proper map

f:Y—-X
for which the canonical map
JT (X Zy) — H(Y; Zo)
is injective and such that
U ~Lie -l
with Ly, - -, L, real line bundles on Y .

Proof. Let us proceed by induction on r. For r = 1, the result is obvious.
Assume it is true for » — 1 and let us prove it for r. We know that

m:P(E)— X
is a proper map for which
7 H(X;Z2) — H(P(E); Z2)
is injective. Using the canonical inclusion
U(E) = E xx P(E) ~n Y(E)

we see that U(FE) is a sub-bundle of 7~(E). Setting F = n~Y(E)/U(E),
we get the isomorphism

m'E~U(E)& F.
By the induction hypothesis, there is a proper map

g:Y — P(E)
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for which
g H(P(E); Zs) — H(Y; Zo)

is injective and such that
g F)~Li® &L

with Ly, -+, L, line bundles on Y. Setting f = 7o g and L, = g~ (U(E))
allows us to conclude. O

Remark 3.2.2. Asshown hereafter, the preceding result allows us to reduce
the proof of formulas concerning Stiefel-Whitney classes of vector bundles
to the case of line bundles.

Proposition 3.2.3. Let E be a vector bundle of rank r on X. Then,

w,(E) = e%

in H"(X; Zo).
Proof. By the preceding proposition, we may assume that there is a proper
map
f:Y—-X
with

£ (X Z) — HAY Zo)
injective and such that
I E)=Li&- & L,.
For such a map, we have
Fw(B)) =w(f~H(E)) =w(li) — - — w(Ly).
Moreover, w(Ly) = 1 + w1 (L), hence
[ (we(E)) = wi(L) — - — wi(Ly).

Since
z Zo

f(eg) = 6?31@) =ep — - —epl
the proof is reduced to the case where r = 1. When F is a line bundle,
7 : P(E) — X is a homeomorphism and 7#'E ~ U(E). It follows that
¢g = m*eg. By the definition of Stiefel-Whitney classes, this shows that
w1(E) = eg, hence the conclusion. O
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Remark 3.2.4 (Symmetric Polynomials). Let A be a ring with unit.
Recall that the elementary symmetric polynomials of A[ X7, .-+, X,,] are the
polynomials Sy, 1, - - -, Sp,n characterized by the fact that

(X -X))- (X -X,) = zn:(fnksnyk(xl, o X)Xk
k=0

in A[Xy, -+, Xp, X]. In particular, Sp,1 = X1 + -+ X,, and Sp, =
X5 ---X,. Recall also that any symmetric polynomial P of degree r of
A[X1,- -+, X,] may be written in a unique way as Q(Sn1," -, Sn.n) With
Q in A[X;, -+, X,]. An algorithm to find @ by induction on n and on the
degree of P is the following:

(a) Write P(X1, -+, Xn-1,0) as Q1(Sn—1,1," ", Sn—1,n—1)-
(b) Find the polynomial R;(X7,- -+, X,) such that
P(Xi1,-+,Xn) —Q1(Sn1, s Snn—1) = SnnR1(X1, -+, Xpn).
(¢) Express Ry(X1, -+, Xpn) as Q2(Sn1, -+, Snn)-
(d) Write P as
Qi1(Sn,1, s Snn—1) + SnnQ2(Sn1, -+, Snn)-

Exercise 3.2.5. Write
P(X1, X2, X3) = X1 X3+ X1 X3 + Xo X7 + Xo X5 4+ X3 X + X3X5

as apolynomjal in 5371 = Xl +X2 +X3, 5372 = X1X2 +X1X3 +X2X3 and
S3.3 = X1 X0 Xs.
Solution. Consider the polynomial
X1 X3+ X X3,
Clearly,
X1X3 + Xo X7 = X1 Xo(X1 + X2) = 82,152
We have
P — 831832 =P — (X1 + Xo + X3)(X1 X2 + X1 X3 + X2X3)
=P - XXy — XX3 - X1XoX3 — X1 X7 — X1 X0 X3
—X3X3 — X1 Xo X3 — X1 X3 — X0 X5
= -3X1Xo X35 = —-35;3.
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Therefore,
P = 5351532 — 3S533.

O

Proposition 3.2.6. Let P be a symmetric polynomial of Zo[Z1, -+ , Z].
Then, to any vector bundle EE on X of rank r is canonically associated a
class

wp(F) € H(X;Zs).

This class is characterized by the fact that

(a)
wp(f7H(E)) = ffwp(E)

for any continuous map f:Y — X;

(b)

wp(E) = P, e?)
ifE=11®---® L, with Ly,---, L, line bundles.

Proof. Write
P(Zla"' aZT> :Q(STJ)"' aST7T>

where Q € Zs[Z1,--+,Z;] and Sy 1, -+, Sy, are the elementary symmetric
polynomials in 7 unknowns. Set

'LUP(E) = Q(wl(E)a T ,’LUT(E)).

Clearly, if f : Y — X is a continuous map, we have

frwp(E) = f*Q(wi(E), - -, wr(E))
= Q(wi(f 1(E)) s wr(f7H(E)))
=wp(f~1(B)).

Moreover, if E = L1 & --- & L, with Ly,---, L, line bundles, we get
wB) =(1+&) - (1+&)
with & = eLl, R eL It follows that

’LU(E) =1 +ST,1(§15 e agr) + "'+Sr,r(§1; e agr)

and hence that
wi(E) = Srx(&1,---,&).



110 3. Characteristic classes of real vector bundles

Therefore,
wp(E) = Q(ui(E), - ,w.(E))
= Q(Shl(gla te 557“)5 te aST,T(gla te agT))
= P(gla agr)'
The fact that these two properties characterize wp () uniquely follows from
the splitting principle. O

Definition 3.2.7. Let £ — B, ' — B be two real vector bundles of rank
r and s. Recall that E® F" denotes the real vector bundle of rank rs defined
by setting

EFERF=EF

the frame of E® F' on U associated to a frame ey, - - - , ¢, of |y and a frame
f1,++, fs of Fiy being given by the sections

e®f; (Ged{l,...r},je{l,...s}).
Proposition 3.2.8. Let p; : L1 — B and py : L — B be two real line

bundles. Then,

Za _ L2 Za
€rieL, = €1, + €L,

Proof. Denote p: L1 & Ls — L1 ® Ly the continuous map defined at the
level of fibers by setting

pp(er, e2) = e1 ® ez

and denote q1 : L1 ® Lo — L1, g2 : L1 ® Lo — Lo the two projections. By
homotopy, we have

RFLl(Ll D LQ; ZQ) ~ RFB(LQ, ZQ)

and
RFLZ(Ll & Lo; ZQ) ~ RFB(Ll; ZQ)

Hence, we deduce from the Mayer-Vietoris distinguished triangle
RFLlﬁLz(Ll @ Lo;Zg) — RFLI(LI @ Lo;Zy) @ RFLZ(LI @ Lo;Zg) — RFLIULZ(LI @ Lo;Zg) i»
a canonical morphism
Hj(L1; Z2) @ Hp(L2; Z2) — HE, g, (L1 @ Lo Zo). (*)
Since u~(B) = L1 U La, we also have an isomorphism

RIz, L, (L1 @ Lg; Zo) ~ RI'p(Ru(Zs))
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and hence a morphism
Hi (L1 ® L2; Zo) — HL,up, (L1 @ Lo; Zo). (**)

Let us prove that the image of the Thom class of L1 ® Ls by (**) is the
image of the Thom classes of Ly and Lo by (*). This will give the result
thanks to the commutative diagrams

H'(B; Zy) ———— H'(B; Zs)

L I

H'(Ly ® Ly; Z) —— H' (L1 & Ly; Zs)

T T

HlB(Ll ®L2, ZQ) ? HiluLz (Ll (&%) LQ; ZQ)

and

HY(B; Zs) & HY(B; Zs) — - HY(B; Z)

1B Tis

H1 (Ll, ZQ) D I‘I1 (LQ, ZQ) M) H1 (Ll D LQ; ZQ)

T T

Hp(L1; Zs) & Hi(La; Zo) s Hp r, (L1 @ Lo Zs)
1 2

First, note that it follows from Thom isomorphism that
U — Hy (L y; Za); U — Hy(Lay; Z2)
are sheaves on B. Moreover, note also that since
HY, yuLey (L1jy @ Lajyi Z2) = 0
for any open subset U of B,
U HE, oL, (Lrjo @ L2jy; Z2)

is also a sheaf on B. From these remarks, it follows that our problem is of
local nature and it is sufficient to work at the level of fibers and to show
that the image of the appropriate Thom classes by canonical maps

Hiyy ((L1)b; Za) ® Hiyy (L2)s; Z2) — Hip,y,o0n,), (L1)s © (La)b; Zo)

and
Hiyy (1) ® (L2)b; Z2) = H{y,), 010, (E1)o @ (La)s; Za)
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corresponding to (*) and (**) are equal. Denote y : R*> — R the multipli-
cation, T the generator of H%O}(R; Zs) and q1, g2 the two projections from

R? to R. Using local frames for L; and Lo, we are reduced to show that

P (1) = qi(7) + 43(7) (%)

in H%RX{O})U({O}XR)(]RQ; Z3). We know that 7 is the image of Xjo, 00| by the
canonical map

Hg\ 0} (R; Z2) — Higy (R; Zo).

It follows that p*(7) (resp. ¢i(7), ¢5(7)) is the image of xq, + x5 (resp.
X@1 F XQas XQi + Xq2) by the canonical map

Hee\ (mx {0y)u{0} x &) (R% Z2) = Higy (opyu(oy k) (R?; Z2)-

Here, 1, - - -, Q4 are the open quarter planes defined in the following figure
A
Q2 1
Q3 Q4

To establish (***), it is sufficient to note that
XQ1 T XQa T XQ1 T XQ2 = XQ2 T XQu = XQ1 T XQs + Xr2
modulo 2. O

Corollary 3.2.9. Let E be the a real vector bundle of rank r on B. Denote
Det(FE) the determinant bundle associated to E. Then,

V/
wi(E) = epy -
Proof. Thanks to the splitting principle, we may assume that
E ~ Ll @ e EB LT

where L1, ..., L, are real line bundles on B. Denote &1, ..., & their Euler
classes modulo 2. Since

w(BE)=w(Li)... w(L,)=14+&)...(1+&),
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we see that
wi(E) =&+ +&n.

Since moreover
Det(E) ~ Det(L1) ®...®@Det(Ly) ~ L1 ®...® Ly,

the preceding proposition shows that

Zz P Zz ... Zz
€pet(p)y = €L, T T €L,

and the conclusion follows. O
Lemma 3.2.10. For any r,s € Ny there is a unique polynomial
Trs € Z|Uy, ..., Up, V1, ... V5]
such that
IO+ X +Y5) =T a(Sea(X), ., Srn(X), Saa (Y), .., S (V).
i=1j=1
Proof. This follows directly from the fact that
ﬁ f[(l +Xi+Y))
i=1j=1
is symmetric in the X and Y variables. O

Exercise 3.2.11. Compute T} s and 15 o explicitly.

Solution. Since

S

I+X1+Y1) . (1+ X +Y) =Y (1+X)*Sx(V1, ..., V)
k=0

and

(1+X,)" chxl,

we see directly that

s k
1) ,.(U,V) > CLUV:.
k=0 1=0
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The computation of T3 7 is also easy but more tedious. The final answer is

1+ 201 +2U2 +2V1 + 2V
+ UL + 200U + U3 + 300 Vi + 2Us Vi + 201 Vo — 2Us Vo + Vi2 + 2Vi Vi + Vi
+ UM, + U U Vi + UV + UL Vi Vo + UL VE + U VP2

O

Proposition 3.2.12. Assume E (resp. F) is a real vector bundle of rank
r (resp. s) on B. Then,

wEQF) =T, s(wi(E),...,w(E),wi(F),...,ws(F)).
Proof. Thanks to the splitting principle, we may assume that

E~L1®..®L, and F~N;&... N,

where Ly, ..., L. and Ny, ..., Ny are real line bundles on X. Denote &1,
.., & and ny, ..., ns their Euler classes modulo 2. Since
por~@@Len
i=1 j=1
we have

wE® F) = IIHw

1=17=1

Hence, using Proposition 3.2.8, we get
w(E® F) IIH1+§+m
1=17=1
and the conclusion follows from the preceding lemma. O

Exercise 3.2.13. Let F and F' be real plane bundles on B. Show that

wz(E®F)*w1(E)2+w1( Jwi (F) + wi(F)?
w3(E @ F) = wi(E)*w: (F) + w1 (E)w: (F)*
( ) )

wy(E @ F) = wy(E)? + wi(E)ws(E)w, (F) + wy(E)?wy (F)

+ wi(B)wi (F)wa(F) + w2 (F)? + wa (E)w: (F)?

Solution. This follows by reducing modulo 2 the polynomial 75 » computed
in Exercise 3.2.11. O
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Definition 3.2.14. Let F — B, ' — B be two real vector bundles of rank
r and s. Recall that Hom (E, F') denotes the real vector bundle of rank rs
defined by setting

Hom (E, F) = Hom (E}, Fy)

the local frame of Hom (£, F') on U associated to a frame ey, - - -, e, of Ejy
and a frame fi,- -, fs of Fjyy being given by the morphisms
hij : E|U b F|U

characterized by the fact that
0 ifk=#1
hji(ex) = . ’ .
f; ifk=1

If F is the trivial bundle R x B — B, then Hom (E, F) is simply denoted
E* and is called the dual of E. In particular, the local frame of E* on U
associated to a frame ey, -, e, of E|y is the family of sections e], -, ey
of E* on U characterized by the relations

(€}, e:) = dji.
Remark 3.2.15. One checks easily that the canonical morphisms
E*®F — Hom (E, F)

is an isomorphism. So, if we know the Stiefel-Whitney classes of E* and F,
we can compute that of Hom (E, F).

Proposition 3.2.16. For any real vector bundle E with base B and rank
r, there is a (non-canonical) isomorphism

E*~FE.

In particular,

Proof. Using a partition of unity, one can construct easily on each fiber FE,
an euclidean scalar product (-, ), in such a way that

b (ej,ex)p

is a continuous function on U if (e, - ,e,) is a local frame of E on U.
Using these scalar products, we obtain the requested isomorphism

p: BE— FE*

by setting ¢p(e) = (e, -)p for any b € B and any e € Ej. O
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Exercise 3.2.17.

(a) Show that
TP, (R) ~ Hom (U, (R), U, (R)>)

where U, (R);- is the orthogonal complement of U, (R), in R"*! for
any b € P, (R).

(b) Deduce from (a) that
7 n+1
w(TPu(R) = (1462 )
(c) Prove that

W(TP(R)) = 1

if and only if n = 2" — 1 (r € Ny). As a consequence, show that if
n+ 1 is not a power of 2 then P, (R) is not parallelizable.

Solution. (a) Let d € P,,(R). By definition, d is a line of R"™! containing
the origin. Denote
g :R"™1\ {0} — P (R)

the canonical map and let v € R"™1\ {0} be such that ¢(v) = d. Clearly,
the linear map
T,q:R"" — TP, (R)

has d as kernel. Hence,
Tv‘]|dl . dJ‘ — Td]P)n(R)
is an isomorphism. Moreover, since

Hom (U, (R), Un(R)*)4 = Hom (U, (R)4, U, (R)7)
~ Hom (d, d")

v induces a canonical isomorphism
€» : Hom (U, (R), U, (R)*)g — d*t.

This isomorphism sends h : d — d* to h(v). By composition, we get the
isomorphism

Tyqo €, : Hom (U, (R), U, (R)4)g — TyP,(R). (*)

Since

q(Mv) = q(v)
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for A # 0, the chain rule shows that

T, (A - 0) = T(0)

for any 6§ € R™*!. Therefore, (*) does not depend on v and we get a
canonical isomorphism

Hom (U, (R), U, (R):) g =~ Ty (P, (R)).

One checks easily that it extends to the requested isomorphism of vector
bundles.
(b) Since
U,(R) ® U, (R)* =R"™ x P,(R)

we see that

Hom (U, (R), U, (R)) & Hom (U, (R), U, (R)")
~ Hom (U, (R), R"*! x P, (R))

and therefore that
(R x P,(R)) & TP, (R) ~ [U,(R)*]®"".

It follows that
1 — w(TPy(R)) = w(Un(R))",

hence the conclusion.
(¢) Assume n = 2" — 1 with r € N. It follows that

2" 2"
wTPa(R) = (1465 ) =1+ [e2 )]
since we work modulo 2. But 2" =n 4+ 1 > dim P, (R) and we get
w(TP,(R)) = 1.

Assume now n is not of the preceding type. Then, n = 2"m — 1 where m is
an odd number which is strictly greater than 1. In this case 2" < n and

w(TP, (R)) = (1 + (et (R))T)m

;
e ()

Since m # 0 (mod 2) and 2" < dim P, (R), it follows that w(TP,(R)) # 1.
To conclude, it remains to note that if P, (R) is parallelizable then TP,,(R)
is trivializable and we have w(TP,(R)) = 1. O
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Exercise 3.2.18.

(a) Show that if a manifold M of dimension m can be immersed in R™5
then the components of degree k > s of w=(T'M) vanish.

(b) Deduce from (a) that Pa-(R) cannot be immersed in R?" +* with s <
2" —1.

Solution. (a) Let i : M — R™*5 be an immersion. Consider the associated
exact sequence of bundles

0—TM — i 'TR™ — Ty R™ Q.

Clearly,
1 =w(@ 'TR™M) = w(TM)w(TyR™*).

It follows that w(TyR™**) = w=1(T'M) and since T/ R™*"* has rank s, the
conclusion follows.
(b) For n = 2", setting e = e[[Zji (r)> We have
w(TP,(R)) = (1 +¢)? .
Therefore,
w (TP, (R)) = (1+e+e2+-- e+
Using the fact that (a +b)? = a? +b? in H (P, (R); Z2), we get
w (TP, (R)) = (14+e4e2+---+e)(1+e)
=l+et+el+ 4"t

and the conclusion follows. O

3.3 Homotopical classification of real vector bundles
Definition 3.3.1. Hereafter, we denote G, , the Grassmannian formed by
real vector subspaces of dimension r of R™.

Proposition 3.3.2. The Grassmannian G, , has a canonical structure of

compact topological manifold of dimension r(n —r).

Proof. Denote V,, , the subset of (R™)" formed by the sequences (vy,- -, vy)
which are linearly independent. Since (vy,---,v,) € V, - if and only if there
is i1, -4, € {1,--- ,n} such that

Viip = Uprig
£0

Vi, *°  Uri,
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it is clear that V,, , is an open subset of (R™)". Clearly, GL,(R) acts freely
and continuously on the right on V,, .. Denote ¢ : V;,, — G, the map
which sends a sequence (vy,---,v,) to its linear envelope and endow G,
with the associated quotient topology. By construction,

Q(Ulla"' ,’U;) = Q(Ula"' avT)

if and only if there is M € GL,(R) such that
(vlla"' ,’U;) - (’01,~~~ avT> -M
or equivalently if and only if

rk(vy, - v, v1, 0, vp) <1 *)
It follows that ¢ identifies V,, ,,/GL,(R) with G,, . In particular, ¢ is open
and since condition (*) is clearly closed we see that G, , is separated. Let
Lo be an element of G, , and let L; be a supplement of Ly in R™. Denote
p: R™ — Ly the projection associated to the decomposition R™ = Ly @ L;.
Set U = {L € Gn, : p(L) = Lo}. Clearly, U is an open subset of G, .
Moreover, since pz, : L — Lo is bijective, any L € U may be viewed as the
graph of a linear map h : Ly — L. This gives us a bijection

U — Hom (Lo, Ll)

which is easily checked to be an homeomorphism. Since Hom (Lg, L1) =~
R7("=7) it follows that G, , is a topological manifold of dimension r(n —r).
To prove that it is compact, remark that G, , = ¢(Syp ) where S, , is the
compact subset of V,, , formed by orthonormed sequences. O

Remark 3.3.3. The reader will easily complete the preceding proposition
to show that G, , has in fact a canonical structure of differential manifold.

Definition 3.3.4. We define U, , as the subset of R x G, , formed by the
pairs (V, L) with V € L.

Proposition 3.3.5. The canonical projection Uy, , — Gy, is a real vector
bundle of rank r.

Proof. The only non obvious part is to show that U, , has locally a contin-
uous frame. Using the notations introduced in the proof of the preceding
proposition, we construct such a frame by choosing a basis vy, - -+, v, of Ly
and associating to any L € U the basis prl (v1),- - ,prl (vp). O
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Proposition 3.3.6. Let B be a compact topological space. Assume E is a
vector bundle of rank v on X. Then, there is n € N and a continuous map

[:B— Gy
such that f~'(U,,) ~ E.

Proof. Tt is sufficient to construct a commutative diagram of continuous
maps of the type

ELU,, »R" x Gy

pEl lpV

_>
B 7 Gnr

with g|g, injective. Note that in such a diagram f is determined by g.
Moreover, if we denote q1, g2 the two projections of R™ x G, , on R™ and
Gn,r, we have (g2 0 g)(e) = (q1 0 9)(Epy(e)). Therefore, we have only to
construct the continuous map f :=q10¢9: F — R" in such a way that ]‘A]Eb
is injective and linear. To construct this map, let us proceed as follows. We
cover B by a finite number of open subsets Uy, ---,Uyn on which F has a
continuous frame. For each k € {1,---, N} we choose a trivialization

PU E|Uk :—> R" x Uk

and set hy, = q1 o ppy,. Denoting (¢Yy,, - ,%y,) a partition of unity
subordinated to the covering {Uy,---,Un}, we set

&) = (v, o p)(@huy (e). -+, (Wuy o p)(e)huy (e)) € R™Y.

It is clear that f is continuous and linear on the fibers of E. It is also
injective on the fibers of E. As a matter of fact, if e1, e € Ej are such that

A~

fler) = fA’(eg), there is k € {1---, N} such that (¢y, o p)(b) # 0. For such
a k, we get
hu, (61) = hu, (62)

and hence e; = es. O

Definition 3.3.7. We denote R* the real vector space formed by the se-
quences

(xn)nEN
of real numbers for which {n € N : z,, # 0} is finite and endow it with the
topology of the inductive limit

lim R™

—

neN
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corresponding to the transition morphisms
tmn : R" — R™

being defined by setting
tm.n(z) = (x,0).
We denote Vo , the topological subspace of (R>)" formed by the sequences

(v, 0p)

which are linearly independent. We denote G, the set of r-dimensional
vector subspace of R® and endow it with the quotient topology associated
with the map

q :LQOJ’_*(;MLT

which sends a sequence (v1, - - - ,v;) to its linear envelope. Finally, we denote
Uso,r the subset of R*® x G, formed by the pairs (v, L) with v € L.

Lemma 3.3.8. Let (X,, Tm.n)nen be an inductive system of locally com-
pact topological spaces. Assume that Y, is a closed subspace of X,, and
that

)t (Vi) =Y,

m,n

and denote Y, the map Ty, : Y, — Y. Then, (Ya,Ymn)nen is an
inductive system and limY,, is a closed subspace of lim X,,.

— —

neN neN

Proof. Set X = h_n>1 X,andY = h_n>1 Y, and identify Y with a subset of X.
neN neN
Denote z,, : X;, = X, yn : Y, — Y the canonical maps.

(a) Let v € Y and let V' be an open neighborhood of v in Y. We have
to show that there is a neighborhood U of v in X such that UNY C V.
We know that v = y,(v,) for some n € N and that V,, := y, (V) is a
neighborhood of v, in Y,. Let K, be a compact neighborhood of v, in
X, such that K,, NY,, C V,, and let us construct by induction a sequence
(Km)m>n such that

(i) K is a compact neighborhood of vy, := Y n(vp) in X,
(i) K NYy C Vi =y, 0(V),
(1) Zonp1.m (Km) C K20y

This is possible since if K, is a compact neighborhood of v, in X, such
that K,,NY,, C Vi, we can construct K,,; as follows. Using the fact that
Timt1,m (Km)NYm41 is a compact subset of X, 41 included in V41 together
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with the fact that any wy,+1 € V41 has a compact neighborhood W, 41
with Wy,41 N Y41 C Vg, it is easy to obtain a compact subset L,,11 of
Agn+1suchthatlgn+1ﬁiﬁn+1(:‘4n+1,L2H47D:rm+4ﬂn(B;n)ﬁ§Cn+L Since
Tt 1,m(Km)\ Ly, 4, is a compact subset of X;,, 11 disjoint from Y3, 41, it has
a compact neighborhood L;n+1 disjoint from Y, 1. Taking K, 41 = L1 U
Ly, 1, wesee that Ky 1 NYq1 C Viggr and that K D Tpg1,m (Km) as
requested. Now, set K = h_n)l K,,. By construction, KNY C V. Moreover,
m>n

since Tpm41,m (Km) C KfjH;, K is an open neighborhood of v in X.

(b) Let w € X \'Y. We know that u = z,(uy) for some n € N and
that for any m > n, Uy, 1= Tmn(un) € Y. Working as in (a), it is clearly
possible to construct by induction a sequence (Kp,)m>n such that

(i) K., is a compact neighborhood of u,, in X,,,
(il) K NY,, =0,
(i) @t (Kom) € Ko
Set K = h_n>1 K,,. By construction, KNY = () and K is an open neighbor-

m>n
hood of u; hence the conclusion. O

Lemma 3.3.9. Let (X, Zmn)nen and (Yo, Ymn)nen be inductive systems
of locally compact topological spaces. Then,

lim(X, xY,)~ (lim X,,) x (lim Y;,)
— - -
neN neN neN

as topological spaces.

Proof. Set Z,, = X,, x Y, and set

X =limX, Y=IlmY, Z=IlmZ,.
=5 S =5
neN neN neN

Denote z,, : X, = X, yn : Y, — Y, 2, : Z,, — Z the canonical maps. Since
the canonical continuous map

1: 4 —=>X XY

is clearly bijective, it remains to show that if W is a neighborhood of w in
Z and i(w) = (u,v), then there are neighborhoods U, V of u, v in X and
Y such that (W) D U x V. We know that w = z,(w,,) for some n € N
and some wy, € Z,. Set Wy, = zZy.n(wy) and W, = 2 1(W) for any m > n.
Let u, € X,, v, € Y, be such that i(w,) = (un,v,). Since ¢(W,) is a
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neighborhood of (u,v,) in X,, X Y, there are compact neighborhoods K,
L, of uy, v, in X,, and Y,, such that ¢(W,,) D K,, x L,,. Starting with these
neighborhoods, let us construct by induction sequences (K, )m>n, (Lm)m>n
such that

(i) K, (resp. Ly,) is a compact neighborhood of w., (resp. vy,),
(i) Ko X Ly C i(Wp),
(ili) Zrt1,m(EKm) C K75 Ymtrm (Lm) C Ly, 44

This is possible since (W, 4+1) is a neighborhood of

:Cerl,m(Km) X merl,m (Lm)

Set
K= lim K,,, L= lim L,,.
i —

m>n m>n

By construction, K and L are open subsets of X and Y and ¢(W) D K x L.
The conclusion follows. O

Proposition 3.3.10. We have

Voorr @ 1im V,, -,

n>r
Goor >~ lim Gy, o,
n>r

Uso,r = lim Uy, .

n>r

In particular, V. , is an open subset of R* and the canonical projection
Uoo,r - Goo,r
is a real vector bundle of rank r.

Proof. Thanks to Lemma 3.3.9, (R>)" ~ lim (R")" and it follows from the
neN
fact Voo, N (R™)" =V, that V- is open in (R*°)" and that

Voo,r =~ h_H} Vn,r-
n>r
The relation

Goor >~ lim Gy, »

n>r
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follows easily. Since U, , is a closed subspace of R™ x G, ,, the relation
Usor = 1lim U, ,
, U Un,
n>r
follows directly from Lemma 3.3.8 together with the relation
R*® X Goor = Im R™ x G,
, 1 ,
n>r
which follows from Lemma 3.3.9. O

Remark 3.3.11. Although we will not prove it here, the space G is
paracompact (see e.g. [20]).

Lemma 3.3.12. Let B be a topological space and let E be a real vector
bundle of rank r on B. Then, there is a locally finite countable family
(Vi )ken of open subsets of B such that

(a) UkeN Vi = B;
(b) By, =~ R" x V.
Proof. Let U be a locally finite covering of B by open subsets U on which

E is trivializable and let (¢ )yey be continuous partition of unity subor-
dinated to U. For any non-empty finite subset S of U, set

V(S) = {be Bl inf pu(b) > sup wu(b).}
ves Ueu\S

Set also

Vi= |J V(S).

#5=k

One checks easily that V(S) is an open subset of (| S. It follows that E is

trivializable on V' (S) and that (Vj)ren is a locally finite family. Since
V(S)NV(S) #0

entails that S C S’ or &' C S, we see that V(S) and V(S’) are disjoint if S
and S’ are distinct finite subsets of U with k > 0 elements. It follows that
FE is trivializable on Vj. To conclude, note that we have

Uw=s8
keN

since any b € B belongs to V(S) with

S=1{Ucl:pyb) >0}
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Theorem 3.3.13. For any topological space B and any real vector bundle
FE of rank r on B, there is a continuous map

f:B—Gu,r
such that f~'(Us,) =~ E. Moreover, such a map is unique up to homotopy.

Proof. Thanks to the preceding Lemma, the first part is obtained by work-
ing as in the proof of Proposition 3.3.6.

For the second part, we have to show that given two commutative dia-
grams of the type

9o g1

E—Usx, > R® X G E—=Usx, > R® X Goopr
| L
BﬁGoo,r B — lGoo,r

where gg and g7 are mJectlve on the ﬁbers of E/, there is a homotopy between
fo and fi. Setting fo = ¢q10go and f1 = q1 0 g1, we get two maps

f/B:E—>R°°, f/‘\l:E—>R°°

which are linear and injective on the fibers of ' and whose knowledge makes
it possible to reconstruct the whole diagrams.

(a) Assume fo(e) & {A\f1(e) : A < 0} for e € E. Then, for t € [0,1], the
continuous map ﬁt : E — R defined by setting

fi(e) = (1 =) fole) +tf1(e)
is linear and injective on the fibers of E. Hence it gives rise to a commutative
diagram
E% U, R X Goo
B G

here ¢y 0g; = ﬁt and g, is injective on the fibers of E. The conclusion follows
since f¢ (t € [0,1]) is a homotopy between fy and f.
(b) In general, consider the maps

a:R® — R, B :R® — R*®

defined by setting

ale;) = ey, Blei) = eziq1
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where e; are the vectors of the canonical basis of R*. Set fA’a =ao jA’O and
fs = B o f1 and consider the associated diagrams

EBUpr =R x Goor —>Um—>R°° X Goo,r

ll/ %l/

B
here q1 0 go = ga and qp °gp = gﬁ- By (a), we have fo ~ fo, fo ~ fﬁa
fa ~ f1; hence the conclusion. O
Corollary 3.3.14. Assume B is a topological space. Then, the map

[B, Goo,r] — Isom(Vecty(B))

which associates to the homotopy class of f : B — G, the isomorphism
class of f~Y(Us ) is a bijection.

Proof. Since Lemma 3.3.15 shows that the map considered above is well-
defined, the conclusion follows easily from the preceding result. O

Lemma 3.3.15. Assume B is a topological space. Then, for any real vector
bundle F on B x [0, 1], there is a real vector vector bundle E on B and a
non-canonical isomorphism

F~py'E.

In particular, if h : B x I — B’ is a continuous homotopy and E’ is a real
vector bundle on B’, then the isomorphy class of

hy'E
does not depend on t € [0,1].

Proof. See e.g. [16, p. 28]. O

3.4 Characteristic classes

Definition 3.4.1. A characteristic class with coefficients in the abelian
group M for real vector bundles of rank r is a law v which associates to any
real vector bundle E of rank r and base X a class v(F) € H (X; A) in such
a way that

YWfHE)) = f(E)

for any continuous map f:Y — X.
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Proposition 3.4.2. Characteristic classes with coefficients in M for real
vector bundles of rank r are canonically in bijection with

H (Goor; M).

Proof. Thanks to Theorem 3.3.13, we know that any real vector bundle £
of rank r on B may be written as

7 Usor)

where f: B — G is uniquely determined up to homotopy by E. If v is
a characteristic class, it follows that

and -y is uniquely determined by v(Uso,r) € H (Goo,r; M). Moreover, if
c€e H(Goor; M)

is given, we can construct a characteristic class 7 such that v(Us,) = ¢ by
setting

since f* depends only on F. O

Lemma 3.4.3. Let X be a topological space. Assume (A;);c is a directed
family of subspaces of X such that

X ~lim A;.
iy
iel

Then, for any sheaf F on X, we have

D(X; F) = Hm (A F).
iel

Proof. The fact that the canonical map

D(X; F) — LimT(A;; F)
iel

is injective is a direct consequence of the fact that X = (J;.; Ai. Let us

prove that it is also surjective. Let (0;)ier be an element of imI'(A;; F).
iel
Define the family (s;).zex of ],y Fz by setting

Sy = (Uz)m
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for any x € A;. We have to prove that (s;)zex comes locally from a
section of F. Fix & € X. There is ¢ € I such that € A;, an open
neighborhood U of z in X and o € F(U) such that oa,nv = 0ija,nu- Set
V={zxeU:o0, =s,}. Clearly,

VﬁA]‘ = {IG UﬂA] 0 — (Uj)x}

is open in A;. Therefore, V' is open in X and the conclusion follows. O

Lemma 3.4.4. Let X be a topological space and let (F,)nen be an in-
creasing sequence of closed subspaces of X such that

X ~ lim F,,.
—
neN

Then, for any sheaf F on X, we have

RI(X; F) ~ R lim RT(F,; F).
neN

In particular, if
H"(F,,; F)

satisfies Mittag-Leffler condition for k < I, then

H'(X; F) ~ lim H'(F,,; F).
neN

Proof. Tt is sufficient to apply Lemma 3.4.3 to a soft resolution of F and to
use the fact that Mittag-Lefler condition implies @1 acyclicity. O

Proposition 3.4.5. Forn > r, the Zq-algebra H (G, ; Z2) is generated by
w1 (Un,r)s - s wr(Un,r).
Proof. Recall that the universal bundle of rank r
p:Unyr— Gy
is defined by setting
Upr={(w,L) e R" X Gpr:v €L}

Define
U;_,r = {(Ua L) e R" x Gnﬂ“ Ve LJ‘}

and denote
q: U,fjr — Gy r
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the canonical projection. One can check easily that g is a real vector bundle
of rank n — 7. Denote U, . (resp. U;-T) the space U, , (resp. Uy-,.) with-
out its zero section and denote p (resp. ¢) the canonical projection of U'nm
(resp.UéjT) on Gy, . Define the map

e .
f . Un,r - Un,rfl

by setting f(v, L) = (v, LN)v(") for v € R™\ {0}. One checks directly that
this application is a homeomorphism; the inverse being given by the map

f*1 : U',fjr,l — U'nm
defined by setting
F7H L) = (0, L +)w()

for any v € L'\ {0}. It follows that the Gysin sequences for U, and
U#rfl :

k2
- Un,r 5% .
HYTT (G Z2) H*(Gn,r; Z2) 2= B (Ui Z2) — - -
VEZQ
Un o1

H*(Grro1:Z2) S HY (UL, 3 2) — - -

n,r—15

o HETMTTN(G 1 2)

are connected by the isomorphism
e Hk(U';‘yrfl; Zs) — Hk(U'nyr; Zs).
Let us prove that
P (w(Un,r)) = (" (w(Unr-1))). )

To this end, consider the commutative diagram

. qof
Un,r ? Gn,rfl

f 1

pilUn,r _g_> Un,rfl
where the map ¢ is defined by setting
g(' v, L) = (v, L0 )u (")

where L € G, r, v € L\ {0}, v" € L and v" is the orthogonal projection of
v’ on Yv(*. This gives us a morphism

pilUn,r - (q o f)ilUn,rfl
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which is surjective. Its kernel is given by
Ly ={(,v,L): (v,L) € Upr,v' € )v(}
which is a trivializable line bundle on Unr From the exact sequence
0= Loy = p Uny = (G0 f) " Unypo1 =0
we get that

w(pilUn,r) = w(Ln,r) ~ w((q © f)ilUnnyl) = ’LU(((] °© f)ilU"m*l)

and hence that

prw(Uny) = f(¢" (w(Unr-1)))-
We will now prove by increasing induction on & > 0 and » > 1 that
for n > r, any & € H¥(G,,;Z2) may be expressed as a polynomial
R(wi(Upnr), -+ ywr(Up ) in the Stiefel-Whitney classes of Uy, .. The start-
ing point will be the case k = 0, » = 1 which is obvious. From the two “exact
triangles”

H' (G, Zo) S H (G i Z2)
H.(Un,ra Z2)
\/eZZ
Unro1 .
H.(Gn,rfl; Z2) > H (Gn,rfl; Z2)
\ 3 %
H.(Un,rfl; ZQ)

and Lemma 3.4.6 below, we deduce that

1 .

1
=3 dim H (U, _1; Zs)
= dimIm ¢* = dimIm(f* o ¢*).
Moreover, it follows from (*) and the induction hypothesis that

Imp* D Im(f* o ¢*¥).

Putting these two facts together, we see that Imp* = Im(f* o ¢*). Let us
fix a class ¢ in H*(G,, ; Z2). From what precedes, we know that there is
¢ € H*(G,,r—1; Z2) such that
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By the induction hypothesis, there is a polynomial relation
C/ - R/(wl(Un,rfl); e ;wrfl(Un,rfl))-

Using (*), it follows that

and hence that
¢ = R(wi(Uny), - w1 (Unyp)) = ¢ — e =" = w(Un,y)
with ¢ € H*=2(G,,»; Z2). By the induction hypothesis,
" =R"(w1(Un,r), -+, wr(Unyr))
and the conclusion follows. O

Lemma 3.4.6. Let
E——E
N
F
be an exact triangle of vector spaces (i.e. Kerw = Imwv, Kerv = Imu,

Keru = Imw). Assume FE has finite dimension. Then, F has finite dimen-
sion and

dimImov = %dimF.
Proof. We know that
Im v ~ Coker u, Cokerv ~ Imw ~ Ker u.

Since
dim Imu + dim Ker v = dim F,

we have
dim Coker u = dim Ker u.

It follows that
dimImv = dim Cokerv < +o00.

Hence,
dim F' = dim Im v + dim Coker v = 2dim Imv.
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Proposition 3.4.7. The canonical morphism
Z2[Wla T aWr] - H.(Goo,r; Z2)
which sends Wy, +— wi(Uso,r) is an isomorphism.

Proof. Using the notations introduced in the proof of Proposition 3.4.5,
we get from the Gysin sequences that, for £ < n — r, we have the exact
sequences

0 — HE (o3 Zo) o HR (UL, _|125) — 0

n,r—1»
and

)
€
Un,r

~—

tet HkiT(Gn,r; Z2)

s

Hk(Gn,r; Z2) P_} Hk(Un,T; Z2) —

It follows from the equality Im(f* o ¢*) = Imp* that p* is surjective in
degree k < n —r. Hence, we get the exact sequence
Z2

€
Un,r A

0— HkiT(Gn,r; Z2) — Hk (Gn,r; Z2) - Hk(Gn,rfl; Z2) —0 (*)

~—

where A = (¢*)~' o f* 7! o p*. Thanks to the formula (*) of the proof of
Proposition 3.4.5 we have A(w(Un,r)) = w(Unr-1). Since Upyq = =
U, —1,r, it follows from Proposition 3.4.5 that the restriction map

Hk (Gm,r; Z2) - Hk (Gn,r; Z2)
is surjective for m > n. Hence, Lemma 3.4.4 shows that

Hk(Gooyr; Zsy) ~ m H* (G Zs).

n>r

Taking the projective limit of the sequences (*) and using the fact that the
Mittag-Leffler condition implies liin—acyclicity, we get the exact sequence

Lg

~—

0— HkiT(Goo,r; Z2) & Hk (Goo,r; Z2) - Hk (Gooﬂ”*l; Z2) — 0.

Working by induction, as in the proof of Proposition 3.4.5, we see easily
that any ¢ € H*(G o ; Z2) may be written polynomially as

c=R(wi(Uso,r), s wr(Uso,r)).

To show the uniqueness of such a writing, let us proceed by induction on
k>0 and r > 1 as follows. Assume

R(w1(Uso,r), ywr(Uso,r)) = S(w1(Uso,r), = wr(Uso,r))- *)
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Write

R(wl, R ;wr) = R/(wl, R ;wrfl) + 'LUTRN('LUI; R ;wr)

S(wl, R ;wr) = S/(wl, R ;wrfl) + wrSN(wla R ;wr)-
Applying A to (*), we see that
R (w1(Usop—1)s s Wr—1(Usor—1)) = 8" (w1 (Usor—1),+ + s Wr—1(Usor—1))-
By the induction hypothesis, we get R’ = S’ and, hence,

wr(Uoo,r) ~ R//(wl(UOOﬂ”)’ T ’wT(UC’ovT))
= wT(UOOﬂ“) ~ S//(wl(Uoo,r)a T awr(Uoo,r))-

Since wy (Uso,r) = e?fw _and e?fw _— - is injective, the conclusion follows
by the induction hypothesis. O

3.5 Cohomological classification of real vector bundles

Definition 3.5.1. Let G be a topological group and let & be an open
covering of the topological space X. A continuous Cech 1-cochain on U
with values in G is the datum for any U, V € U of a continuous map

Yyy :UNV = G.
Such a cochain is a cocycle if

Ywv o Yvy = Ywu on UNVNW.

Two continuous 1-cocycles (Yuv)v,veu, (Vi y)v,ueu are equivalent if we
can find for any U € U a continuous map

Yy U —G
in such a way that
Yoy =vvoyyvuoy' onUNV.
The set of equivalence classes of continuous 1-cocycles on ¢ is denoted
H(lzont U; G).

If Vis an open covering of X such that V < U, there is a canonical restriction
map

H(lzont(u; G) - H(lzont(V; G)
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These restriction maps turn the family H. . (U; G) (U open covering of X)

cont
into an inductive system and we set

I:I(lzont(X; G) = h_I>nI:I1 (Z/[, G)

cont
u

Proposition 3.5.2. For any topological space B, there is a canonical bi-
Jjection
Isom(Vecti(B)) = H,..(B; GL.(R)).

Proof. Let E be a real vector bundle with base B and rank r. By definition,
there is an open covering U of B such that E|y has a continuous frame for
any U € U. This gives us a family of trivializations

ou: By =R xU (U eU).
Forany U, V € U,
pvopy iR x (UNV)—=R" x (UNV)

is an isomorphism of real vector bundles. Therefore, the map

v gz [(pv o) (v, 2)]
defines an element ¢y (z) of GL,(R). Moreover, it is clear that

Yyy : UNV — GL,.(R)

is continuous and that

Ywy (2)Yvu(z) = Pwu (x)

for any x € UNV N W. It follows that (¥yvu)u,veu is a continuous 1-
cocycle on U with values in GL, (R). We leave it to the reader to check that
(X;GL,(R)) depends only on the isomorphy class of E. As
a consequence, we get a well-defined map

. . - 1
its class in Hgg s

Isom(Vecty(B)) — H!

cont

(X; GLr(R)).

Its injectivity is almost obvious. To prove its surjectivity, it is sufficient to
consider a continuous 1-cocycle (Yvu)u,veu on U with values in GL,(R)
and to show that its equivalence class is the class associated to the real
vector bundle obtained by gluing together the family of trivial bundles

R" x U
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through the transition isomorphisms

R™ x (UNV) =R x (UNV)
(v, 2) = (Yvu(@)v, ).

Details are left to the reader. O

Lemma 3.5.3. For any x € R*, set

0 ifz>0
s(z) =
1 ifx<O.
Then,
s:R* = Zsy

is a morphism of groups and the sequence of abelian groups
0—-R LR 57, —0

is exact. Moreover, for any topological space X, this sequence induces the
exact sequence of sheaves

0—>C§ —>C§* — (Z2)x — 0
where C% denotes the sheaf of real valued continuous functions.
Proof. Direct. O

Proposition 3.5.4. Let B be a topological space. The exact sequence
0—>C% —>C%* — (Z2)p — 0
induces an isomorphism
HY(B;C}') ~ H'(B; Zs).
There is a bijection
Hiou(B; GL1(R)) > H'(B; CFy ).
The associated bijection

Isom(Vecty(B)) ~ H'(B; Zs)

may be realized by the map

Zz
L e}
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Proof. Taking the long exact sequence of cohomology associated to the se-
quence of sheaves
0—CE —C8 — (Zy)p — 0,

we get the exact sequence
H'(B;C) — H'(B;C ) — H'(B; Zs) — H?(B; Chy).
Since C% is soft, the first and last terms vanish. Hence the isomorphism
H'(B;Cy ) ~ H'(B; Zs).
Clearly, there is a bijection

r7l
I{cont

(B; GLy(R)) ~ H'(B; C})

and using the isomorphism between Cech cohomology and ordinary coho-
mology, we get a bijection
il

cont

(B; GLy(R)) ~ H'(B; C} ).
Combining this with the bijection of Proposition 3.5.2, we get a bijection
Isom(Vecty (B)) ~ HY(B; Zy). ()

What remains to prove is that this bijection may be realized by the Euler
class. Since this bijection is clearly compatible with the pull-back of bundles
and cohomology classes, Theorem 3.3.13 shows that the result will be true
if the image of Uy, in H! (P (R), Z2) by (*) is the Euler class of Us,. We
know that the restriction map

H' (P (R); Z2) — H' (Pu(R); Zo)
is an isomorphism for m > n > 1. It follows that the restriction map
H'(Poo (R); Zs) — H'(P1(R); Zo)

is also an isomorphism. Hence, we are reduced to prove that the image
of U1 (R) by (*) in HY(Py(R); Z2) is e[[Zfl(R). Set Vo = {[zo,z1] : o # 0}
and Vi = {[zo,z1] : 1 # 0}. Clearly, Vi, V4 are open subsets of Py (R)
which are homeomorphic to R. Moreover, P;(R) = Vo U V; and Vo N V4
is homeomorphic to R*. The line bundle Uy (R)y, has a continuous frame
given by

(20, 1] ((1, I, [xo,xl]) .

Zo
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Similarly, the line bundle Uy (IR)W1 has a continuous frame given by

The continuous 1-cocycle on V = {Vj, Vi} with values in GL;(R) = R*
associated to U is thus given by

T1 Lo
Yvovo =1, Yvivi=1, vy =—, Yyu =
ZTo i)
Its image ¢ in H'(V; Zy) is thus the class of the 1-cocycle
I ZTo
’l/A/ng = Oa M/lvl = Oa w</1Vg = S(SC_O), 1/)</UV1 = 5(56_1)

Let (¥, , ¥y, ) be an element of C°(V; Zy). Then, Yy, (resp. 9y, ) is constant
on Vj (resp. V1) and

/ / Y /
d(wvo’ 1/’Vl)‘/l‘/o - onWmVo - quvmvo

is also constant on V3 N V4. Since 9y, v, is not constant on Vi NV, it follows
that ¢ # 0. Using the fact that H'(V;Zs) ~ H'(Py(R); Zs) =~ Zo, it follows
that ¢ = €f? ). O

Corollary 3.5.5. Assume B is a topological space. Then, a real line bundle
L on a B is trivial if and only if

6%2 =0.
In particular, a real vector bundle E on B is orientable if and only if

Proof. Since a real vector bundle E is orientable if and only if the line
bundle Det(F) is trivializable, the result follows directly from the preceding
proposition combined with Corollary 3.2.9. O






Characteristic classes of
complex vector bundles

In this chapter as in the previous one, all topological spaces are implicitly
assumed to be paracompact.

4.1 Generalities on complex vector bundles

Definition 4.1.1. A complex vector bundle of rank r is the data of a con-
tinuous map
pg: F — Bg

between topological spaces together with structures of complex vector spaces
on each fiber E, = p'(b) (b € Bg) of Pp. These data being such that for
any b € B there is a neighborhood U of b in B and a family (e1,--- ,e,)
of continuous sections of PEp- () pgl(U) — U with the property that

(ex(b'), -+, er(V))) is a basis of py'(b') for any b’ € U.

As seen from the preceding definition, the notion of complex vector
bundle is completely similar to that of real vector bundle. We just have
to replace R-linearity with C-linearity when appropriate. This is why we
will not define in details the vocabulary concerning complex vector bundles,
assuming the reader can adapt easily what has been done for real vector
bundles.

139
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Lemma 4.1.2. Let u : E — FE be a morphism of complex vector bundles.
Denote Er the real vector bundle associated to E and

UR - ER b ER
the morphism of real vector bundles associated to u. Then,
detrug = |det@u|2.

Proof. Let e be an eigenvector of v and denote A the associated eigenvalue.
Choose F such that E = )e(® F and denote p : E — F the associated
projection. Denote p : Ye{ — )e( the multiplication by A and v : F — F the
map p o ujp. Then,

detcu = Adetcv

and
detRuR = detRuR . dethR.

Therefore, an induction argument reduces the problem to the case where
dime E = 1. In this case, if e is a non-zero vector of E and u(e) = Ae, we
have

detcu = .

Since (e, ie) is a basis of Er and the matrix of ug in this basis is
RA =S
SA RA
we have detpug = RA? + IA? = |A\|2. The conclusion follows. O

Corollary 4.1.3. Let E be a complex vector bundle of rank r on B. Then,
the underlying real vector bundle Ey is canonically oriented. If (e1,-- -, e;)
is a continuous local frame of E, then (ey,ie1, - , e, ie,) is a continuous
oriented local frame of Ewr. In particular, the Euler class e%m € H?"(B;7Z)
is well-defined.

Exercise 4.1.4. Denote P,,(C) the complex projective space and U,(C)
the complex universal bundle. Set & = e%n © € H2(P,,(C); Z). Then,

HP,(C)Z)~Z®LESD - ZE™

In particular,
X(P,(C)) =n+1.

Solution. Work as in Exercise 2.5.6. O
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Proposition 4.1.5. Let E be a complex vector bundle of rank r on B. De-
note 7 : P(E) — B the associated complex projective bundle. Let U(E) be
the universal complex line bundle on P(F) and let £ = e%(E) € H3(P(E);Z)
be its Euler class. Then

H(P(E); 7)

is a free H' (B; Z)-module of rank r with
1,662 ... ¢t
as basis.
Proof. Work as in the proof of Proposition 3.1.2. O

Corollary 4.1.6. Let E be a complex vector bundle of rank r on the
paracompact base X. Then, there is a proper map

f:Y—-X
for which the canonical map
[ H(XZ) — H(Y;Z)
is injective and such that
Uy ~Lie -l
with Ly, - -, L. complex line bundles on Y .

Proof. Work as in the proof of Proposition 3.2.1. O

4.2 Chern classes

Definition 4.2.1. Using the notations of Proposition 4.1.5, we define the
Chern classes of E as the classes ¢i(E) € H?(B;Z), -+, c.(E) € H*"(B;Z)
characterized by the relation

g =m"(c1(E)) — &7 =7 (e2(B)) — €724+ (1)1 — (er(E)).
By convention, we extend the preceding definition by setting
coE)=1, c(E)=0 (k>r).

As for Stiefel-Whitney classes, we also define the total Chern class ¢(E) as
the sum

> e(E) € H(B;Z).

k
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Remark 4.2.2. Note that ¢(F) is in fact an element of
H™(B; Z) := U (B; 2)
keN
which is a commutative subalgebra of H'(B;Z).

Proposition 4.2.3. Assume E, F' are complex vector bundles on B of rank
r, s and let f : B' — B be a continuous map. Then,

(a) c(f7H(E)) = f*(c(E));

(b) (E& F) = c(E) — c(F);

(c) er(E) = ef, .
Proof. Work as in Propositions 3.1.4, 3.1.5 and 3.2.3. O
Definition 4.2.4. Let E be complex vector bundle with base B. We denote

E the complex vector bundle obtained from E by changing the C-vector
space structure of each fiber into its conjugate one.

Proposition 4.2.5. Let E be a complex vector bundle with rank r and
base B. Then,
o(E7) = ¢(E) = (—1)"c(E).

Proof. Endowing E with a Hermitian structure, one sees easily that
E*~F

and the first equality follows. To get the second one, we may use the splitting
principle and treat only the case where E is a complex line bundle. In this
case, we have only to show that

Z _ Z
eﬁ— —€gp.

In other words, we have to show that that the canonical orientations o and
o of Er induced by the complex structure of E and E are opposite. This
follows from the fact that if e is a complex local frame of F, then e, ie is a
positively oriented local frame for o and e, —ie is a positively oriented local
frame for o. O

Exercise 4.2.6. With the notations of Exercise 4.1.4, show that
(TP, (C)) = (1 + "

and deduce from this formula that

[ -
Pr(C)
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Solution. The first relation is obtained by working as in Exercise 3.2.17.
From this relation we deduce that

€p,,(C) = Cn(T]P)n((C)) = (Tl + 1)5"

Therefore, using the index theorem for compact manifolds, we get

/ (n+ 1)e" = / er(c) = X(Po(C)) = n + 1.
P, (C) P, (C)

The conclusion follows. O

Proposition 4.2.7. Denote G (C) the complex infinite Grassmannian
of rank r and U »(C) the associated universal complex vector bundle of
rank r. Assume FE is a complex vector bundle of rank r on B. Then, there
is a continuous map f : B — G »(C) such that

E~ f U (C).
Moreover, such a map is unique up to homotopy.
Proof. Work as for Corollary 3.3.14. O

Corollary 4.2.8. Characteristic classes with values in the abelian group
M of complex vector bundles of rank r are in bijection with

H (G oo,r(C); M).

Proposition 4.2.9. The morphism of rings

ZICy,-- ) = H(Goo s (C): 2)
defined by sending Cj; to ¢x(Uso,r(C)) is an isomorphism.
Proof. Work as for Proposition 3.4.7. O
Proposition 4.2.10. The exact sequence of sheaves

0—Zp 25 Cp—Ch— 0
induces an isomorphism
HY(B:Ch) ~ H2(B; ).

By this isomorphism, the class of a complex line bundle L is sent to ¢1(L).
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Proof. Working as in the proof of Proposition 3.5.4, we may assume B =
]P)l(C), L = Ul(C) Set % = {[20,2’1] L 20 7é 0}, ‘/1 = {[20,2’1] A 7é 0}
Define vg : Vj — C and vy : V3 — C by setting
z1 20
Vg = —, v, = —.
20 <1

Clearly, U (C)|v, has a continuous frame given by so defined by

<0

(20, 1] ((1, 21, [zo,zl]) .

Similarly, U1 (C)|y, has a continuous frame given by s; defined by

(20, 1] (('z_‘) 1), [zo,zl]) .

1
Since

S50|vonvy = VoS1|vonvys
the class of L in H(P; (C),C5,(c)) is the image of vg by the coboundary

operator
H°(Vo N Vi; g, () — H' (P1(C); G5, )

of the Mayer-Vietoris sequence associated to the decomposition P (C) =
Vo U Vi. Define Z;o as the kernel of the de Rham differential

d':cl —C%

and
dlog : C%, — ZL,
by setting
df
dlog(f) =

The morphism of exact sequences

247 exp

0=+Z—=Csx —Ci —0

l2i7r lid \Ldlog

1
0—C—Cx - Z..—0
induces the commutative diagram of coboundary operators

H'(P1(C); C%,) == H?(P1(C); Z)

dlogl l2iﬁ

H'(P1(C); £,) =+ H*(P,(C); C)
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We have to show that the image of [L] in H?(P;(C); Z) is a generator. Hence
it is sufficient to show that

/ dlog([L]) = 2im.
P1(C)

To compute dlog([L]), let us proceed as follows. First, the commutative
diagram

H° (Vo NV1;C5) — H' (P1(C); C%,)

dlogl lleg

HO (Vo nVi; 25) — HY (P4 (C); 25

o)

for the coboundary operators of the Mayer-Vietoris sequences of C3, and
Z! | shows that dlog[L] is the image of

d
% cH' (Vo NV 2L)
0

in HY(P;(C); ZL). To compute this image, we will use the soft resolution
0—>Z§O—>Ccl,oi>cgo—>0
of Z1 . We have the commutative diagram with exact rows

0 —T(P1(C);CL) = I(Vo; CL) & T(Vi;CL) = T(Vo N Vi;CL) — 0

! ! !

0 —T(Py(C);C2,) — I(Vo; C2) & T(V4;C) = D(Vo NVA;C) — 0

d
To obtain the image 3 of —2 in T'(P;(C); C2,)/dT(P1(C); CL.), we have first
Vo

d’UO

to find (o, ') € I'(Vp;CL) & T'(V1;CL,) such that ay,ay, — O[TVUQVI =

o
and then to use the relations Gy, = da, By, = da’. Let ¢ be a Co-function
on C which is zero for |z] < 1/4 and 1 for |z| > 3/4. Clearly, we may take

Then

7

_ ’
da|VoﬁV1 - da|VgﬁV1

and these forms have compact supports. Moreover, § is equal to da on
VonVi and 0 on Py (C) \ (Vo N V1). Therefore, denoting D(0,1) the unit
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disk in C, we have

/Pl(c)ﬂ/%da/cdw(z)%)
-/ o dp()Z) = /6 . o)

d
- / &2 _ oin
aD(0,1) #

where the last formula follows from Cauchy’s theorem. O

Proposition 4.2.11. Assume E (resp. F) is a complex vector bundle of
rank r (resp. s) on B. Then,

(EQF)=T,s(ci(E),...,cr(E),c1(F),...,cs(F)).

Proof. Working as in the proof of Proposition 3.2.12, we see that it is suf-
ficient to treat the case r = s = 1. In this case, we have only to prove
that

Cl(E (24 F) = Cl(E) + Cl(F).

This follows easily from the preceding proposition. O

4.3 Chern-Weil construction

In this section, p : F — B will denote a differentiable complex vector bundle
of rank r on the paracompact differential manifold B. As usual, for such a
bundle, C?_(B; E) will denote the space of differentiable p-forms with values
in E (i.e. the differentiable sections of A" T*XC @, E).

A C-linear connection on E is the data of a C-linear operator

V : Co(B; E) — O (B; E)
satisfying Leibnitz rule
v (fs) = (df)s + f(vs)

for any f € Co(B), s € Coo(B; E). Such an operator gives rise to a family
of operators
9" C1(B; E) — C2(B; E)

which is uniquely characterized by the fact that

VP (as) = (da)s + (=1)Pa A (V)



4.3. Chern-Weil construction 147

for any o € C2,(B; E) and any s € C2 (B; E). Let eq,- - , e, be a differen-
tiable frame of E on the open subset U of B. Then,

ks
Ve = E WkjCk
k=1

where w is a 7 X r matrix of differential 1-forms on U. We call w the matriz
of the connection 57 in the local frame ey, -- ,e,. If s is a differentiable
section of E on U, then s may be written in a unique way as

Jj=1
For such an s, we have
ks ks ks
Vs = Z(dsj)ej + Z Z SjWhjek
j=1 j=1k=1
Hence,
ks
(vs); =ds; + ijksk
k=1
Moreover,
ARAVAR
ks ks
= O (dsj+ > wjksk)es)
j=1 k=1
T ks ks T
= ((dwjr)sk —wjr Adsg)e; — (dsj + ijksk) A Zwljel.
j=1k=1 k=1 =1
Therefore,

<

T

(Vl . VOS)]' = Z(dwjk)sk — Wik N dsy — Z(dsl + Zwlksk) A wji

k=1 =1 k=1
T ks ks
= E (dwjk)sk — E E wik N\ WISk
k=1 =1 k=1

T T
= Z (dw]'k + Zwﬂ A wlk> Sk -
k=1 =1

In particular, 7' - 7% : C%(B; E) — C2(B; E) is Coo(E)-linear and hence
comes from a morphism of vector bundles

2
K:E— \T"X“@.E
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whose matrix in the local frame ey, - - , e, is
Q=dw+wAw. *)

The morphism K is called the curvature of the connection 57. Note that
more generally,

VI P (a0 s) = TP ((da)s + (~1)Pa A (7s))
= (=1)P*!(da) A (Vs) + (=1)P(da) A (75)
+(=DPan (v v°s)
=a A K(s).
Let f : B’ — B be a differentiable map and let 57 be a C-linear connec-

tion on E. Clearly, f~!(F) is a differentiable complex bundle on B’. We
denote f~'v7 the C-linear connection on f~'E characterized by the fact

that its matrix with respect to the differentiable frame e; o f,--- ,e,. 0 f of
f1E on f~Y(U) associated to a differentiable frame e;,--- , e, of E on U
is the pull-back by f of the matrix of 7 in e1,--- , e, (i.e. we set

w1y = ffwg).

We leave it to the reader to check that this definition is meaningful. From
this definition and formula (*), it follows easily that, if Q-1 (resp. Qg)
denotes the matrix of the curvature of f=157 (resp. /) in the local frame
e1of,--,eq.of (resp. er, -+ ,e.) of f~1(E) (resp. E), then

Qp1g = f* Q0.

Denote M, (C) the algebra of r x r matrices of complex numbers. An
invariant homogeneous polynomial of degree k on M, (C) is a homogeneous
polynomial map

P: M, (C)—C

of degree k such that
P(T7'AT) = P(A)

for any T € GL,(C) and any A € M,(C). (Examples of such invariant
polynomials are given by the determinant (degree r) or the trace (degree
1)). Let P be an invariant homogeneous polynomial of degree k on M, (C)
and let 7 be a C-linear connection on E. Denote {0y . the matrix of the
curvature of ¥/ in a frame e = (e1,- -, e,) of E on the open subset U of B.
Since C%Y(U; E) is a commutative C-algebra, the expression

P(Qg.e)
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is a well-defined differential form of degree 2k on U. Moreover, since P is
invariant, P(Q ) does not depend on the frame e. It follows that there is
a unique differential form P(K,) characterized by the fact that

P(Kg)jv = P(Qg.)

for any local frame e = (e1,---,e,.) of E. Moreover, by construction, we
have
P(K;g) = f"P(Kg).

Proposition 4.3.1. For any C-linear connection 57 on E and any invariant
homogeneous polynomial P on M, (C),

P(Kg)
is a closed differential form of degree 2k.

Proof. Let us define the matrix P’(A) by setting

. dP(A
P'(A), = 8A(k-)'
J

Then, for any H € M,.(C), we have

LyP(A) =) Y 8;/1(;1_) Hy;j

j=1k=1

= tr(P'(A)H)

where Lpg denotes the derivative in the direction H. The fact that P is
invariant entails that P’(A) commutes with A. As a matter of fact, let
H € M,(C). From the relation

P(A(I+tH))=P((I+tH)A)
which holds for any t € R, we deduce by derivation that
tr(P'(A)AH) = tr(P'(A)HA) = tr(AP'(A)H).
Since H is arbitrary, we see that
P'(A)A = AP'(A).

Let w (resp. 2) be the matrix (resp. the curvature matrix) of the connection
v with respect to a differentiable frame e, - ,e, of E on U. A simple
computation shows that

dP(Q) = Z Z P/(Q) 5 AdSu; = tr(P'(Q) A dS).
j=1k=1
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Since
Q=dw+wAw,
we have
dQA=dwANw —wAdw
=QANw—-—wAQ (Bianchy identity).
Therefore,

dP(Q) =tr(P'(Q AQAw) —tr(P'(Q) Aw A Q)
=tr(QA P (Q) Aw) — tr(P'(2) Aw A Q)
=0.

O

Proposition 4.3.2. Let P be an invariant homogeneous polynomial on
M, (C) and let 79 and 71 be two C-linear connections on E. Then, the
closed differential forms P(K,) and P(K,) determine the same de Rham
cohomology class.

Proof. Consider the projection
pp:Rx B — B

and the two connections pglv(), pglvl on pglE. Denotet : R x B — R
the first projection and set

v = (1= t)(p5 Vo) + tpz V1).
Clearly, v/ is a connection on pglE. Denote
iop: B— R x B, i1:B—RxB
the two embeddings defined by setting
io(z) = (0,2), ir(z) = (1,2).

Clearly, iy 'p3'(F) ~ E and i} 'pz'(F) ~ E. Moreover, by construction
iy 'V = Vo and i; 'y = /1. Therefore,

P(KVU) = P(Kio’lv) = iSP(Kv),

P(Kg,) = P(Kz';lv) =i P(Kg).



4.3. Chern-Weil construction 151

Using the isomorphism between de Rham cohomology and the usual coho-
mology together with the homotopy theorem, we see that the maps

ig = Hyr(R x B; C) — Hyp(B; C)

ip = Hyr(R x B; C) — Hyr(B; C)
are equal. The conclusion follows directly. O
Proposition 4.3.3. There is at least one C-linear connection on E.

Proof. This is clear if E is trivializable. In general, we may find a locally
finite covering U of B by open subsets U such that Ejy is trivializable. For
each U € U, fix a connection 7y on Ejy. Let (or)vey be a partition of
unity subordinated to Y. Then,

V= Z Yu\Vu
ueU
is a well-defined C-linear connection on FE. O

Corollary 4.3.4. There is a canonical way to associate to any invariant
polynomial on M,.(C) a characteristic class for differentiable complex vector
bundles of rank r with values in C.

Proof. Write P = Py + Py + --- + P, where each P; is a homogeneous
invariant polynomial of degree [. Let E be a differentiable complex vector
bundle. By Proposition 4.3.3, there is at least one C-linear connection 17 on
E. By Proposition 4.3.1, P(Ky) is a well-defined closed differential form
of degree 2l. Moreover, Proposition 4.3.2 shows that the cohomology class
v (E) € H*(B;C)
of Pi(K ) depends only on E. Set
vp(E) = v (E) + -+ 7p,(E) € HY(B; C).
Since we have clearly
v (fT'E) = f*yp(E)
for any differentiable map f : B’ — B, the conclusion follows. O

Proposition 4.3.5. For any differentiable complex vector bundle E of rank
r on B, we have

o(E) = e, (E)
where C,. is the invariant polynomial of A € M,.(C) defined by setting

A
Cr(A) = det(I + 5—).
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Proof. (a) Assume first » = 1. Since B is paracompact and has finite
dimension, it is possible to find a differentiable map

f:B—-P,(C)

such that E ~ f~1U,(C). It follows that we have only to treat the case of
U, (C) on P, (C). Moreover, since the restriction map

H' (P, (C); C) — H'(P1(C); C)

is injective, we can even assume n = 1. In this case, we have to show that
(K]
v

(s

if 7 is a connection on Uy (C), then ¢; (U, (C)) is represented by or in
other words that

Ko = 2im.
P1(C)

As usual, set

Vo = {[z0, 21] : 20 # 0}, Vi = {[z0,21] : 21 # 0}

and define the coordinates vy : Vy — C and vy : V3 — C by setting
z z

vo([z0,21)) = =, wi([z0,21]) = =

20 21

We know that Uy |y, has a frame so defined by setting

<0

sollana]) = (1, 2). o, 1))

and that similarly, Uy |y, has a frame s; defined by setting

s1(Ga ) = (2.1, o).

Z1

A connection 57 on U;(C) is thus characterized by the differential forms
wo € CL (Vo; U1 (C)), w1 € CL (V4;U1(C)) defined by the relations
V80 = wWpSo, V81 = w1S1.
Moreover, since
S0 = VpS1
on Vo NV, we have
Vso = (dvo)sl + vy V S1
and hence
(d’Uo)

wo = —erl.
Vo
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Conversely, the two 1-forms wy, wy are given and satisfy the preceding gluing
condition, we can use them to construct a unique connection 57 on U;(C).
Let ¢ be a differentiable function on C such that

1 3
p=0 on D(O’Z)’ p=1 on ED(O’Z)'
Set
d’UO
wo = ¢(vo)—
0]
on Vy and
1 dv
= (1)t
U1 U1
on V. On Vo N Vi, we have
1
v = —,
0]
hence,
1
d’Ul = 7—2d’00
Yo
and
don _ _dw
U1 o Vo
It follows that
d’UO
Wy = — —+ w1
0]

on VpNV; and that the forms wg, wy define a connection 7 on Uy (C). For
this connection, we have

Q():dwO ero/\wo

()

on Vy. Since €2y has compact support in Vy, K corresponds to the form
obtained by extending €y by 0 outside V{. Therefore,

dz
Kv:/ Qo/d(w(z)—)
P1(C) Vo C <
dz
Leet)
D(0,1) z
dz
- [ e
8D(0,1) z

d
- / Y2 _ oin
aD(0,1) #
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and the conclusion follows.
(b) In the general case, it is easy to find a differentiable map

f:B =B
such that f'E~L; ® - -® L, with Ly, -, L, of rank 1 and for which

f*:H(B;C) - H(B;C)

is injective. Let </1,:--,%/, be connections on Li,---,L, and denote
V =V1® - ® v, the associated direct sum connection on f~!E. In the
local frame ey, - - - , e, of f~1(E) corresponding to local frames ey, - - , e, of
Ly,---, Ly, the curvature matrix ) has the diagonal form
M
Q.

where (2 is the curvature form of 7, with respect to eg. Therefore,

Q Q Q

det(IJrf):(IJrfl)"'(IJr —)
2T 2T 2T

and
e, (fTHE)) = ve,(L1) -+ voy (Ln).-
It follows from (a) that
vo, (fTHE) = o(L1) - o(Ly) = e(f 71 (E)).

Hence
[ ye.(B) = [fe(E)

and the conclusion follows. O

Corollary 4.3.6. For any A € M, (C), denote o1(A),---,0,(A) the com-
plex numbers defined by setting

det(I +tA) = 1 +toy(A) + -+ 7o, (A).

Then, 01(A),- - ,0.(A) are invariant homogeneous polynomials of degree
1

,---,7 and we have

Yoo (E) = 2imcq (E)

Yo, (E) = (2im) ¢, (E)

for any differentiable complex vector bundle E of rank r on B.
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Proof. This follows directly from the equality

CT(A>1+%+-~+E’2’;%Z.

O

Corollary 4.3.7. There is a one to one correspondence between invariant
polynomials on M,.(C) and characteristic classes for complex vector bundles
of rank r with coefficients in C.

Proof. We know that any characteristic class v for complex vector bundles
of rank r may be written in a unique way as a polynomial Q(c1, - ,¢,) in
Chern classes. It follows that

Y= o1 or .
Q<2m"“’(2m)r>

Conversely, let P be an invariant polynomial on M, (C). We know that for
any matrix A € M,(C) there is T' € GL,(C) such that

M O - 0
BoTlAT— | ¥ M
0
* *  Ap
For
€
62
S(e) =

the matrix

C(e) = S(e)BS(e)~*

is such that
Cjk(e) = ejikBjk.

It follows that
612)% C]‘k(e) = >\k5jk-

But since P is invariant, we have

P(A) = P(B) = P(C(e)) = lim P(C(e)) = P(diag(A1, - , Ar)).

e—0
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It follows that P(A) is a symmetric polynomial in the eigenvalues Ay, - -, A,
of A. Therefore, there is a unique polynomial Q(S1, - - ,S;) such that

P(A) = Q(Jl(A)a e ,JT(A)),
It follows that
vp = Q2imey, - -+, (2im)"ey).

Hence, the conclusion. O

4.4 Chern character

Definition 4.4.1. Let X be a topological space and let F be an abelian
sheaf. Hereafter, we denote
H(X;F)

the completion of the topological abelian group obtained by endowing the
graded abelian group
H(X; F)

with the topology for which

Purx:F) (1eN)

k>l

is a basis of neighborhoods of 0. Of course, forgetting the topologies, we
have
H(X; F) ~ [ 5 (X 7).
kEN

Remark 4.4.2. Consider a formal series

[ee) (o)
Z Z k Ky
P(Il,"' ;:ET): akl__.erll...:rr

k1=0 k=0

with coefficients in a ring with unit A. Assume P(x1,- - ,x,) is symmetric
(i.e. such that
P(xﬂla"' axﬂr) = P(gjla"' axT)

for any permutation g of 1,---,7). Then, the associated homogeneous
polynomials

Po(xy,- ,x,) = Z apz® (m >0).

|k|=m
are also symmetric. As was explained in Remark 3.2.4 all these polynomials
may be written in a unique way as

Qm(Sr,l(xla T axr)a T aST,r(xla T ;xr))-
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This allows us to associate to P and to any complex vector bundle E of
rank 7 on X a class cp(F) € H (X; A) by setting

cp(B) =) Qu(ci(E), - ¢ (E)).
m=0

Note that if f : Y — X is a continuous map, then it follows from the
preceding construction that

cp(fTE) = frep(E).

Definition 4.4.3. The class ch(E) € H'(X;Q) given by the construction
above for A = Q and

P(xla"' 5$T> :6I1+"'+emra
is called the Chern character of E.

Proposition 4.4.4. Let X be a topological space. Assume F and F' are
complex vector bundles on X. Then,

(a) ch(E @& F) = ch(FE) + ch(F);
(b) ch(E ® F) = ch(FE) — ch(F).

Proof. This follows directly from the splitting principle and the definition
of the Chern character. O

Proposition 4.4.5. There is a unique extension
ch: KP(Vecte(B)) — H'(B; Z)
of the usual Chern character
ch : Vecte(B) — H(B; Z)
which is invariant by isomorphism and such that
(i) for any E* in KP(Vectc(B)) we have

ch(E"[1])

= —ch(E")
(ii) for any distinguished triangle
E—-F-G%
of KP(Vectc(B)), we have

ch(F") = ch(E") 4 ch(G").
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This extension is given by the formula

ch(E') = (=1)" ch(E").

keZ

Proof. Uniqueness. Let E™ be an object of K°(Vectc(B)) and let us prove
that

ch(E) =) (~1)"ch(E").

keZ

We know that there are integers a, b such that E¥ = 0 if k & [a,b]. Let us
proceed by increasing induction on b — a. If b — a = 0, the result follows
directly from (i) and the fact that ch extends the usual Chern character.
Assume now that b — a > 0. Remark that E" is isomorphic to the mapping
cone of .

E%—a—1] % 0> E

where 0”%E" denotes the complex
0— E™ ... B0
with E4*L in degree a + 1. It follows from (i) and (ii) that
ch(c”*E") = (=1)*"! ch(E*) + ch(E").
Hence, by the induction hypothesis

ch(E) = (=1)"ch(E*) + > (=1)*ch(E*) =Y (~1)* ch(E").

k>a+1 kez

Existence. Let us define ch(E") as Y, .5 (—1)F ch(E¥). Assume first
that E" ~ 0 in K?(Vectc(B)). As is well-known, this means that E- is split
exact. Hence, if Z* denotes the kernel of d* : E¥ — E**! we have

Ek ~ Zk @ Zk+l
and

ch(E") =) (—=1)* ch(E*) = > (=1)* ch(Z%) = Y “(~=1)F ! ch(2*F1) = 0.

kez kez kez
Assume now that M (u") is the mapping cone of
u B — F.

By construction,
M*w) = EFl o FF.
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Hence,
ch(M (u)) =Y (=1)* (ch(E**) + ch(F™*))
kEZ
= ch(F") — ch(E").

Combining the two preceding results, we see that if
u B — F°

is an isomorphism in ®(Vectc(B)), then ch(E") = ch(F"). It follows that
ch is invariant by isomorphism and that (ii) is satisfied. O

Corollary 4.4.6. The Chern character for complexes has the following
properties:

(i) if E* and F" are objects of K”(Vectc(B)), then
ch(E" ® F") = ch(E") — ch(F");

(ii) ifb: B’ — B is a continuous map and E" is an object of k® (Vectc(B)),
then
ch(f~'E") = f* ch(E").
Proof. This follows at once from the definition of ch for complexes and the

similar properties of the usual Chern character. As a matter of fact, for (i),
we have
(EoF)=(PFEar!
lez
and

ch(E'@F) =Y (~=1)"> ch(E') — ch(F*¥™)

keZ leZ

=3 > (=D ch(E") — (=1)* " ch(F*)

keEZ I€Z
= ch(E") — ch(F").
As for (ii), we have
(fHE)E = fHER)
and hence

ch(fE) = (1) ch(f~'E¥)

keZ

= (=1)*f* ch(E¥)

keZ

= f* ch(E).
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O

Definition 4.4.7. The Todd class of a complex vector bundle E with base
X is the class td(E) € H (X; Q) given by the construction of Remark 4.4.2
for A=Q and

Z1 Ly
P(xl,...,xr): 1767x1...1767mr'

Remark 4.4.8. It follows directly from the preceding definition that
td(E @ F) =td(E) — td(F)
if £ and F are complex vector bundles on the same base.

Proposition 4.4.9. Let E be a complex vector bundle of rank r on the
topological space X. Then,

ch(/\ E) = e (E)/ td(E").

Proof. By the splitting principle, we may assume that £ = L1 & --- & L,
where Lq,---, L, are line bundles. Set 1 = ¢1(L1), -,z = c1(L,). We

have
NE=(A\L)& o\ L)
Hence,
ch(/\E) = ch(/\Ll) . ~ch(/\LT) =1—-€")---(1L—e").
On the other hand,
o(E¥) =c(Ly)--c(ly) =1 —z1) - (1 —mp)

and

td(E*) = td(L}) - -td(L7) = — L —or

=T T e
It follows that

e (E7) = (=a1) - ().
Hence,

e (B*)/td(E*) =1 —¢e") - (1 —€")

and the conclusion follows. O
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4.5 Local chern character

Definition 4.5.1. Let E° be an object of KP(Vectc(B)) and let S be a
closed subset of B. We say that E° is supported by S if EB\S ~ 0 in

KP (Vecte(B \ S)) and denote
K2 (Vectc(B))

the subcategory of KP(Vectc(B)) formed by the complexes which are sup-
ported by S.

Assume the object E of K?(Vectc(B)) is supported by S. Then,
ch(E")|p\s = ch(E|p\g) =0
in H'(B\ S;Z). From the exact sequence
Hy(B;z) & H(B;2) & H(B\ S;2)

it follows that ch(E") is the image of a class in ITI'S(B; 7). Although such a
class is in general not unique, we shall prove the following result (cf [17]).

Proposition 4.5.2. There is a unique way to define
chs : K§(Vecte(B)) — Hg(B; Z)
for any topological space B and any closed subset S of B in such a way that
(i) if E* and F" are isomorphic objects of IC%(Vectc(B)), then

chs(E") = chg(F);

(ii) for any E" in K%(Vectc(B)) we have
i(chg(E")) =ch E;
(iii) ifb: B’ — B is a continuous map and E is an object of K% (Vectc(B))

then
chg (fE") = f* chs(E)

for any closed subset S" of B' such that f~*(S) C §'.
Moreover,

(iv) for any E* € K% (Vectc(B)) we have

chs(E'[1]) = — chs(E);
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(v) for any distinguished triangle
of K& (Vectc(B)) we have

chg(F") = chg(E") 4 chg(G).

Proof. Uniqueness. By Lemma 4.5.3 below, we know that to any
E € KE2(Vectc(B))
is canonically associated a continuous map
s:B— B,
a closed subset S and an object E of ICbg(Vect@(B)) such that
(i) s7'(5) C S;
(i) s7'E ~ E';

(iii) the map

is injective.
It follows that
chg(E") = Chs(silEJ =s* Chg(E“)
and since chg(E") is the unique cohomology class such that

i(chg(E")) = eh(E),

we get the conclusion.
Existence. Using the notations introduced above, we define chg(E") by
setting
chg(E) = s* Chg(E')

where chg(E") is characterized by the relation
i(chg(E")) = ch(E").

Note that from this definition it follows easily that chg(E") = 0if E" is exact.
As a matter of fact, by construction of S we have in this case s(B) NS = 0.
Let Ey, E; be two objects of~lcg1 (Vecte(By)) and K3, (Vectc(Bz)). De-
note By, S1, By and Bs, S, E;, the objects associated to E] and E; by
Lemma 4.5.3 and let s1 : By — Bl, So 1 By — Bg be the canonical maps.
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(a) Assume first that b : By — By is a continuous map, that E, ~ b~ E;
in C°(Vectc(Bz)) and that b=1(S;) C Sy and let us prove that

b* chg, (E1) = chg, (E;).
By construction of By and B;, we get a continuous map
b: By — B
such that bo S92 = s1 0 b and an isomorphism
Ey,~b"'E;

in C°(Vecte(By)). From the definitions of Sy and Sy, it follows also that

This entails that
ip chg, (E;) = b*iy chg (E;)
and hence that
chg2 (Eq) =b" chg1 (EY).
Therefore,
chs, (E2) = s3 chg, (E;) = s5b* chg (E})
=b"s] chg1 (Ey) =0b" chsl(Ei)
and the conclusion follows.
Let E" € K2(Vectc(B)). Applying the result obtained above for By =

By, b=id, E; = E°, we see that chg(E") depends only on the isomorphy
class of E" in ¢?(Vectc(B)). By a similar reasoning, we see also that

chs(E'[1]) = — chs(E").

(b) Assume now that By = By and S; = S3. Denoting B and S these
spaces, let us prove that

chg(E; & Ej3) = chg(E7) + chg(Ey).
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Set C = By xg Bs. Denote t : B — C the map deduced from from s; and
s9 and p1 C — By, ps:C — 32 the two projections. Set F =p; E 1
Fy=py By and T = py1(S1) Up; 1(Sy). Thanks to Lemma 4.5.5, we know
that
H.(C;Z) — H (C;Z)
is injective. Since
i(chr(F; @ F;)) = ch(F; @ F)
= ch(F 1)+ ch(F, 5)
= i(chr (Fy) + chr(F3))

it follows that
ChT( 1 & F, ) —ChT( )+ChT( )

Using the fact that ¢~ 1(T) = s71(S1) N's; *(S2) € S and the isomorphisms
till:ﬁl' ~ SI1E~'1 ~ F, F ~ sy E2 E,
we get that
chs(E; @ Ey) = t* chyp(F; @ E)
= chg(E}) + chs(E3).

(c) With the same notations as in (b), let us now prove that if M (u")
is the mapping cone of the morphism

of CE(Vecte(B)) then chg(M (u)) = chg(E;) — chg(E;). To this end,
consider the complex vector bundle p : H — B whose fiber at b € B is

Hom cP (Vecte) (Eba Fb)a

a continuous local frame being obtained by fixing continuous local frames
for each E* and each F* and associating to a morphism v" the components
of the matrices of the v¥’s with respect to the fixed frames. Set F; = p~1E;
and F;, = p~!E;. By construction, there is a canonical morphism

v B — Fy
and we can associate to ' : £} — E; a section

w . B—H
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making the diagram

commutative. It follows that
o PM(v) =~ M (uw)

in C°(Vectc(B)) and hence that

chs(M (w')) = 0% chs (M (v)).

Since o, and oy are clearly homotopic, we see that

chg(M (u)) = chg(M (0))

= chs(E;[-1] & E3)
= chs(E) — chs(Ej).

(d) When u' is an isomorphism in iC°(Vectc(B)), M (u’) is exact and

we get
chg(E3) = chs(E}).

It follows that for any distinguished triangle
E; — Ey — Ey 4

of KP(Vectc(B)), we have

Chs(Eé) = Chs(E'Q) — Chs(Ei)

and this completes the proof.

O

Lemma 4.5.3. Let S be a closed subset of the topological space B. Then,

to any object E* of C5(Vectc(B)) one can associate canonically

(i) a continuous projection p : B — B with a canonical section s : B — B;

(ii) a closed subset S of B such that s~'(S) C S and for which the canon-

ical map

is injective;

i Hy(B;Q) — H(B;Q)
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(iii) an object E' ofCE(Vect@(B)) such that
sTUE)~F.

Proof. The case S = B being obvious, we shall assume S # B.

(a) Construction of B. Let v. = (1)iez be a family of natural integers
for which {l € Z : v; # 0} is finite and let V be a finite dimensional complex
vector space. By a flag of nationality v. of V', we mean an increasing family
V. = (V1)i1ez of complex vector subspaces of V such that

dim V41 =dim V) + 4.

Generalizing what has been done for complex Grassmannians, it is easy
to see that the set Fl, (V) of flags of nationality v. of V has a canonical
structure of differential manifold. Working as in the construction of the
projective bundle associated to a complex vector bundle, we see more gen-
erally that any complex vector bundle £ — B gives rise to the flag bundle
Fl, (E) — B.

In the special case where

E = ®pezE*
and
V. = (I"k El)lez

the flag bundle Fl, (E) — B has a canonical section given by
b = El,b

where
E = ®p B

for any | € Z. Let us define B as the closed subset of Fl, (E) formed by
flags F. such that
E_1p CF CEp

forany l € Z if F. € F1, (E"),. We denote p : B — B the map induced by
the canonical projection Fl, (E) — B.

(b) Construction of E” and S. Denote F} the complex vector bundle on
B whose fiber at F. € B is F. By construction,

Fl C FlJrl; pilEl C p71E1+1, pilElfl C Fl C pilEl+1

for any [ € Z. Set
EF = Fk/pilEkfl.
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Clearly, E¥isa complex vector bundle of rank v on B. Denote

d* . BF . B
the morphism of complex vector bundles deduced from the inclusions F, C
Fri, pilEkfl C pilEk. Since

Fy Cp ' B

we have d*1odF =0 and E" = (Ek, Jk)kez is a complex of complex vector
bundles on B. We denote S the support of E in B.

(c) Construction of s. Let us define s : B — B as the map which
associates to any b € B the flag F. € Fl, (E); defined by setting

F = {QZ S @ Ef X1 = dl:Cl}.
E<i+1

One checks easily that s is continuous and that
sT\E ~FE

in ¢?(Vectc(B)). In particular, we see that the support of E" is s7(S) and

hence that s71(S) C S.
(d) Construction of the sequence (A)kez if S # B. Since S # B, the

complex E is exact at some point b of B. It follows that there is a unique

sequence A. = (Ag)kez of natural numbers such that
VL = A\, + >\k+1-

As a matter of fact, if Zg is the kernel of d~’g : E~'§ — Eg“, we have
G R |
By ~ 77 @ ZE

and we may take A\, = dim Zg The existence follows. As for the uniqueness,
it is sufficient to note that

A\ = Z(il)k7l+1yk'

k<l

() Characterization of B\ S if S # B. Let us prove that a flag F. € B
above b € B is not in S if and only if

dim(Fy, N Ekyb/Ekfl,b) = A *)

for all k € Z. To this end, recall that the fiber of E at F. is isomorphic to
the complex

v = Fy_1/Ex—2p — Fi/Ex_1p— Fry1/Exp — - -
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the k-cocycles of which are given by
Zf," =FN Ek,b/Ekfl,b'

Hence, if E" is exact at F., (¥) follows from the construction of \. in (a). Con-
versely, assume (*) holds for all k € Z and denote Bf. the k-coboundaries
of E% . The exact sequence

0— Zf;l — E;ﬁl — B;. — 0
shows that
dim BY, = dimEf{l — dime{l =Vk—1— Ak—1 = Ak

It follows that dim B, = dim Z% and hence that B, = Zk .

(f) Cohomology of B\ S if S # B. Recall that if F is an n-dimensional
complex vector bundle on B and [ is an integer such that 0 <[ < n, Then
G(E) denotes the Grassmannian bundle whose fiber at b € B is the set
of complex vector subspaces of dimension [ of E};. Denote G the fibered
product of the Grassmannian bundles G, (E*) (k € Z). For any flag F. of
B\ S above b and any k € Z, part (e) shows that

(FrNEkp)/Er—1p
is Ag-dimensional. Since
Enp/Ex_1p ~ E*
this gives us a continuous map
f:B\S—G.

We shall prove that this map is a fiber bundle whose fibers are isomorphic
to C* with d = Y, ., A7. This will entail that

£ H(G;Q) — H(B\ S;Q)

is an isomorphism.

For any k € Z, let Lj be an element of G, (E¥) above b € B. Denote
L. the element of G associated to the family (L)kgez. A flag F. of B above
b belongs to f~1(L.) if and only if the image of

FrNEgs/Er—1p
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in E* is equal to Ly, for any k € Z. Assume F} is known for [ > k + 1, then
Fj, may be chosen arbitrarily between the subspaces of dimension ), , v
of Fj41 N Ek41,p such that

FrNEgy=Er_1p® L.

These subspaces are in bijection with the subspaces G}, of dimension vy —
>\k = >\k+1 of
Frt1N Egs10/FEr—16® Li

such that G, N Ek,b/Ekfl,b @ L = 0. Since
dim(Fr41 N Ext10/Ert1,6) = Mol
and
dim(Ekyb/Ekab &) Lk) =V — >\k = >\k+1a

we have
dim(Fk+1 n Ek+1yb/Ekflyb &b Lk> = Aet1 + Vg — A\ = 2Ag41-

It follows that G may be chosen arbitrarily among the supplementary sub-
spaces of a fixed Ag41 dimensional subspace in a space of dimension 2Ag4 1.
Thanks to Lemma 4.5.4, these subspaces are in bijection with CH+1. The
conclusion follows by decreasing induction on k.

Now, consider the continuous map

g:G—B\S
defined by sending an element L. of G above b € B to the flag
(E1—16 @ Ly ® Lig1)iez-
By construction,
fog=idg.

Therefore,

g H(B\S;Q) — H(G;Q)
is the inverse of

[T H(G;Q) — H (B S;Q).

(g) Injectivity of i. A long exact sequence of cohomology shows that the
canonical morphism

i: Hy(B;Q) — H'(B; Q)
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is injective, if the canonical morphism
JH(B;Q) — H(B\ 5:Q)
associated to the inclusion j : B \ S — Bis surjective. Set

G =[] Gu.(E*F & B
keZ

and denote
f':B—q&
the continuous map which sends a flag F. of By, to the element
(Fr/Ex—1,p)kez
of G}. Clearly, f’ o jo g is the map
h:G—G

which sends an element L. € Gy to the element

(Lk ® Li+1)kez

of G}. Since

h* =g o(j) o (f)
and since g* is an isomorphism, it is sufficient to show that h* is surjective.
Denote

Pk : G— GAk(Ek)

the canonical projection and T} the tautological bundle on Gy, (E*). Re-
peated applications of the Leray-Hirsch theorem show that

H(G;: Q)
is a free H'(B; Q)-module generated by the pjc;(T%). Denote
PG — G, (E* @ EFY

the canonical projection and 7}, the tautological bundle on G, (E* & EF+1).
Clearly, we have

(Pl o ) (T}) ~ pi " Tr © Py Thora-
Therefore,

(h" o (p)")(c.(Tx)) = pre-(Tk) = Pryrc(Tetr)-
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It follows that
Prc-(Tk) = Pryac.(Ths1)
and its inverse both belong to the image of h*. Hence, proceeding by de-

creasing induction on k, we see that pjc.(Ty) € Imh* for all k € Z. This
entails that Imh* = H'(G; Q) and the conclusion follows. O

Lemma 4.5.4. Let E, F be two finite dimensional complex vector spaces
and set G = E@ F. Then, the vector subspace H of G such that E&G H = G
are canonically in bijection with the complex vector space

Hom (F, E).
whose dimension is dim F - dim F'.

Proof. Let pg : G — E and pr : G — F be the two projections associated
to the decomposition G = E' @ F. For any vector subspace H of G such
that £ & H = (G, the linear map

prig:H—F
is bijective. Denote ¢ its inverse and set hy = pg o q. By construction,
q(z) = (hu(z),x) and H={(hg(x),z):x € F}.
Now, let h € Hom (F, E') and set
H;, ={(h(x),z):z € F}.

Clearly, E & H, = G and one checks easily that the maps H — hyg and
h +— Hj, are reciprocal bijections. O

Lemma 4.5.5. Let Si, S2 be two closed subsets of B and let E;, E5 be
two bounded complexes supported respectively by S and Sy. Denote

ql:él_)Ba SI:B_>B1; gl; El
and
qQ:BQéBa SQ:B_>B2; SQ; E2

the objects associated to E; and E; by Lemma 4.5.3. Set C = Bl X B BQ
and denote p; : C — Bi, po : C — By the two projections. Then the
canonical morphism

H7(C;Q) — H(C;Q)
is injective if T' is equal to one of the closed subsets

P (S, py(S2), prt(S1) Ny (Se), pit(S1) Upyt(Se).
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Proof. Thanks to Lemma 4.5.6, we have the following (horizontal) exact
sequence of (vertical) complexes

0 0

0

N T AR |
0 = g (By\5y) (B1 X B2\ §2:Q) — H'(By x By \ 5210 —— H'(B1\ 51 x
Ta TB T

0 ——3Hy 5 (B1x B2iQ) ——— W (By X ByiQ) ———» ' (By \ &

0 —> H‘gl(él;@) ®H‘§2(Bz;@) — S H (B Q) ®H«_2(BQ;Q) — H (By \ $1;Q) ®H‘§2(32;@) —0

T 1

0

—

°—

where cartesian products (resp. tensor products) are to be understood over
B (resp. H'(B;Q)). The third (vertical) complex being exact, the snake’s
Lemma combined with the fact that ( is surjective shows that « is also
surjective. Combining this result with the long exact sequence associated
with the distinguished triangle

Rrglxgz(él x B2;Q) — RFS‘IXBZ(BI X Ba; Q) — RT5, « 550\ 55 (By x Bz \ §2;0) *5
we get that
Hy g, (Bix By;Q) — Hy | 5 (B1 x By;Q)

is injective. Since 7y is also injective, we have established the result for
T =5, x8 and T = 51 X By. Since 8 and d o 3 are both surjective we also
get the result for T'= B; x Sy and T = (S1 x Bg) U (By x S). O

Lemma 4.5.6. Let E° be a bounded complex supported by the closed
subset S of B. Let q : B — B and S be as in Lemma 4.5.3. Then,

(i) H(B\ S;Q) is a finite free H (B; Q)-module;
(ii) for any continuous map b : C — B, we have the canonical morphism
H (B\ S;Q) @y (pg) H(C;Q) = H(B\ S x5 C; Q).
Proof. (i) Using the notions introduced in Lemma 4.5.3, we have
H(B\5:Q) ~H(G;Q)

and the conclusion follows from Leray-Hirsch theorem.
(ii) Working as in part (c) of this same lemma, we see that

fXBidc:B\gXBCﬂGXBC
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induces an isomorphism
H (G x C;Q) ~H (B\ S x5 C;Q)
and the conclusion follows by applying once more Leray-Hirsch theorem. [

Proposition 4.5.7. If E; and E; are complexes of complex vector bundles
on B with support respectively in S1 and Sy then E; ® E; has a support in
Sl n SQ and

Chslﬁsz (El ®E2> = Chsl (E1> ~ Chsz (E2>

Proof. Let us use the notations of Lemma 4.5.5. Denote ¢ : B — C' the map
associated to the canonical maps s; : B — By, s2 : B — By and set

Fi=pi By, Fy=py'Ey Ti=pi's, Th=py'S.
Clearly, F' 1 and FQ' have support respectively in T} and T, and Fl' ®Z52' has
support in 77 N7T5. Since
E,=t'F,, Ey=t"'F,
and
S1MN Sy D til(Tl n TQ)
it follows that
chs, s, (B; ® By) = t* chy, o, (F] @ F5).
By Lemma 4.5.5, we know that the canonical map
i H'~10T2(C;Q) — H(C;Q)
is injective. Since
i(chy, g, (F] @ 1)) = ch(F] @ F)
=ch Fi — ch 152'
= i(chr, (Fy) — chr, (F3))
we get that
ch, o, (F1 ® F3) = chry (F7) — chr, (F5)
and the conclusion follows since

ChSl (El) =t Cth (Fl)

and
chg, (E2) =t chr, (F2)
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4.6 Extension to coherent analytic sheaves

Let X be a topological space and let R be a sheaf of ring on X. Recall that
R is coherent if the kernel of any morphism of the type
Riy = Rjy (U open subset of X)

is locally of finite type. In this case, a R-module F is coherent if and only
if it admits locally presentations of the form

RPY — RPO — F — 0.

Moreover, these sheaves form an abelian category denoted Coh(R). When
X (resp. M) is a complex (resp. real) analytic manifold, Ox (resp. Ap) is
a coherent sheaf of rings and one sets for short

Coh(X) = Coh(Ox) (resp. Coh(M) = Coh(Axps) )

and calls coherent analytic sheaves the objects of this category. Note that
among coherent analytic sheaves on X (resp. M), one finds the locally free
Ox-modules (resp. Ax-modules). They correspond to the sheaves of com-
plex (resp. real) analytic sections of complex (resp. real) analytic complex
vector bundles on X and form an additive subcategory of Coh(X) (resp.
Coh(M)) which will be denoted Bnd(X) (resp. Bnd(M)).

Although we will not review in details the theory of coherent analytic
sheaves here, we will feel free to use its main results without proof since the
interested reader can find them in standard texts (see e.g. [12, 13]).

Definition 4.6.1. Let M be a real analytic manifold and let .S be a closed
subset of M. We denote K2(Bnd(M)) (resp. DZ(Coh(M))) the full tri-
angulated subcategory of ®(Bnd(M)) (resp. DP(Coh(M))) formed by the
complexes which are exact on M \ S.

Lemma 4.6.2. Assume M is a compact real analytic manifold. Then,

(a) For any F € C"(Coh(M)) there is L € Cc(Bnd(M)) and a quasi-
isomorphism

u & —F.
(b) Any exact sequence
028 —-...-E&1=0

with EP, ..., £ in Bnd(M) splits.
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(c¢) For any closed subset S of M, the canonical inclusion
Bnd(M) — Coh(M)
induces the equivalence of triangulated categories

K2 (Bnd(M)) — DY (Coh(M)).

Proof. (a) As is well known (see e.g. [18, Corollary 1.7.8]), it is sufficient to
prove that:

(i) For any coherent analytic sheaf F on M, there is an epimorphism
E—-»F
with £ € Bnd(M).
(ii) There is an integer n such that for any exact sequence
0—-& —&i1—...—&
of Coh(M) with €,_1, ..., & in Bnd(M) we have &, € Bnd(M).

Property (i) may be established as follows. Let F be a coherent analytic
sheaf on M. Since M has a complex neighborhood which is a Stein manifold,
Cartan’s theorem A shows that F is generated by its global sections. Using
the compactness of M and the fact that F is locally of finite type, one finds
global sections s1, ..., sy of F inducing an epimorphism

Al — F.

It follows that any object of Coh(M) is a quotient of an object of Bnd(M).
Let us now show that property (ii) holds with n equal to the dimension
of M. Let
0—-& —&1—...—&

be an exact sequence of Coh(M) with &,_1, ..., & in Bnd(M). Denote
F the cokernel of the last morphism. The global homological dimension of
A being equal to n, the flat dimension of F is not greater than n. Since
En—1, ..., & are flat Ap;-modules, it follows that &, is also flat. Applying
Nakayama’s lemma, we see that &, is locally free and hence belongs to
Bnd(M) as expected.
(b) Let
08 —=E-E"-0 (*)
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be an exact sequence with £ and £ in Bnd(M). Since £ is locally free,
we have

RHom 4 (E",&") ~Hom 4 (£",E").

Moreover, Hom 4, (£",£’) being a coherent analytic sheaf, Cartan’s theo-
rem B shows that

RI(M;Hom 4, (£",€")) ~T(M;Hom 4, (£",E")).

Therefore
RHom 4, (£",€’) ~Hom 4, (£",&")

and &" is a projective Ap-module. In particular, the sequence (*) splits.
Since a direct summand of a flat module is flat, £’ is flat and hence locally
free. With these results at hand, we can conclude by a simple iteration
procedure.

(c) This follows directly from (a) and (b) thanks to well-known results
of homological algebra. O

Proposition 4.6.3. Let M be a compact real analytic manifold and let
S be a closed subset of M. There is a unique way to define a local Chern
character

chg : D2(Coh(M)) — Hy(M;Z)

which is invariant by isomorphism and such that
chs(E7) = chs(E")

if & is an object of K%(Bnd(M)) and E" is the associated complex of com-
plex vector bundles. Moreover, such a local chern character is additive and
multiplicative.

Proof. Thanks to Proposition 4.5.2 and Proposition 4.5.7, the result follows
directly from the preceding lemma. O

Remark 4.6.4. It follows easily from the additivity of the local Chern
character introduced in the preceding proposition that

chg(F) =Y (—1)* chg(H"(F)).
kEZ

So, the local Chern character for complexes of coherent analytic sheaves may
be reduced to the local Chern character for coherent analytic sheaves. A
similar reduction has however no meaning for complexes of complex vector
bundles since the corresponding cohomology sheaves are not locally free in
general.
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Definition 4.6.5. Let M be a compact real analytic manifold, let S be a
closed subset of M and let F* be an object of D2, (Axs) (i.e. a complex of
Apr-modules with bounded coherent cohomology). Assume F~ is supported

by S. We extend the definition of chg by setting

chg(F) =Y (—1)* chg(H*(F))

keZ

where the classes
chs(H"(F)) € Hg(M; Z)

are defined according to the preceding proposition.

Proposition 4.6.6. Let M be a compact real analytic manifold and let S
and T be closed subsets of M.

(a) Assume

b
coh

is a distinguished triangle of D2 , (Aps) which is supported by S, then

Chs(j:') = Chs(f') + Chs(g').

(b) Assume & and F~ are objects of D2, (Apr) supported respectively by

S and T. Then & ®jM F* is an object of D, (An) supported by
SNT and

chsar (€ @} F) = chs(€7) — chr(F)

Proof. Part (a) follows from the long exact sequence of cohomology and
the additivity of the local Chern character for coherent analytic sheaves.
Part (b) follows from the multiplicativity of the local Chern character of
Proposition 4.6.3 combined with the fact that any object of D2 (Aas) is

coh

isomorphic in PP | (Apr) with an object of DP(Coh(M)). O

coh

Definition 4.6.7. Let X be a compact complex manifold and let S be a
closed subset of X. Assume F~ is an object of D2, (Ox) supported by S.
Using the real analytic structure of X, we set

chg(F) = chg(Ax P05 F).

Remark 4.6.8. Since Ay is flat over Oy, the local Chern character in-
troduced in the preceding proposition is clearly invariant by isomorphism,
additive and multiplicative.






Riemann-Roch theorem

5.1 Introduction

Let X be a compact complex analytic manifold of complex dimension n. To
fix the notations, let us recall that

Ox = sheaf of holomorphic functions on X

958 = sheaf of holomorphic p-forms on X

Kx = sheaf of meromorphic functions on X
Aﬁ?"’) = sheaf of real analytic forms of bitype (p, q)
Bgf’q) = sheaf of hyperfunction forms of bitype (p, q)
Cfﬁgg = sheaf of smooth forms of bitype (p, q)
Dbgf’q) = sheaf of distribution forms of bitype (p, q)

A% = sheaf of real analytic n-forms

BY% = sheaf of hyperfunction n-forms

Ch.x = sheaf of smooth n-forms

Dby, = sheaf of distribution n-forms

These various sheaves enter in the following well-known resolutions.

179
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Proposition 5.1.1.

Real de Rham resolutions. The sequence

d d
0—>CX—>Cg07X—>~'—>CC2£X—>O

is exact and we get analogous exact sequences if we replace Coo, x by
Ax, Bx or Dbx.

Dolbeault resolutions. The sequence
0—>Q§(—>C§Z’gg iicg’;{)ﬂo
is exact and we get analogous exact sequences if we replace Coo, x by
Ax, Bx or Dbx.

Complex de Rham resolution. The sequence
d d n
0—-Cx—-0x—--—Q% —0
is exact.

Since X is a canonically oriented compact topological manifold of di-
mension 2n, we have the two following propositions.

Proposition 5.1.2 (Topological finiteness). We have
H*(X;Cx) =0
if k ¢ [0,2n] and
dimH*(X;Cx) < 400
for any k € [0, 2n].

Remark 5.1.3. It follows from the preceding proposition that the complex
Betti numbers

b¥(X) =dimB¥(X;Cx) (keZ)

are well-defined topological invariants associated to X. Another topological
invariant of X is its Euler-Poincaré characteristic. Note that it follows from
the universal coefficient formula that

X(X) =D (=1F0(X).

keZ
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Proposition 5.1.4 (Topological duality). By Poincaré duality, we have
an isomorphism

H*(X;Cx)* ~ H™*(X;Cy)

which can be made more explicit by means of the pairing

() D(X; DY) @To(X;Ch x) = C

<u,w>:/u/\w.

Remark 5.1.5. It follows directly from the preceding proposition that

defined by the formula

b H(X) = b*(X)

for any k € Z. In particular,

n—1

X(X) = (=1)""(X) +2 ) (1)} (X)

k=0

so that
x(X)=b"(X) (mod 2).
Finiteness and duality results also holds for coherent analytic sheaves.
Proposition 5.1.6. For any coherent analytic sheaf F on X, we have
HY(X;F) =0

if k ¢ [0,n] and
dim H*(X; F) < 400

ifk € [0,n).

Proof. We will only give a sketch of the proof for the case where F is locally
free. For the general case, we refer to standard texts on complex analytic
geometry.

By tensorization on Ox with the Dolbeault resolution

0—>0X—>C§2’gg—>«~—>cgg’;()—>0
we obtain the resolution

0—>}"—>}"®0XC§2:22—>«««—>]—“®0XC§2’;{)—>0.
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Since F B0y Cég’lj() is locally isomorphic to a direct sum of a finite number

of copies of Cig:};(), it is a soft sheaf. Therefore,
RI(X; F) = T(X; F @, CO%).

The vanishing part of the result follows easily. To obtain the finiteness part,
we consider the resolution

0—>}"—>}"®0XAg?’o)—>~'—>}"®oxu4g?’")—>0

obtained by applying the exact functor F ®, - to the Dolbeault resolution
0—>0X—>Ag?’0)—>~'—>./4g?’")—>0.

Since F By Ag?’k) is a coherent real analytic sheaf on X, it is acyclic.
Hence,
RI(X; F) = T(X; F @, ALY

and the canonical morphism
D(X; F 0y, AL)) = T(X; F @, C0%)

is a quasi-isomorphism. One checks easily that the components of the first
complex are (DFS) spaces and that the components of the second complex
are (F) spaces. Since the morphism from the left complex to the right
complex is clearly continuous, the conclusion follows from the next lemma.

O

Lemma 5.1.7. Let
u B — F

be a morphism of complexes of locally convex topological vector spaces.
Assume that for any k € Z,

(i) E* is a (DFS) space;
(ii) F* is a (F) space;
(iii) H*(u") is surjective.
Then, H¥(F") is finite dimensional.
Sketch of proof. The basic idea is to write E* = h_n)lEZk where EF is a Ba-
nach space; the transitions being compact and théiNto use Baire’s theorem
to reduce the result to Schwartz’ compact perturbation Lemma. O
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Proposition 5.1.8. For any coherent analytic sheaf F on X, we have the
canonical isomorphisms

H*(X; F)* ~ H"*(X; RHom , (F,Qx))
where Q) x denotes as usual the sheaf of holomorphic n-forms.

Proof. We will only sketch the proof in the case where F is locally free.
Working as in the proof of Proposition 5.1.6, we get the two isomor-
phisms
RI(X; F) ~ T(X; F @, CO%)

and
RI(X; RHom ,_(F,Qx)) ~ [(X; RHom , (F, D).

Consider the canonical pairing
IF ®0, COR) @ [RHom o, (F, Db )] — Do)

which sends (f ® w,h) to w A h(f). Combining it with the integration of
distributions, we get the pairing

D(X; F @0, COR) @ T(X; RHom, o (F, Db ) — €
and hence the morphism of complexes
D(X; F @p, C%) =~ T(X; RHom o (F, P0G 7)),

Using the definition of distributions, one checks easily that this morphism
is in fact an isomorphism. The cohomology of the complexes involved being
finite dimensional, the differentials are strict and we get

H (D(X; F @0, CO%))* ~ B H(D(X; RHom , _ (F,Db$)))).
The conclusion follows. O

Example 5.1.9. Since Q% is a coherent analytic sheaf, Proposition 5.1.6
shows that the Hodge numbers

hP9(X) =dimHI(X;QP) (qeZ)

are well-defined holomorphic invariants of X which vanish for ¢ ¢ [0, n]. Of
course, we have

XP(X) = x(X; Q%) =D (~1)7he.
q€ZL
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Moreover, it follows from the complex de Rham resolution that

XX = S (=10,

PEZL

Note that the canonical morphism
AN QR @O — QF%
induces an isomorphism
Q% P ~Hom, (2%, Q%).
Hence, applying the duality result for coherent analytic sheaves, we see that

AR — pPin—a.

The hP9 have many other interesting properties. However, since they are
related to Hodge theory we will not review them here.

Thanks to the results in this section, one sees that the Euler-Poincaré

characteristic
oo

X(X:F) =) () dimHY(X; F)
k=0

makes sense for any coherent analytic sheaf on a compact complex ana-
lytic manifold. The computation of this number forms what one may call
the generalized Riemann-Roch problem (its link with the original results
of Riemann and Roch will be explained in Sections 2-4 below). In [15],
Hirzebruch solved this problem when X is a projective manifold and F is
the sheaf of complex analytic sections of a complex analytic vector bundle
F of rank r by expressing the number x(X;F) by means of a formula of
the type

X F) = [ PE) e E)alTx), e @)
b'e

where P is a polynomial with rational coefficients which depends only on r

and n. In Sections 5—8 we will establish the following slightly more general

result.

Theorem 5.1.10. Let X be a projective complex analytic manifold of

dimension n and let F be a coherent analytic sheaf on X. Then,

X(X;F) = /X ch(F) — td(TX).
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To better understand the link between this formula and the preceding
one let us write it explicitly in terms of Chern classes in a two simple cases.

Case of line bundles on curves.
We need to compute ch(F) and td(T'X) in degrees 0 and 2. We have

T T 1 1+x+ (2)
= = = - o\xr
1—e® 1,(1+(,x)+#+0(lﬂ2)) 1— %+ o(x) 2

and

e =14z +o(x).
Therefore, using the fact that £ and T'X are line bundles, we get

ch(E) =1+ c1(E)

td(TX) =1+ @
Hence,
[ch(E) — td(TX)]? = c1(E) + @
so that
c(TX)

w(X:) = [ e+ 25

Case of line bundles on surfaces.
We need to compute ch(E) and td(7TX) in degrees 0, 2 and 4. We have

X
—X 7‘/1:2 7‘/1:3
1—e 1— (14 (—z) + G 4 G2 4 o(a3))
1
1—%+%+0(9§2)
2

_ r T 2
f1+2+12+0(a:)

and
22
e’ :1+x+?+0(932).
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It follows that we have at order 2

2 2

Xr1 ) Xr1 Ty Xro Ty

. —(14+ 2Ly (1= 22
l—e @1 1 —e 2 (+2+12)(+2+12)

2 2

€2 Ty 1 T1T2 iy

=1 = £ _— -1
+ 2 + 12 + 2 + 4 + 12
1+ X2 T $? +3I1$2 +$%

=1
* 2 12
(z1+x2) | (21 +22)° + 3129
=1
* 2 * 12
Soq(w1,20)  S34(21,72) 4+ S22(21, 72)
=1+ + .
2 12
Therefore,
TX TX)2 TX
td(TX):1+Cl( ) +Cl( ) +C2( )
2 12
and )
E
ch(E) =1+ 1 (E) + Cl(2 Iy
Finally,

Cl(TX)2 + CQ(TX) Cl(E)Cl(TX) Cl(E)2
= 12 * 2 T

ch(E) — td(TX)]

and

wxig) = [ AEX 4T | aEEX) | olBF

5.2 Cohomology of compact complex curves

Let X be a connected compact (smooth) complex curve.

Proposition 5.2.1. There is a natural integer g such that

H(X;0x) =~ C H(X;Qx) =~ €9

HY(X;0x) =~ €9 H(X;Qx) =~ C

HEX0x) ~ 0 (k22) | HNX0x) ~ 0 (k>2)
H(X;Cx) ~ C

( )

(ricx) ~ o
H?*(X;Cx) =~ C

( ) =~ 0 (k=3)
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Proof. Writing the long exact sequence of cohomology associated to the
short exact sequence

0—-Cx - 0x —-Qx —0,
we get the exact sequence

0—HY(X;Cx)— HY(X;0x) — H(X;Qx) D

(—>H1(X;(CX) — H'(X;0x) — H'(X; Qx) D

(—>H2(X;(CX)—>O.

Since X is connected, H’(X;Cx) ~ C and since X is compact, the maxi-
mum principle shows that HY(X; Ox) ~ C. Therefore, the morphism

H'(X;Cx) — HY(X; Ox) )
is an isomorphism. By duality, we see that
H?*(X;Cx) ~C, HY(X;Qx) ~C
and that the morphism
H'(X; Qx) — H*(X; Cx)
is the dual of the isomorphism (*). It follows that the sequence
0 — H(X;Qx) - H'(X;Cx) - H'(X;0x) = 0

is exact. Since

H'(X;O0x) ~ HO(X; Qx)",
the spaces H! (X; Ox) and H(X; Qx) have the same dimension g. It follows
that HY(X; Ox) ~ CY9, HO(X;Qx) ~ CY and that H}(X;Cx) ~C?». O

Definition 5.2.2. The integer g which appears in the preceding table is
called the genus of the Riemann surface X. One defines it classically as the
maximal number of linearly independent holomorphic 1-forms.

Remark 5.2.3. Note that since 2g is the first Betti number of X, g is a
topological invariant of X. One can show that this is the only invariant of
this kind. Note also that it follows from the cohomology table of X that

x(X) =2-2g.
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5.3 Divisors on complex curves

Let A be a commutative integral ring and let K be its field of quotients.
Denote A* the multiplicative monoid formed by the non-zero elements of
A. Define the divisibility relation “|” on A* by

alp < Jece A* with b=ua-c

This is clearly a preorder relation compatible with the multiplication of
A*. Since A is integral, any element of A* is cancelable and A* has
an associated group. This group may be identified with the group K* of
invertible (i.e. non-zero) elements of K. The relation
relation on K* defined by

“|77

induces a preorder

flg = 3Fce A with g=f-¢c <+ g/feA*.
Remark that if f, g € K* are such that

flg and  g|f

then g/f € A* and conversely. If follows that D = K*/A* has a natural
structure of ordered commutative group. We denote + the group operation
of D and we denote < its canonical order relation. We denote (f) the
element of D associated to f € K*. The ordered group (D, +, <) is called
the group of principal divisors of the ring A. This group enters in the exact
sequence

1—-A*—> K*"—D—0.

In the case of a complex curve X, we may consider by analogy the sheaves
of commutative groups O% (resp. K% ) of invertible elements of Ox (resp.
Kx) and we may define the sheaf of abelian groups Divx as the cokernel of
the canonical inclusion

0% — Kx%.
It follows from the exact sequence
1—- 0% - K% = Divy =0

that (Divy), is the group of principal divisors of the integral ring (Ox),.
So, it is canonically endowed with an order relation (<),. Hence, we get an
order relation < on the sections of Divy. A divisor on X is the data of a
global section D of Divx. A divisor coming from a global section f of K% is
called principal, we denote it (f). It follows from the construction of Divx
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that a divisor on X is locally principal. It is however not globally principal
in general. To study this phenomenon, one introduces the quotient group

I'(X; Divy)/T(X; Kx).

This group is called the Picard group of X and denoted Pic(X). Two divisor
which have the same image in Pic(X) are said to be equivalent.

The structure of (Divy), is very simple. As a matter of fact, if ¢ is a
local coordinate such that t(x) = 0, any meromorphic function f may be
uniquely written in a neighborhood of x as

f=t"h

where n € Z and h € O% , (consequence of Taylor formula). It follows that
(f) = n(t). Moreover, we see easily that if t’ is another local coordinate such
that ¢/(z) = 0, we have (¢) = (t'). Therefore, (t) is a canonically defined
divisor supported by {x}. We denote it by [z] and we denote ord;(f) the
unique integer n such that

(f) = nlz].
We may sum up what precedes by saying that

ord, : (Divyx), — Z

is an isomorphism of ordered abelian groups. Any divisor D of X being
locally principal, {z : ord,(D) # 0} is locally finite; hence finite (X is
compact). It follows that

D= Y ordy(D)z].

xEsupp D

Thus, there is a bijection between the ordered group of divisors of X and

the ordered group
AN

We define the degree of the divisor D by the formula

deg D = Z ord, (D).

xEsupp D
To a divisor D on X, one associates the sheaf Ox (D) defined by setting
Ox(D)(U) ={f e Kx(U) : (f) = =Dl|v} U {0}

for any connected open subset U of X. One checks easily that Ox (D) is an
Ox-submodule of x. Consider a point x € X. This point has a connected
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neighborhood U on which D is principal. So, we find a meromorphic func-
tion g on U such that D|y = (g). It follows that f € Ox(D)(U) if and only
if f=0or (f) > —(g). Hence,

Ox(D)(U) = {g  h e Ox(U)}

and Ox (D)|y is the free Ox-submodule of rank 1 of Kx generated by 1/g.
Therefore, Ox (D) is a locally free Ox-module of rank 1. Remark that if
D, D’ are two divisors on X such that

D' =D+ (g)
with g € T'(X; %), then
Ox(D/) — Ox (D)
f—=1Tfg

is an isomorphism of O x-modules. Therefore, the isomorphy class of O x (D)
depends only on the class of D in Pic(X).

5.4 Classical Riemann and Roch theorems

Definition 5.4.1. Let £ be a locally free Ox-module of rank 1 on X.
Consider a non-zero meromorphic section s of L, i.e. assume that

s € T(X;Kx ®, £)\ {0}

Consider a neighborhood U of z € X on which £ is isomorphic to Ox and
denote [ a generator of L|y. Clearly, we have

sly=f-1

where f is a meromorphic function on U uniquely determined by this rela-
tion. If I is another generator of L|y, we have [ = hl’ where h € O%(U)
and

sl =f"-1U

where f' € Kx(U) is given by f' = fh. It follows that (f) = (f’) and
that this divisor depends only on s|y. We denote it (s|y). Using a gluing
process, we obtain a well-defined divisor (s) on X.

From this definition it follows easily that



5.4. Classical Riemann and Roch theorems 191

Proposition 5.4.2. We have an Ox-linear isomorphism
LRy, Ox(D) ~ L(D)
where L(D) is the subsheaf of K ®, L defined by setting
LD)(U) ={s € T(U;Kx ®, L)\ {0}: (s) > =D} U {0}
for any connected open subset U of X.

Proposition 5.4.3. For any locally free Ox-module L of rank 1 and any
divisor D on X, we have

X(X; L(D)) = x(X; L) + deg D.

In particular,
dimH°(X; £(D)) > x(X; £) + deg D.

Proof. Let D and D’ be two divisors on X such that D < D’. By definition,
it is clear that Ox (D) is a subsheaf of Ox (D’). Denote Q the quotient sheaf
Ox(D")/Ox (D). Write D, D’ as

D= nj[z;], D = njlxy
j=1 j=1

where x1, -+, z,, are points of X and ni,...,nm,;n},...,n,, are elements
of Z (which may be equal to 0). One sees easily that Q, = 0 if x ¢
{z1,...,2m}. Now, consider a coordinate neighborhood U of a point z; €
{z1, - ,xm} such that UN{z1, - ,zm} = {z;}. Let ¢t be a coordinate on

U such that t(x;) = 0. Since D|y = n;(t) and D'|y = n)(t), we see that

h n
Ox(D)a; =gy h € (Ox)as s Ox(D); = {5

J

= (Ox)mj},
Since n; > n;, we may write
h/ = ag —+ alt + o+ an;injiltn;*njfl + tngfnj h//

where ag, -+, an;—p,—1 € C and R € (Ox); are uniquely determined by
this condition. It follows that

Qs = (0x(D')/Ox(D))a, = C"5™.
The sheaf Q is thus supported by {z1,- -,z } and we have

dimQIj:n;—nj (1<j<m).
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Applying £ ®, - to the exact sequence
0— Ox(D) = Ox(D') - Q—0

and taking FEuler-Poincaré characteristics, we see that

X(X; L(D)) = x(X; L(D)) + x(X; L ®p, Q) =0
and hence that

X(X; L(D)) — x(X;L(D")) +deg D' —deg D = 0.
Therefore,

X(X; L(D")) — deg D' = x(X; L(D)) — deg D.

If D, D' are divisors on X, there is a divisor D" > D, D" > D’. It follows
from what precedes that

X(X; £(D)) — deg D

does not depend on D. The conclusion follows since

L(0) ~ L.
O
Corollary 5.4.4. For any divisor D on X, we have
X(X;0x(D)) =degD +1—g.
In particular, deg D depends only on the class of D in Pic(X) and
dimH(X; Ox(D)) > deg D +1 —g.
Proof. This follows directly from the preceding proposition since
X(X;0x) =dimH°(X; Ox) —dimH' (X;O0x) =1 —g.
O

Remark 5.4.5. Let 1, - -, x,, be distinct points of X. The problem which
led to the classical Riemann and Roch theorems was the computation of the
dimension of the space of meromorphic functions which are holomorphic on
X\ {1, -, zm} and have poles of order lower or equal to 1 at x1, -+, Tp,.
One checks easily that this dimension is nothing but

dimH%(X; Ox (D))

for D = [z1] + « - - + [xm]. Therefore, the preceding corollary contains Rie-
mann’s inequality in its original form.
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Proposition 5.4.6. Let L be a locally free Ox-module of rank 1. Fix
x € X. Then, £ has meromorphic sections whose only pole is at x. In
particular, £ has non-zero meromorphic sections.

Proof. In the preceding proposition, set D = m|z] and choose m large
enough in order that x(X; L)+ deg D > 0. O

Corollary 5.4.7. Let L be a locally free O x-module of rank 1. Then, there
is a divisor D on X and an isomorphism

Ox(D) ~ L.
Moreover, although D is not unique its class in Pic(X) depends only on L.

Proof. Let s be a non-zero meromorphic section of £. Set D = (s). Working
on the open subsets where L is trivial, we see easily that

Ox (D) — L
f=1Fs
is a well-defined isomorphism. To see that the class of D in Pic(X) depends

only on L, it is sufficient to note that non-zero meromorphic sections s, s’
of L are always linked by a relation of the type

/
s =gs

with g € I'(X; %) and that such a relation entails that

O

Definition 5.4.8. Let £ be a locally free Ox module of rank 1 on X. We
denote [£] the class in Pic(X) of any divisor D such that

Example 5.4.9. Since 0x is a locally free Ox-module of rank 1, we may
consider

[Qx].

This class is traditionally called the canonical class of divisors of X and
denoted by K.
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Remark 5.4.10. It follows from what precedes that
D — OX (D)

induces a bijection between Pic(X) and the set of isomorphy classes of
locally free Ox-module of rank 1 on X whose inverse is the map induced
by

L~ [L].

Since
Ox (D) ®o Ox(D/) ~Ox(D+ D/),

the preceding bijection is in fact an isomorphism of abelian groups.
As a consequence of this isomorphism we get that

X(X;5L) =deg[L]+1—g
for any locally free Ox module of rank 1 on X

Let us now look at Roch’s original contribution.

Definition 5.4.11. We denote
¢:Pic(X) = N

the map induced by
D dimH"(X; Ox (D)).

Example 5.4.12. We have
£(0) = dimH*(X;0x) =1

and
((K) =dimH°(X;Qx) = g.

Proposition 5.4.13. For any divisor D on X, we have
U[D)) — (K — [D]) = deg D+1—g
Proof. From the duality theorem for coherent analytic sheaf we deduce that
H'(X; Ox(D)) ~ H*(X; Hom , (Ox (D), x)).
Using the isomorphism

HOTTLOX(OX(D),Q)() ~ Ox(D)* ®Qx,
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and the properties of [-], we see that
[Hom o (Ox(D),Qx)] = K — [D].

It follows that
dimH'(X; Ox (D)) = ¢(K — D).

Since
X(X;0x(D)) =deg D +1—g,

the proof is complete. O

Corollary 5.4.14. We have
deg K = 2g — 2.
Proof. Applying the preceding proposition for D = K, we obtain
UK)—£0)=degK+1—g.

Therefore,
g—1l=degK+1—g

and the conclusion follows. O
Proposition 5.4.15.
(a) If deg D < 0, then

dimH°(X;O0x(D)) =0 and dimH'(X;0x(D))=g—1—degD.
(b) If deg D > 2g — 2, then
dimH(X;Ox (D)) =degD+1—g and dimH'(X;O0x(D))=0.

Proof. (a) Thanks to Riemann-Roch formula, it is sufficient to show that
H(X;0x(D)) = 0.

Let us proceed by contradiction. Assume f is a non-zero section of Ox (D).
Then,

(f)>-D

and
deg(f) +deg D > 0.

Since [(f)] = 0, we have deg(f) = 0 and we get deg D > 0. The conclusion
follows.
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(b) As in (a), we have only to prove the first equality. Using Proposi-
tion 5.4.13, we see that this equality is true if

UK —[D]) = 0.

Since by the preceding corollary we have deg(K — [D]) = 2g — 2 — deg(D),
this follows from directly from part (a). O

Remark 5.4.16. Note that the second part of the preceding proposition
contains a complete answer to the original Riemann-Roch problem for high
degree divisors.

Proposition 5.4.17. For any divisor D on X, we have
deg D :/ c1(0Ox(D)).
b'e

Proof. Assume D = >, n;[x;] where z1, ..., z,, are distinct points of X.
For any ¢ € {1,...,m}, let t; be local coordinate defined on an open neigh-
borhood U; of z; such that t;(x;) = 0, t;(U;) ~ D(0,1) and assume that
Ui, ..., U, are disjoint. Set Uy = X \ {z1,...,2mn} and denote U the cover-
ing {Uy, ..., Un}. We know that Ox (D) is generated on Uy, Uy, ..., Uy, by
the functions 1,¢; ", ...,¢,™™. So, we may represent the class of Ox (D)
in H'(X; 0%) ~ H' (U, O%) by the Cech cocycle g defined by setting

n n Nm
guoty =ty guoUs =157, -, GUUL, = T

Thanks to the proof of Proposition 4.2.10, we also know that the diagram

dlo
H'(X,0%) = H'(X, Q')

o

H?*(X,C)

is commutative. It follows that ¢ (Ox (D)) is the image in H?(X; C) of the
Cech cocycle of H (U, Q") defined by

dt1
C1U0U1 = dloggUoUl = nl?
dt
v, = dog gu,u,, = nmt—m~
m

The Dolbeault resolution

0—-0' ¢l —clth o
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induces an isomorphism
H'(X, Q") = D(X, C{1) /a0 (X e,

We may follow it in terms of Cech cohomology thanks to the Weil Lemma.
We have to follow the dotted path in the diagram

I(X; ) —TIX;cL) - -Tx;cdY)
|
l v !
COWU, Q") — ', eV — Cou,cY)
! . !
C'u, 0N — MU, ey = Ctu,eLY)
+ 1 1

To write ¢! as the Cech coboundary of ¢ € C‘O(U,Cc(,é’o)), we will use a
partition unity (ou)vey relative to U and set

0 _ 1 1
CUU - 790U16U0U1 - SDUmCUUUm

0 _ 1
CUl - SDUUCUUUl

0o _ 1
U,, = PUcCULU,,

Then, we may represent the image of ¢ in H%(X, C) by the Cech 0-cocycle
of COU, M) given by

0
Ug — dcp,

0
Uy — chm

which corresponds to the differential form with compact support

dt dt
w = —dyy, /\nlt_l — - —dyy,, /\nmt—m.
1

It follows that



198 5. Riemann-Roch theorem

Denote V; the image in U; of a disk centered on 0 whose radius is sufficiently
small in order that ¢y, =1 on V; C U;. Stokes’ theorem shows that

/Xq(oX(D))im/_

inz/ @Ud_t

i=1 ti

inz/ : *ng

i=1 ti

O

Corollary 5.4.18. For any locally free Ox-module L of rank 1 on X, we

have
i) = [ ae)+ 208,

Proof. Since T'X is a holomorphic line bundle, we know that ¢;(7TX) is the
Euler class of TX and hence of X. Therefore,

/ a(TX)=x(X,C)=1-29g4+1=2(1-g)
X

Since by the preceding proposition, we have

deg([L]) = /X e1(L),

Remark 5.4.10 allows us to conclude. O

and

Remark 5.4.19. Thanks to the computations at the end of Section 1, the
preceding corollary shows that Hirzebruch-Riemann-Roch formula is true
for compact complex curves.

5.5 Cohomology of coherent analytic sheaves on P,(C)

Definition 5.5.1. Let
q:C"1\ {0} — P,(C)

be the canonical projection. For any open subset U of P,,(C) and any [ € Z,
set

Op,©(D(U) = {f € Ocnii (¢ (U)) : f(Az) = N f(2) (A € C)}.
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From this definition it follows immediately that :

Proposition 5.5.2. For anyl € Z,
U= Ok, c)()(U)

is a locally free Op, (c)-module of rank 1. Moreover, there are canonical
isomorphisms

G2 8o, , Oru@) () = Op, ) (L +1),

Hom o, (O, ) (1); O, ) () = Op, ) (' = ).
Exercise 5.5.3. There is a canonical isomorphism
Qp,(c) = Op,(c)(—n - 1).
Solution. As usual, set
Ur =A{lz0,- - 2n] : 21 # 0}

and define the map wuy; : Uy — C by setting

2l
Uk = —.
2k
Then, (ugo,- - ,Ukk," - > Ukn) gives a biholomorphic bijection between Uy

and C". It follows that any w € I'(U; Qp, (¢)) may be written in a unique
way on U N Uy as

W= frdugo A A dupp A - A dug,

with fx € Op, (c)(U NUy). For [ <k, we have

Ulm,
Uk = ——.
Uik
Therefore,
U dUym — Upm dugy,
dukm = )
Uik
and
dugo N -+ ANdugg N\ -+ N dugn,
k—1 T
dulo —Uuy dulk dulk dul
= A m72/\.../\_/\.../\ n
=0 Wik Uy, Uk Uk
" —
dulo dulk —Uuy dulk dul
4 E _/\.../\_/\.../\m72/\.../\ n.
Uk Uk U Uk

m=k-+1
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Since duy; = 0, we get

duko/\~~~/\dukk/\~~~/\dukn

dug —ug dugy du,

:u_/\.../\72/\.../\_

Ik Uz Ul
(-1

n+1
Ik

=l du A Adug A A dugn.
U

It follows that

(~1)"-

fi= ka
Hence,
-1 l -1 k
U oz = S o2
1 “k

on ¢~ (UNU,NU;). This shows that there is a unique h € T'(U; Op, (¢)(—n—

1)) such that
(=DF

h(ZO T ,Zn> = Zank([ZOa T aan

k

on ¢~ (U NUy) for k € {0,---,n}. We have thus constructed a canonical

morphism

QIP’n((C) — Opn(@)(—n — 1)

Since it is clearly an isomorphism, the proof is complete.

Exercise 5.5.4. Denote U, (C) the sheaf of holomorphic sections of the
universal bundle U, (C) on P,,(C). Then, there is a canonical isomorphism

Un(C) >~ Op,(c)(—1).

Solution. Using the same notations as in the proof of the preceding propo-

sition, set

—~

20 2k Zn

Sk([ZO,"',Zn])((—,"',—,"',—),[ZO,"',Zn])-

23 23 23

Clearly, s is a holomorphic frame of U, (C)|y,. Therefore, for any o €

duln

Ul

I'(U;Un(C)) there is a unique o, € I'(U N Uy; Op,,(c)) such that

0O = 0OkSk

on U NUy. Since
Sk = Uk1SI
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on Ui N U, we have

O] = OgUkl

on UNU, NU,. It follows that

Ul([ZOa T ;Zn]) _ Uk([ZOa T aan

2l 23

on ¢~ H({UNU, NU;) and hence that there is a unique h € I'(U; Op, (¢)(—1))
such that
h(z0, -+, 2n) = oullz . zn)
2k

on ¢~ Y(UNUy). The conclusion follows as in the preceding proposition. [
Theorem 5.5.5. The cohomology of the sheaf Op, (c)(l) is given by the

table : »
(C(nl ) ifl>0

0 otherwise

H°(P,.(C); Op,,(c)(1)) = {

HY(P,(C); Op,(c)(1)) =0 if0<k<mn

—i-1

., e ifl<—n—1

H"(P,,(C); Op,,(c)(1)) = .
0 otherwise

In particular,

(I+1)---(I+n)

n!

X(Pn(C); Op,(c)(1)) =
for any l € Z.

Proof. We will only do the easy part and prove the first equality. We refer
to [26] and [27] for the other results. Note that it follows from definitions
that

H°(Pa(C); Op, ) (1)) = {f € Ocnsr (C*TI\{0}) : f(A2) = X' f(2) (A € C)}.

Since the codimension of {0} in C"*! is at least 2, any

f € H' (P, (C); Op, () (1))

is in fact holomorphic on C**! and may thus be written as
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with aqy,... .o, € C. From the relation
FO2) =Xf(z) (AeC),
we deduce that da,.... a, N = day.... ., A and hence that aa,.... o, = 0 if
la| # 1. Tt follows that HO( n(C); OP © (1)) is 0 if I < 0 and equal to the
space of homogeneous polynomials of degree [ for [ > 0. In this case, the
dimension is given by
dn,l:#{(QOa"' ,O[n) :OZOZO)”' ,Oth0,0t0+"'+Otn:l}.
To compute this number, we note that, since
ap=0 an=0 ap=0 an=0

we have
1 _ Z n+1 Z d" lz

Hence,

dnzl[( 1 ](O (n+1)(n+z)m(n+l)<n+l)

S e Il !

z=0
To conclude, note that it follows from the cohomology table that
(" if1>0
X(Pn(C); Op,c)(1)) = 1 0 if —n<l<-—1
(oY i< -n—1
and the announced formula holds since for [ < —n — 1, we have

R D el VI (S VRN (R A1)

n! n!

O

Remark 5.5.6. Note that, using the duality theorem for coherent analytic
sheaves, we have

H* (P (C); Op,, () (1)) = H* (B (C); Homp, (O, ) (1), e, ()
~ H""¥(P,(C); Op, c)(—1 — 1 —n)).
Therefore, the last isomorphism in the preceding theorem follows from the
first since
n—Il—1-n\ (=1-1
—1-1-n ) n

ifl<-—n-—1.
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Corollary 5.5.7. The graded C-algebra

S = @F(]P’n (C); Op,, () (1))

lez
is canonically isomorphic to C[zo, - , zy).

Definition 5.5.8. Recall that the homogeneous part of degree [ of a graded
S-module M is denoted M; and that M(l) is the graded S-module charac-
terized by the fact that M () = My (I € Z).

We denote S the sheaf of graded C-algebras defined by setting

§=P 0,00

leZ

For any graded S-module M, consider the graded tensor product
S®y M.

This is clearly a graded S-module. We denote M its homogeneous part
of degree 0. By construction, M is an Op,, (c)-module. Finally, we denote
PN (resp. PF) the thick subcategory of Mod(S) formed by the graded
S-modules M such that there is Iy € Z with ®l2lo M, isomorphic to zero
(resp. of finite type).

Proposition 5.5.9. The functor
M— M

from the category of graded S-modules to that of Op, (c)-modules is exact.
Moreover,

(a) S(1) = Oz, ) (1),
(b) M =0 if M is an object of PN,
(¢c) M is coherent if M is an object of PF.

Proof. The difficult part is the exactness, for it we refer the reader to [26]
and [27]; the other parts are easier. As a matter of fact, (b) follows at once
from the fact that for x € Uy, any section of (M), of the form

Olp @M_y,
with oy, € (Siy)a, m—1, € M_y, is equal to

lo—1 o 11
O1,2, @z, "My,
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for any [ € Z. As for (c), we know that there is a morphism

Ro
@ S(ly,) = M

TU:1

with a cokernel in PN. Since S is noetherian, we get an exact sequence of
the type

Ry Ro
@S(lrl) — @S(lro)ﬂMﬂNﬂO
T1:1 Tg:l

with N € PN. This gives us the exact sequence of Op, (¢)-modules

Rl RU -
P .0 (1) = D Oe, ) (lry) = M — 0
T1:1 Tg:l

and the conclusion follows. O

Definition 5.5.10. Let F be a coherent analytic sheaf on P, (C). We set
.7:(1) = Opn(@)(l) ®01Pn © F

and denote S(F) the graded S-module

PrE.(c); 7).

leZ

Proposition 5.5.11. For any coherent analytic sheaf F on P,(C), the
graded S-module S(F) is an object of PF. Moreover, the functor

F — S(F)

induces an equivalence between the category of coherent analytic sheaves
on P,(C) and the abelian category PF/PN. The quasi-inverse of this
equivalence is induced by the functor

Proof. We refer the reader to [26] and [27]. O
Corollary 5.5.12. Let F be a coherent analytic sheaf on P,,(C). Then,

(a) there is an exact sequence of the form

Ry Ro
0— P O, c)(lr,) = - = D Op,(c)lny) = F — 0;

rp=0 ro=0
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(b) the Op, c)-module F(l) is generated by its global sections for [ > 0;
(c) we have
HE (P, (C; F(1) =0 (k> 0)
for 1> 0.

Proof. (a) We know that S(F) is an object of PF. It follows that there is
a morphism

Ro
P s.,) — S(F)
ro=0

with a cokernel N in PN. Since its kernel K is a graded submodule of a
graded S-module of finite type, Hilbert syzygies theorem shows that K has
a presentation of the form

Ry Ry
0— @S(l,«p)—w"ﬂ @S(lh)ﬂKﬂO.

rp=0 r1=0

It follows that we have an exact sequence of the form

Ry Ro
0— @S(l,«p)—w"ﬂ @S(lro)ﬂS(}")éNﬂO.

rp=0 ro=0

The conclusion follows by applying the exact functor ~ to this sequence.
(b) follows from (a) since the result is true for 7 = Op, (¢ (l) with [ > 0.
(c) follows directly from (a) thanks to Theorem 5.5.5. O

Remark 5.5.13. Parts (b) and (c) of the preceding proposition may be
viewed as stating that Op, (c)(1) is an ample locally free Op, (cy-module of
rank 1.

Proposition 5.5.14. Let M be a graded S-module which is in PF. Then,
there is a unique polynomial Py; € Q[z] such that

for 1> 0.

Proof. We know that for M in PF there is an exact sequence of the type

Ry Ro
0—>@S(l,ﬁp)—W««ﬂ@S(lm)ﬂM—M\fﬂO

rp=0 ro=0
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with N in PA. Moreover,

n!

dim S(lo)l =dim Sl0+l =

Hence, the conclusion follows from the additivity of M +— dim M; and the
fact that the zeros of a polynomial are in finite number. O

Definition 5.5.15. The polynomial Py; of Proposition 5.5.14 is called the
Hilbert-Samuel polynomial of M.

Corollary 5.5.16. For any coherent analytic sheaf F on P, (C) the map
L= x(Pn(C); F(1))

is the Hilbert-Samuel polynomial Pg () of the graded S-module S(F) (in
other words
X(Pr(C); F(1)) = dim (P (C); 7 (1))

forl>0).
Proof. It follows from Theorem 5.5.5 that

n!

X(Pr(C); Op, (c)(lo)(1)) =

Therefore,
X(Pn (C); F(1))

is a polynomial in [ for 7 = Op,(c)(lo). Part (a) of Corollary 5.5.12 and
the additivity of x(P,(C);-) allow us to extend the result to any coherent
analytic sheaf F on P, (C). Moreover, using part (c) of Corollary 5.5.12, we
see that

A(Po(C); F(1)) = dim (P, (C); F(1))

if I > 0 and the conclusion follows from the definition of S(F) and of its
Hilbert-Samuel polynomial. O

Exercise 5.5.17. Let Z be a closed hypersurface of P,,(C) corresponding
to the zeros of a homogeneous polynomial ) of degree d. Denote Oz the
coherent analytic sheaf on P, (C) associated to Z. Show that

Ps)(1)
X(Pr(C); Oz(1))
(+1)-(+n) (—d+1)---(—d+n)

n! n!
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and that in particular

1 ifd<n

X(Pn(C); Oz) = {1 — (=)™ ifd > .

Solution. From the exact sequence
0 d OPH(C)(*d) —Q—> Opn(@) b OZ — 0
we deduce that

X(Pn(C); Oz) = x(Pn(C); Op,(c)) — X(Pn(C); Op, () (—d))

and the first formula follows immediately. For the second one, we note that

(—=d+1)---(—d+n) 0 ifd<n

n! [ e Gt Al ) T P

n!

Hence, the conclusion. O

5.6 Hirzebruch-Riemann-Roch theorem for P, (C)

Proposition 5.6.1. Assume F is a coherent analytic sheaf on X =P, (C).
Then,

X(X;F) = /X ch(F) — td(TX).

Proof. By Corollary 5.5.12, we know that F has a resolution of the form

Ry Ro
0— P ox(l,) == P Ox(ln,) = F —0.

rp=0 ro=0

Using the additivity of both sides of Hirzebruch-Riemann-Roch formula, it is
thus sufficient to treat the case F = Ox(I) (I € Z). Thanks to Exercise 4.2.6
we know that ¢.(TX) = (1 + &)™ where ¢ € H?(X;Z) is the first Chern
class of UZ(C). Hence, TX and U?(C)"*! have same total Chern class. It
follows that

td(TX) = td(U3,(C)" 1) = (td U3(C)"+ = (1 = )HH '

Recall that the sheaf of holomorphic sections of U, (C) is Ox(—1). Hence,

for I > 0, we have

ch(Ox (1)) = ch(Ox (1) ®--- ® Ox (1))
= ch(Ox (1))} = €€ (*)
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Using the fact that
ch(Ox (—1)) ch(Ox (1)) = ch(Ox) =1

we see that formula (*) holds for any ! € Z. Combining the results, we get
that

n+1
ch(Ox (1)) td(TX) = ( i fe* 5) elc.

Therefore,
(ch(Ox (1) td(TX))™" = p¢"

where p is the coefficient of 2™ in the Taylor expression at 0 of

5 n+1
el
1—e %

Using Cauchy’s formula, we have

elz 1 elz
—Res—  0)=— /[ —°% 4
p=Re ((1ez)n+1’ ) 2m/c 1 — ez ®

where C' is a path of C* such that Ind(y,0) = 1. Using the change of
variables

w=1—-¢e7*
we get

1 (1—w)"t dw

P = Sir c wrtl 1 —w

1 / dw
20 Jo w1 — w)lHt

(), - e (1),

By Exercise 4.2.6, we know that [, £" = 1. Therefore,

/X ch(Ox (1)) td(TX) = (””)

n

and the conclusion follows from Theorem 5.5.5. O

5.7 Riemann-Roch for holomorphic embeddings

Our aim in this section is to prove the following result.
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Theorem 5.7.1. Leti: X — Y be a closed embedding of complex analytic
manifolds. Then, for any F € D2, (Ox), we have

chx (i F) =i (ch F / td Tx )

in Hy (Y; Q).

We will start by recalling a few facts about Koszul complexes which will
be needed in the proof.

Let R be a commutative ring on the topological space X, let £ be locally
free R-module of rank r and let s be a section of £*. Recall that the Koszul
complex K.(&;s) is the complex

r k
0_>/\5i>..._>/\5£>..._>56_1>72_>0

where L is the interior product with s. As is well-known, the R-linear
morphism L, is characterized by the formula

k
L(or A Nog) =Y (D)7 s,0) 01 A AGLA -+ Ao
=1

As a graded R-module, K.(€; s) is isomorphic to the exterior algebra

NE
and hence has a canonical structure of anticommutative graded R-algebra.
Note that the differential L is compatible with this structure in the sense

that
Ls(wk A wl) = Ls(wk) Nwp + (71)kwk A Ls(wl)

for any sections wy € A* €, wi e N'E.
In particular, if p1, ..., p, are global sections of R, we have

K.(RP; (pa, -+ s pip)) = KRy ) ®p -+ @ K(Rs ).
From this formula, it follows easily that if
priR/Rpy + -+ Rp—1 — R/Rpy + -+ Rp—1

is injective for [ € {1,---,p} then K.(RP; (u1,- -, tp)) is a projective reso-
lution of
R/Rp1 + -+ -+ Rup.

This allows us to prove the following lemma.
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Lemma 5.7.2. Let X be a complex analytic manifold and let £ be a locally
free Ox-module of rank p. Denote E the associated holomorphic complex
vector bundle. Assume s is a section of E which is transverse to the zero
section. Then,

Zs={x e X :s(x)=0}

is a complex analytic submanifold of X. Moreover, if i : Zs; — X is the
inclusion map, then the Koszul complex

P p—1
o_>/\5*£> /\5*_>..._>5*£>0I_>0
is a resolution of the O x-module
1Oz,.

Proof. The problem being clearly local on X, we may assume X is a coor-
dinated neighborhood U of 2y and € = O%.. Then, E = C? x U and we
have
s(z) = (f(z),z)

where f : U — CP is a holomorphic map. The fact that s is transverse to the
zero section entails that f is a submersion. So, restricting U to a smaller
neighborhood of zg if necessary, we may find a holomorphic coordinate
system (z1,---,%p) on U with f; = 2z, -, fp, = zp. For such a coordinate
system, the Koszul complex

K(Ea S) = K(Og(a (Zla to azp))
and the conclusion follows easily. O

With this lemma at hand, we can now prove the following special case
of Theorem 5.7.1.

Proposition 5.7.3. Let p : E — X be a holomorphic complex vector
bundle of rank r. Denote i : X — FE its zero section. Then, for any
F €D, (Ox), we have

chx (4 F) =i (chF /td E)
in Hy (E; Q).
Proof. First, note that since poi = idx, we have
chx (44 F) = chx (ii*p* F")
= chx (11Ox ®F 0, P°F)
= chx (4Ox)p* ch F
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and the result will be true for any F* € D, (Ox) if it is true for Ox.
To prove the result in this case, let us consider the relative projective
compactification p: E — X of E. Recall that

E=PEa (CxX))
and that we have an open embedding
j:E—FE
and a complementary closed embedding
k:P(E)—FE

which we can use to identify E and P(E) with subspaces of E. Set i = joi.
Let us show that

(a) the canonical morphism
¢: Hx(E;Q) — H(E; Q)
is injective;

(b) . )
Ch(i!OX) = i!(l/tdE)

in H(E; Q).
The result will follow since
E(Chx(g!OX)) = Ch(z!OX)

and
7" Chx(g!OX) = chx (41O0x).

(a) Since
Hy(E;Q) ~ Hy(E: Q) ~ Hy,_pyoper (B Q)
the injectivity of € will follow from the surjectivity of
H(E;Q) — H(P(E); Q).

Denote U (resp. U) the tautological line bundle on E (resp. P(E)). We
know that H'(E; Q) is a free H' (X; Q)-module with basis

Le(U), -+ e (O)
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and that H'(P(E); Q) is a free H (X; Q)-module with basis
15 Cl(U)a Tty Cl(U)Til'
Since U| pe) = U, the conclusion follows.
(b) Since

we get a morphism

and hence a section ¢ of
F=Hom((U,p 'E)~U @p 'E.

One checks easily that ¢ is transverse to the zero section of F' and that
Z; = X. Therefore, Exercise 2.7.8 shows that

o (F) =15,x = irl.
Moreover, Lemma 5.7.2 shows that the Koszul complex
K.(F,t)

is a resolution of 410 by locally finite free @ g-modules. It follows that

ch(i;Ox) = ch K.(F,t) = ch ]\ F".
Using Proposition 4.4.9, we get
ch(iyOx) = ¢.(F)/td F.

Note that
e(F)er(T) = o (FeT ) =0

since

FeU ~Hom(U,p (E® (C x X)))
has a nowhere vanishing section. But
td(F)~' = td(U)"'p td(E) "' =" td(E)~"  (mod ¢ (T)).
Therefore,
¢r(F)/tdF = ¢, (F)/p* td E
= (011)/p"td E
=0(1/td E).
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Proof of Theorem 5.7.1.

The idea is to use the deformation of X to the normal bundle of Y in
order to reduce the general case to the case treated in Proposition 5.7.3.

Recall that with the complex deformation X of X to the normal bundle
p:TyX — Y is given a closed embedding 7 : ¥ x C — X, a submersion
7:X — C and a projection p : X — X such that

(a) the maps
poi: Y xC—Y, 70i: Y xC—C

coincide with the canonical projections;

(b) there is a commutative diagram of the form

Y x {1}5'—>%*1(1)

L

Y — X
1
(c) there is a commutative diagram of the form

Y x {0} 5 771(0)
ﬂ\ ﬂ\jo
Y —iU>TYX
with po jo =igop.

Since both 7 and 707 are submersions, it follows that jo and j; are transverse
to 7. Hence,

Ljgin(F R Oc) = ig (F)

and
Liti(F R Og) = iny(F).

Setting G = i1(F K Oc), it follows that
chy (i1 F) = jj chy xc(9)

and that
Chy(il!f) = ]T ChYXC(g)'

Hence
Jor chy (i0F) = joi(1) — chy xc(G)

in Hy, (o (X;Q) and

Ju chy (inF) = ji, (1) — chyxc(9)
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in HYx{l}(X; Q). We have
Jor(1) = 7% jz-1(0) = T TC/{0}
in H'%,I(O)(X; Z) and a similar formula for jq,(1). Since

TCc/{o}y = Te/{1}

in H2(C;Z), they are equal in H%(C;Z) for D a sufficient large compact
disk. It follows that

Jor(1) = jn(1)

in H'%,I(D)(f(; Z) and we get

jo chy (i0\F) = ji chy (i1, F)
in HYXD(X; Q). Since Y x D is a p-proper closed subset of X,

B Hy o p(X:Q) — Hy (X;Q)

is well-defined and we get

chy (i1,F) = pij, chy (i1 F)

= prjoy chy (i1 F).

Using Proposition 5.7.3, we get finally

Chy(il!f) = ﬁ!jO!iO!(Chj:/ thyX)
:Zl|Ch(f/thyX)

as requested.

5.8 Proof of Hirzebruch-Riemann-Roch theorem

Using the results in the three previous sections, we can now prove Theo-
rem 5.1.10.

Proposition 5.8.1. Assume i : X — Y is a closed embedding of com-
pact complex analytic manifolds. Then Hirzebruch-Riemann-Roch theorem
holds for X if it holds for Y.

Proof. Let F be a coherent analytic sheaf on X. By Theorem 5.7.1, we
have
chx (4t F) =i(ch F/td TxY).
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Therefore,
ch(yyF)tdTY =i (ch Fi*tdTY/td TxY).

Thanks to the exact sequence

0->TX - i 'TY - TxY —0

we have
1"tdTY =tdTX td TxY.
So
chy (0 F)tdTY = i(ch Ftd TX)
and the conclusion follows. O

Corollary 5.8.2. The Hirzebruch-Riemann-Roch theorem holds for any
complex projective manifold.

Proof. This follows directly from the preceding proposition if one takes
Y =P, (C) and uses Proposition 5.6.1. O
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Abstract

This book is based on a course given by the author at the university of
Lisbon during the academic year 1997-1998. Its aim is to give the reader
an idea of how the theory of characteristic classes can be applied to solve
index problems. Starting from the Lefschetz fixed point theorem and its
application to the computation of the Euler-Poincaré characteristic of a
compact orientable manifold, we first develop the theory of Euler classes
of orientable manifolds and real vector bundles. Then, we study Stiefel-
Whitney classes and the general modulo 2 characteristic classes of real vector
bundles. Similar considerations for complex vector bundles lead us to the
Chern classes. We conclude the part devoted to characteristic classes by a
study of global and local Chern characters. The rest of the book is then
centered around the Riemann-Roch theorem. We present first a very simple
proof which works for compact complex curves and allows us to make links
with the original results of Riemann and Roch. Then, we treat in details the
case of compact complex projective manifolds by more advanced methods.
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