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1

The purpose of these notes is to introduce the reader to the algebraic theory
of systems of partial differential equations on a complex analytic manifold. We
start by explaining how to switch from the classical point of view to the point
of view of algebraic analysis. Then, we perform a detailed study of the ring
of differential operators and its modules. In particular, we prove its coherence
and compute its homological dimension. After introducing the characteristic
variety of a system, we prove Kashiwara’s version of the Cauchy-Kowalewsky
theorem. Next, we consider the behavior of systems under proper direct images.
We conclude with an appendix giving the complements of algebra required to
fully understand the exposition.
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The application of the powerful methods of homological algebra and sheaf theory to

the study of analytic systems of partial differential equations started in the late ’60s

under the impulse of M. Sato and later M. Kashiwara. Many essential results were

obtained both in the complex and real domain, and soon a whole theory was built.

This theory, which is now often referred as “Algebraic Analysis”, has grown steadily

during the past years and important applications to other fields of mathematics and

physics (e.g. singularities theory, group representations, Feynman integrals,. . . ) were

developed.

Many research areas are still open. However, the task facing a student who would

like to work in these directions is quite impressive: the research literature is huge and

few textbooks are available.
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In these notes, we develop the elements of the algebraic theory of systems of partial

differential equations in the complex domain. All the results are well-known and our

contribution is only at the level of the presentation.

Of course, it is impossible to give a complete picture of the theory in these few

pages, but we hope to give the reader the basic knowledge he needs to understand the

main research papers on the subject.

To get a better perspective on algebraic analysis, the reader should have a look

at the works [15, 2, 9, 16, 4, 12, 3] and their bibliographies. A natural extension

of this course would be the study of the theory of holonomic systems as developed

in [6, 7, 8, 11, 10].

Throughout the text, we assume the reader has a basic knowledge of linear algebra,

homological algebra, sheaf theory and analytic geometry.

In the first section, as a motivation for the theory, we explain how to make the

switch from the usual point of view of systems of partial differential equations to the

point of view of -modules used in algebraic analysis.

In the second section, we study the ring of differential operators on a complex

manifold and its local finiteness properties (coherence, dimension, syzygies).

The third section is devoted to internal operations of the category of -modules on

a complex manifold. After introducing the internal product, we explain how to switch

between left and right -modules.

In the next section, as an example, we make a detailed study of the -module

structure of the sheaf of holomorphic functions .

After a section on the characteristic variety, we study non-characteristic inverse

images and proper direct images. In particular, we prove Kashiwara’s version of the

Cauchy-Kowalewsky theorem for systems.

In the section on non-singular systems, we identify the -modules corresponding

to flat holomorphic connections and classify them.

The appendix is devoted to an informal study of homological dimension, Noether

property and syzygies for rings, graded rings and filtered rings. Most of the results of

filtered algebra needed for the study of are proven there. Hence, the reader should

have a quick look at the appendix before reading the main text and refer afterwards

to the detailed proofs as the need arises.

These notes are based on lectures given at the “Journées d’Analyse Algébrique”

held at the University of Liège in March 1993. Let me take this opportunity to thank

the participants for their constructive comments.

Finally, I wish to thank M. Kashiwara and P. Schapira through the work of whom

I learned to appreciate the power and beauty of algebraic analysis.
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Let be an open subset of CI . Recall that a (complex analytic linear partial) differ-

ential operator on is an operator of the form

( ) = ( )

where ( ) is a holomorphic function on , being a multi-index of length

= + + and = . Such an operator acts CI -linearly on holomor-

phic functions defined on and is characterized by this action since

(( ) ) = ! ( )

One checks easily that differential operators form a subring of End ( ( )). The

restriction of a differential operator

=

defined on to an open subset is the operator

=

With these restriction morphisms, differential operators appear as a presheaf of rings

on CI . We denote by the associated sheaf of rings. A section Γ( ; ) may

be written in a unique way as

( )

where, = 0 in a neighborhood of for 0. If there is an integer such that

= 0 for and = 0 for at least an of length we say that has order .

Any operator Γ( ) has locally a finite order. Note that has a natural

structure of -module. For an open subset of CI , we denote by the restriction

to of the sheaf .

Our basic problem in these lectures is to study systems of equations of the form

( ) = ( = 1 ) (2.1)

where ( ) is a differential operator of some finite order , the being

given data and being indeterminates in some function space ( ) on which

the ring Γ( ; ) acts. In fact, since we want to be able to use the powerful methods

of sheaf theory to glue together local results, we will assume that ( ) is the space of

sections on of a sheaf which is a -module. For example, we may take =

the sheaf of holomorphic functions on or = the sheaf or real analytic functions

or = the sheaf of hyperfunctions. Other possible examples for are the
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sheaf of infinitely differentiable functions on or the sheaf of distributions on

or even the sheaf itself.

Our first step in studying systems like (2.1) will be to try to understand when two

of them should be considered as equivalent.

Let us first consider the case of homogeneous equations

( ) = 0 ( = 1 )

Intuitively, equivalent systems are systems which have the same solutions in any solu-

tion space . To translate this intuition into a mathematical notion, we will proceed

as follows. Denote by the matrix ( ) and by the solution sheaf of the system

associated to in the -module . We have

Γ( ; ) = Γ( ; ) : = 0

The law defines a functor from the category of -modules to the category

of sheaves of CI -vector spaces on and two systems , should be considered as

equivalent when the associated functors and are naturally equivalent.

Now consider the -linear morphism

and denote by its cokernel. From the exact sequence

0

we get the exact sequence

0 ( )

and hence a natural equivalence of functors

( )

This shows that the functor is representable by the -module . The ho-

mogeneous systems associated to and are thus equivalent if and only if

as -modules. So it appears that the natural object which represents a homogeneous

system of P.D.E. is the -module not the matrix of operators .

What is the situation for inhomogeneous systems?

Assume that ; Γ( ) and that

= ( = 1 ) (2.2)
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Then, for any differential operators on , we have

=

and it follows that

= 0 if = 0

Such a vector of differential operators defines what we will call an

for the inhomogeneous system (2.2). By definition, it is clear that

algebraic compatibility condition are the sections of the kernel of the map

Denote by the image of this same map. We have the exact sequences

0 0

0 0

where = . Hence, we get the exact sequences

0 ( ) ( ) ( ) 0

0 ( ) ( ) ( ) 0

The second one shows that

( ) = : = 0

so is a -module which represents the system of algebraic compatibility conditions

of the system . Using the first exact sequence we see, at the level of germs, that the

elements of ( ) are the classes of vectors of satisfying the alge-

braic compatibility conditions modulo those for which the system is truly compatible.

Moreover, for 1,

( ) ( )

Thus, all the ( ) give meaningful information about the system .

We hope that the preceding discussion has convinced the reader that the study of

the system

= ( = 1 )

is equivalent to the study of the -module defined by the exact sequence

0

and of its full solution complex

( )
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3 Differential operators on manifolds
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3.1 The ring and its modules

Definition 3.1.1

Proposition 3.1.2 The ring is a simple sheaf of non-commutative -algebras with

center .

Proof:

ring of linear partial differential operators with analytic coeffi-

cients on

P

X n

X

X

TX

n

L

θ

X nd

P U

P a z ∂ .

z U X

X

P P, z P, ∂ z

z , . . . , z z z P

P z, ∂ P z , z , ∂ ∂

P z , z , ∂ p P ∂

P, z P z , z , ∂ k∂

In fact, restricting our interest to system which like have a global finite free

1-presentation is not a very good point of view because the system of algebraic

compatibility conditions of admits in general no finite free 1-presentation. However,

we will show that it has locally such a presentation ( is a coherent sheaf of rings). So

coherent -modules appear to be the natural algebraic objects representing systems of

linear partial differential equations. We will see in the sequel that the study of coherent

-modules also allows us to understand in a clear and intrinsic manner systems of linear

partial differential equations on manifolds.

Let be a complex analytic manifold of dimension . Let us recall that denotes

the sheaf of holomorphic functions on and that Θ denotes the sheaf of holomorphic

vector fields on . Of course, is a sheaf of CI -algebras. We know that Θ is the

sheaf of holomorphic sections of the tangent bundle and that it is a locally free

-module of rank . Through Lie derivative, Θ acts CI -linearly on . In fact, Θ

may be identified to the sheaf of CI -linear derivations of the CI -algebra . The Lie

bracket turns Θ into a sheaf of Lie algebras over CI . As usual, one denotes by the

Lie derivative along a vector field Θ .

The

is the subsheaf of rings of ( ) generated by Lie derivatives along

holomorphic vector fields and multiplications by holomorphic functions. We denote it

by . Locally, a section Γ( ; ) may be written in a unique way in the form

= ( )

where ( : CI ) is a local coordinate system on .

CI

CI

It is sufficient to work at the levels of germs and we may thus assume = CI

and show that the center of ( ) is CI .

For any central ( ) we have [ ] = 0 and [ ] = 0. Let =

( ) and = . We may write as

( ) = ( )

where ( ) = 0 and is the order of in . We have

0 = [ ] = ( )
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Assume is an -module and denote by

the associated multiplication. Assume

is a linear action of holomorphic vector fields on such that

(a) (resp. ),

hence = ( ). Iterating this process, we see that is a germ ( ) ( ) .

Since

0 = [ ] =

the germ is constant and the conclusion follows.

Now, let be a two sided ideal of ( ) . Assuming = 0, we will show that 1 .

With the same notations as above, we may find

( ) = ( )

where ( ) = 0. Since the order in of [ ] is 1 we may even assume

is of order 0 in . Iterating this procedure, we find a non zero germ of holomorphic

function ( ) . Up to a change of coordinates, we may assume ( ) is of Weierstrass

type with respect to at 0. This implies that

( ) = ( )( ) ( )

where ( ) is an invertible germ of holomorphic function on and ( ) ( ) are

germs of holomorphic function in with (0) = = (0) = 0 and ( ) = 1. It

follows that

( ) = ( )( )

and since

[ ( )] = ( ) ( )

we find by iteration that ! ( ) . Hence 1 and = ( ) , and the proof is

complete.

The category Mod( ) (resp. Mod( )) of left (resp. right) -modules is of

course an Abelian category with enough injective objects as is any category of modules

over a sheaf of rings.

The construction of left or right -modules is simplified by the following propo-

sition.

: ( )

: Θ ( )

CI

[ ( ) ( )] = ( ) ( )
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(b) (resp. ),

(c) (resp. )

for any and any . Then there is a unique structure of left (resp.

right) -module on extending the given actions of and .

Proof:

(a) There is a unique left -module structure on extending

its structure of -module in such a way that

for any , .

(b) There is a unique right -module structure on extending its structure of

-module in such a way that

for any , .

Proof:

[ ( ) ( )] = ([ ]) ([ ])

( ) ( ) = ( ) ( ) ( ) = ( )

Θ

Θ

The uniqueness of the extending structure is trivial since is generated by

and Θ . The existence needs thus only to be proven locally. There, the structure

of a differential operator dictates the definition of its action and one checks easily that

this action is a left (resp. right) -module structure extending the given actions of

and Θ .

=

Θ

Ω

=

Θ Ω

(a) is obvious by the definition of .

(b) It is well known that Ω is an -module. We will show that the action of Θ

on Ω defined by setting

=

for (Ω ) (Θ ) satisfies the conditions of Proposition 3.1.3. The easiest way

is to look what happens in a local coordinate system : CI .

Recall that if

=

is a holomorphic vector field on generating the complex flow and if = ( )

is a holomorphic -form on by definition

= ( )

= ( ( ) )

= + ( )

= + ( )

= ( )



i

2

ZZ

10

∑

⋃

∑

∑

ZZ

ZZ

ZZ

=1

1

0

+1

+1

=1

∈

∈

∈

∈

| |≤

∗

∗ ∗

∗

order

order filtration

Jean-Pierre Schneiders

− ∧ ∧

D

F D ∈ D

F D O
F D F D · F D ≥

F D

F D ⊂ F D ∈

D F D

F D D
D ∈

∈ F D

∈ D F D ≤
∈ F D D
FD GD

∈ F D

−→

−→
−→ × ∈

n

i
z

i n

X

k X X

X X

k X k X X k X

k X

k X k X

X

k

k X

k X k X

X

x k X x x

x X
x

X k X x

k X k X

X X

p X

α p

α
α
z

n

n

n n n

u

n

j

j
j

ω.θ ∂ θ a dz . . . dz

k

,

k ,

k < .

k

.

P x X

k P P

P P .

P U, P k

x U

P U

P a z ∂ .

z U X

T X

z U X

z ξ T U T X ξ ω

ω T U

ω ξ ω dz .

3.2 The order filtration of

Definition 3.2.1

3.3 Principal symbols and the symplectic structure of

Hence

= ( )

and the conditions of Proposition 3.1.3 are checked by easy direct computations.

We define inductively the subsheaves ( IN) of by

setting:

=

= + Θ ( 0)

and extend the preceding sequence to negative integers by setting:

= 0 ( 0)

By definition, for , and

=

Hence, the sequence ( ) defines a filtration on the sheaf which is easily

seen to be compatible with its ring structure. The of a section of at

is the smallest integer such that ( ) ; we denote it by ord ( ). We also

set

ord( ) = sup ord ( )

Obviously, a section Γ( ) is a section of if and only if ord ( )

for each . Therefore, we call the sequence ( ) the of .

We denote by the corresponding filtered ring and by the associated graded

ring.

Locally, a section Γ( ; ) may be written in a unique way in the form

= ( )

where ( : CI ) is a local coordinate system on .

Recall that to any local coordinate system ( : CI ) on is associated a local

coordinate system (( ; ) : CI CI ) of . The coordinates ( ) CI of

a form in are characterized by the formula

= ( )
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′

′

′

= =

= =

=1 =1

=

∑ ∑

∑ ∑

( )

∑ ∑

∑ ∑

∑ ∑

∑

∑

−→ −→
∈ F D

| |

F D
−→

−→

Lemma 3.3.1

Definition 3.3.2

An Introduction to -Modules

symbol of order principal symbol of

′

| |≤ | |≤

′ ′

| | | |

′ ′ ′

′

∗

| |≤

′ ′

| |≤

′ ′ ∗

| | | |

′ ′ ∗

′ ′

′ ∗

| |≤

| |

∗

| ∩ | ∩

∗

n n

p X

α p

α
α
z

α p
α

α
z

α p

α
α

α p
α

α

z z

α p
α

α
z

α p
α z

α

α
z

α p

α
α

α p
α

α

n

j

j
j

n

j
j

j

p X
n

α p

α
α
z

U

α p

α
α

n

U U V V U V

U

p

Let and be two coordinate systems on

an open subset of . Assume may be written as

Then

Proof:

z U z U

U X P U

P a z ∂ P a z ∂ .

a z ξ a z ξ .

J

∂z

∂z
,

∂ J ∂ .

a z ∂ a z J ∂ .

∂ α p

a z ξ a z J ξ .

ξ dz ξ dz ,

ξ J ξ,

P X

z U X P

P a z ∂ .

σ a z ξ

T U P

z V X

σ σ .

T X σ

p P σ P P

P σ P

( : CI ) ( : CI )

Γ( ; )

= ( ) ; = ( )

( ) = ( )( )

Denoting by the Jacobian matrix

we have

=

Therefore,

( ) = ( ) ( )

and, retaining only the terms in with = , we get

( ) = ( )( )

Since

=

we also get

=

and the conclusion follows easily.

Let be a section of on . In a local coordinate system

( : CI ) of , may be written in a unique way in the form

= ( )

The preceding lemma shows that

= ( )

is a holomorphic function on which depends only on . Moreover, for another

coordinate system ( : CI ) on , we have

( ) = ( )

Hence, there is a unique holomorphic function on gluing all the together; we

call it the of and denote it by ( ). The is

its symbol of order ord( ); we denote it by ( ).
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ZZ

ZZ

∗

∗

∗

∗ ∗ ∗

∗

∗

∗

∗

∗

∗

∗

∗

Proposition 3.3.3

IN

IN
1

IN

1

IN

( )

( )

=1

∈
∗

∈
∗

∼
∈

∗

∗

−

∗

∈
∗

∗

′

∗ ∗ ′

∗

∗

|
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O ∈
∈

∈ O
O

O O ⊂ O

⊕ O

−→

⊕ O ' O

GD −→ ⊕ O

∈ F D
O ∈

F D −→ O

F D

G D −→ O

GD −→ ⊕ O

〈 〉

∈ −→
−→

−→ ×

The symbol maps induce a canonical isomorphism of graded rings

Proof:

T X

k

T X

T X

T X T X T X

k
T X

n

k
T U U n

X
k

T X

k k X

T X

k k X T X

k k X

k k X T X

X
k

T X

x,ω

x,ω

n

T U

n

k

k
k

W k

x ω U D

h x tω t h x ω

t D

m

m n m n .

π k

X z U

π k ξ , . . . , ξ .

π k .

σ P P X

X k k

σ π k .

σ

σ π k .

π k .

T X α

α θ ω, π θ

θ T T X π T X X π

z U V U

z, ξ T U V

T U

α ξ dz .

Recall that a section of on an open subset is homogeneous of degree

if for any ( ; ) there is an open neighborhood of 0 in CI such that

( ; ) = ( ; )

for any . Obviously, these sections form a subsheaf of . We denote it by

( ). The reader will check easily that

( ) ( ) ( + )

Hence,

( )

is canonically a sheaf of graded rings on . In a local coordinate system ( : CI ),

one checks easily that

( ) [ ]

( )

By definition, the symbol ( ) of an operator Γ( ; ) belongs to

Γ( ; ( )). Hence, for each , we get an intrinsic morphism

: ( )

Since is zero on , it induces a morphism

: ( )

Hence, we get a canonical morphism

( )

which is easily checked to be a morphism of graded rings. In a local coordinate system,

this morphism is clearly bijective and the conclusion follows.

The manifold is endowed with a canonical 1-form defined by

( ) =

for any , : being the canonical bundle map and denoting

its tangent map. If ( : ) is a local coordinate system on and

( ) : CI

is the associated trivialization of , we have

=
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k

k

k k k k

=1

=1

+ 1

+ 1

∗

|

∗ ∗ ∗

∗

∗ ∗ ∗

∗

∗

{ }

−

−
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∧

−→

〈 〉 ∈
∈ ∈

−

−

{ }

∈ F D ∈ F D
∈ F D

{ }

−

{ }

Proposition 3.3.4

Remark 3.3.5

T U

n

k

k
k

p

p p

k
ξ

k z

n

k

ξ z z ξ

f

f

f,g f g

k X ` X

k ` X

k ` k `

n

Let , be two differential opera-

tors on . Then and

Proof:

T X

σ dα

σ dξ dz .

H T T X TT X

σ θ,H ω ω, θ p T X

ω T T X θ T T X

H dz ∂

H dξ ∂ .

f W T U

H df ∂ f ∂ ∂ f ∂

W H f

f g T X

f, g H g ,

H H ,H

P X Q X

X P,Q X

σ P,Q σ P , σ Q .

X

P,Q

k `

σ P,Q σ P , σ Q .

We turn into a symplectic manifold by endowing it with the non degenerate

skew symmetric form = . With the same notations as above, we have

=

As on any symplectic manifold, we define the Hamiltonian isomorphism

:

through the formula ( ( )) = valid at any point and for any

, .

Locally, we have

( ) =

( ) =

Hence, for a holomorphic function defined on an open subset of we have

( ) =

on which is the usual expression for the Hamiltonian field of the function in

classical mechanics (see [1]).

Using Hamiltonian fields, we may introduce the classical notion of Poisson bracket

of two differentiable functions , defined on an open subset of by the formula

= ( )

and one checks easily that = [ ].

Γ( ; ) Γ( ; )

[ ] Γ( ; )

([ ]) = ( ) ( )

Since the problem is local, we may assume that is an open subset of CI . In

this case, the equality is easily checked by a direct computation.

In the preceding proposition, note that the order of [ ] may well

be strictly lower than + 1. Note also that the formula

([ ]) = ( ) ( )

is false in general.
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1 0

1 0
|

O

O

O

O

O

p p

X

X

X

X

X

Jean-Pierre Schneiders

4 Internal operations on -modules

X

X

`
X

`
X

`
V

`
V

`
V V

n
U

U u

U

U n

X

X X

X X

X

X X

X

X X

X X

X X

X X

p

p

.

X U

U u U

n

n

ξ , . . . , ξ

n

n

X

θ m n θm n m θn

θ m n

om ,

θf n θf n f θn

θ f om , n

om ,

D

D

D −→ D −→M −→

−→ D −→ D −→ · · · −→ D −→M −→

O
∈ O

O

O
GD

FD D
D D ≤

D

D D

M N P D
O M⊗ N

⊗ ⊗ ⊗

∈ ∈M ∈ N D M⊗ N
O H N P

−

∈ ∈ H N P ∈ N D
H N P

3.4 Local finiteness properties of

Proposition 3.4.1

Remark 3.4.2

4.1 Internal products

Proposition 4.1.1

The ring is Noetherian, syzygic and has finite homological

dimension. In particular, there is an integer such that any -presentation

may be extended locally into a free resolution of length

Proof:

Let , , be three left -modules.

(a) The action of on the -module defined by setting

for any , , extends to a left -module structure on .

(b) The action of on the -module defined by setting

for any , , , extends to a left -module structure on

.

1

0

0 0

Since the problem is local, we may assume that is an open subset of

CI . We know from classical results of analytic geometry that is a Noetherian

ring on . Moreover, for any , the fiber ( ) is a regular Noetherian local

ring of dimension . Hence, by Corollary 10.1.7, is syzygic and its homological

dimension is lower than . Therefore Proposition 10.1.1 combined with Corollary 10.2.5

and Proposition 10.4.10 shows that [ ] is a syzygic Noetherian ring with

homological dimension lower than 2 . Hence, so is , and Proposition 10.4.8 shows

that is Noetherian and that is Noetherian. Moreover, Propositions 10.4.5

and 10.4.7 show that is syzygic with homological dimension glhd( ) 2 .

We will see in Corollary 6.3.2 that in fact glhd( ) is the complex

dimension of .

In this section, we will define an internal tensor product and compute its right adjoint.

We will also show that there is a canonical equivalence between the category of left

-modules and that of right -modules.

The proofs of the following results are easy verifications based on Proposition 3.1.3.

We leave them to the reader.

Θ

( ) = +

Θ

Θ ( )

( )( ) = ( ) ( )

Θ ( )

( )
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X X

X

X

X

X

X

X

X X

X

X
op
X

X

op
X

X

X

X X X X

X

X

X

X X X X

X X X X

X X X X

X

X

D O D O

O

O

O

D O D O

D O D O

O D
∼

D O

O

O

An Introduction to -Modules

, , om ,

f m n f m n .

m n θ mθ n m θn

om ,

fθ n f θn f n θ

om ,

θf n f nθ f n θ

, , om ,

, , om , .

,

.

om , .

Proposition 4.1.2

Proposition 4.1.3

4.2 Side changing functors and adjoint operators

Proposition 4.2.1

M⊗ N P −→ M H N P
7→ 7→ 7→ ⊗

M P D N D

M⊗ N

⊗ ⊗ − ⊗

D
H N P

−

D
H M P

−

D

M⊗ N P ' M H N P
M⊗ N P ' N H M P

M D N P D

M⊗ N ⊗ P −→M⊗ N ⊗ P

D

D D

M 7→ ⊗ M

D
D

N 7→ H N

Hom ( ) Hom ( ( ))

( ( ( ))

In the same way, we have

Θ

( ) =

Θ ( )

( )( ) = ( ) ( )

Θ ( )

( )( ) = ( ) ( )

Hom ( ) Hom ( ( ))

Hom ( ) Hom ( ( ))

( ) ( )

The preceding results give us a way to switch between left and right -modules.

Mod( ) Mod( )

Ω

Mod( )

Mod( )

(Ω )

(c) We have the adjunction isomorphism

Let , be two right -modules and let be a left -module

then

(a) the action of on defined by

extends to a right -module structure,

(b) the action of on defined by

extends to a right -module structure,

(c) the action of on defined by

extends to a left -module structure,

(d) we have canonical adjunction isomorphisms

Assume is a right -module and are left -modules

then we have a natural isomorphism

The functor from to defined by

is an equivalence of categories. Its quasi-inverse is given by the functor from

to defined by



2

2

∑

∑

16

1

1 1

X X

X X

X

O O

O O

∼

∼

∼ ∼

∼ ∼ ∼

| |≤

| |≤

O

∼
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Proposition 4.2.2

Proposition 4.2.3

X X

X X

X X

X

X

X X
ω

X

ω

X

ω ω

ω ω ω

X

n

α p

α
α
z

n

n

α p

z
α

α n

X X

X

ω

X

O

M ' H ⊗ M
N ' ⊗ H N

O
D

∈ D ∈ D

∈ O

◦ ◦

∈ D

−→

∧ ∧

∧ ∧ − ∧ ∧

⊂

M D D
⊗ M

⊗ ⊗

om ,

om ,

V X

ω V P V P V

P ω

P h ω hω .P

h W W V

P P,

Q P P Q

Q V

z U

P a z ∂

ω a z dz . . . dz ,

a z U

ha dz . . . dz .P
∂ a z ah

a
a dz . . . dz

h W U

ω m .P ω P .m

ω

Proof:

Let be an open subset of and assume to be given a generator

of on . For any there is a unique operator (the

adjoint of with respect to ) such that

for any ( open subset of ). Moreover, we have

and

for any .

Proof:

Assume is a left -module. Then the right -module struc-

ture on is locally given by

being a local generator of .

Note that, since Ω is locally free of rank 1 over ,

(Ω Ω )

Ω (Ω )

as -modules, and one checks easily that these isomorphisms are compatible with

the canonical -module structure of their sources and targets.

To better understand the preceding equivalence, let us introduce the notion of

adjoint of an operator.

Ω Γ( ; ) Γ( ; )

( ) = ( )

Γ( ; )

( ) =

( ) =

Γ( ; )

The problem is clearly of local nature. In a local coordinate system ( :

CI ) we have

= ( )

= ( )

where ( ) is an invertible holomorphic function on .

Hence, we get

( ) =
( ) ( ( ) )

for any holomorphic function on ; hence the conclusion.

Ω

( ) =

Ω
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Proof:

∼

≤ ··· ≤

1

1

1
1

1
1 1

∑



∑

5 The de Rham system

i

i i i

i i

i

i

i

n

k

k
k

k
k k

1

1 1

1

1 =1

1

( )

( )

1

1

( ) ( +1)

An Introduction to -Modules

5.1 Koszul complexes

Definition 5.1.1

−→
∧ ∧

⊗ ⊗ − ⊗
− ∧ ∧ ⊗ − ∧ ∧ ⊗
∧ ∧ ⊗−
⊗

D O −→

7→ ·
D −→ D −→ O −→

7→

O D

⊗

⊗

∈ ∧ ∧

−→

n

z
n

z z z

z
n n

z

n
z

ω
z

X X
n

n
U U U

n
n
i i z

U U

z

z

p
p

k k p

k

i < <i n

i ...i
i ...i

i ...i
i ...i i i

p

k k k

z U

P ∂ ω a z dz . . . dz

ω m .∂ ω∂ m ω ∂ m

∂ a dz . . . dz m adz . . . dz ∂ m

dz . . . dz ∂ a.m

ω ∂ m

X n

z U

Q Q

Q , . . . , Q Q ∂

∂ u

∂ u

A M A e , . . . , e

M M .

M

m e

m M e e . . . e

ϕ , . . . , ϕ p M

d M M

It is sufficient to check the formula in a local coordinate system ( : CI )

when = and = ( ) . In this case, we have

( ) =

= ( )

= ( )

=

and the proof is complete.

Let be a complex analytic manifold of complex dimension . We will now study in

details the -module . In a local coordinate system ( : CI ), we clearly

have the exact sequence

1

0

( )

which shows that is the -module associated with the system

= 0
...

= 0

In order to understand the full system of algebraic compatibility conditions of this

system, we need an important algebraic tool: the Koszul complex.

Let be any ring with unit and let be an -module. Denote by the

canonical basis of and set

= Λ

Note that any element of can be written in a unique way as

where and = .

Assume are commuting endomorphisms of . Let

:
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{

1 1

0 1

1 1

1

k k

p

k j j k

p p

·

−

·

·

·
−

·
−

−

−

− ·

−

−

·
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positive Koszul complex

negative Koszul complex

Proposition 5.1.2

Definition 5.1.3

Proposition 5.1.4

=1

+1

(0) (1) ( )

(0)
1

1

1 1

1

1

1 1 1 1

( ) ( 1)

=1

1

1

( ) ( 1) (0)

(0)

1

1 1

1

⊗ ⊗ ∧

◦

−→ −→ −→ · · · −→ −→

∩ ∩ ∈ { }

∩ ∩

−→

−→

⊗ − ⊗

◦

−→ −→ −→ · · · −→ −→

· · · ∈ { }

· · ·

k
i ...i

p

j

j j i ...i

j
k k

d d p

p

j

j

k p

p

p
ϕ

p

k
k k

k i ...i

k

j

j
i i ...i ...i

j k k

p δ p δ

j

j

k
p

A

d m e ϕ m e e .

ϕ d d K ,M

M M M

M ϕ , . . . , ϕ

ϕ ϕ

ϕ . . . ϕ j , . . . , p

H K ,M
ϕ . . . ϕ k

p p >

K ϕ , . . . , ϕ M

K ϕ , . . . , ϕ M K ϕ , . . . , ϕ M

p

δ M M

δ m e ϕ m e .

ϕ δ δ K ,M

M M M

M

ϕ ϕ

M/ ϕ ϕ j , . . . , p

H K ϕ,M
M/ ϕ ϕ k

Assume is surjective and induces a surjective endomorphism

of for . Then

if

otherwise.

Proof:

Assume is injective and induces an injective endomorphism

of for . Then

if

otherwise

Proof:

be the -linear morphism defined by setting

( ) = ( )

By the commutativity of the ’s, we have = 0. We denote by (Φ ) the

complex

0 0

where is in degree zero. This is the of Φ = ( ).

ker ker 2

( (Φ )) =
ker ker = 0

0

Note that, for = 1, the result is obvious. For 1, the complex

( ; )

is isomorphic to the mapping cone of the morphism

( ; ) ( ; )

and the conclusion follows by induction on .

Consider the differential

:

defined by setting

( ) = ( 1) ( )

The commutativity of the ’s assures that = 0. We will denote by (Φ )

the complex

0 0

where is in degree 0. This is the of Φ.

(im + + im ) 2

( ( )) =
(im + + im ) = 0

0

Work as in the proof of 5.1.2.
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−

−

k p k

k k

X

1 1

( 1)
2

( )

∑ ̂
∑ ̂ ̂
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·
·

·

· ·
·

−

−

−

− − −

−

· ∼ ·

−

·

O

−

−

≤ ≤

−

universal Spencer complex of

op

1

1 1

( ) ( )

1 1

1 1

1 1

( ) ( )

1

1

=1

1
1

1

+
1

1

1

5.2 The universal Spencer and de Rham complexes

Definition 5.2.1

'
'

∗ −→

∗ ⊗ ⊗

{ } ∪ { } { }

◦ ∗ − ∗ ◦

− ∗ −→

−→

'

SP

SP D ⊗

SP −→ SP

⊗ ∧ ∧ − ⊗ ∧ ∧ ∧ ∧

− ⊗ ∧ ∧ ∧

O
◦

p
op

G p p G

k k p k

k
i ...,i j ...j

k p k

k p k

p k k k k k

k k p k

k
p k

p
X

X

X
p X

p
X

p
X
p

X
p

p p

p

i

i
i i p

i<j p

i j
i j i j p

p

X p

p p

G M,G A

ϕ , . . . , ϕ A

ψ ϕ , , . . . , ψ ϕ ,

M,G

K ϕ,M ,G K ψ, M,G

K ϕ,M ,G K ψ, M,G .

M M

A

m e sm e

i , . . . , i j , . . . , j , . . . , p

s
i . . . i j . . . j

. . . p
.

d δ .

M M

K ,M K ,M p

H M H M .

p X

X

,

δ

δ Q θ . . . θ Qθ θ . . . θ . . . θ

Q θ , θ θ . . . θ . . . θ . . . θ .

δ

θ , . . . , θ

δ δ

Note that, for any Abelian group , Hom( ) is canonically an -module and

the endomorphisms induce the -linear endomorphisms

= Hom( id ) = Hom( id )

of Hom( ) such that

Hom ( ( ) ) ( Hom( ))

Hom ( ( ) ) ( Hom( ))

Let us denote

:

the only -linear map such that

( ) =

where = 1 and

= sign
1

A direct computation shows that

= ( 1)

Hence, the maps

( 1) :

define an isomorphism

(Φ ) (Φ )[ ]

which induces the isomorphism

(Φ; ) (Φ; )

Let Θ denote the sheaf of holomorphic -vector fields on . The

is the complex defined by setting

= Θ

the differential

:

being defined by the formula

( ) = ( 1)

+ ( 1) [ ]

Note that is well defined since the right hand side of the preceding formula is an

alternate -multilinear form in . A simple computation will confirm that

= 0.
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1 1

1

1 1

1

·

−

O

O O

·

O

·

O

−

=1

1

+1

=1

+1

op

op

1

i ip ij i ij ip

n

k

k

X

X X

j

X

X
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universal de Rham complex of

Proposition 5.2.2

Definition 5.2.3

Proposition 5.2.4

Q Q

.

z U

δ Q ∂ . . . ∂ Q∂ ∂ . . . ∂ . . . ∂ .

∂ , . . . , ∂

∂ ∂ / ∂

∂

k

d

z U

d ω m dω m dz ω ∂ m.

d d X

ω Q ωQ

n .

ε

.

ε d

X

X X

X

X
X

n

p z z

p

j

j
z z z z

z z U U

z z U U z

U z

k
X

k
X

k
X X

k k
X X

k
X X

n

k k k
n

j

j k
z

k k
X

X

X X X

X

X X

X X X

n

D

D −→ O
7→ ·

D

SP −→ O

−→

⊗ ∧ ∧ − ⊗ ∧ ∧ ∧ ∧

· · D D
· · D D
· · · D

DR ⊗ D

⊗ D −→ ⊗ D

−→

⊗ ⊗ ∧ ⊗

◦ DR

D

⊗ D −→
⊗ 7→

D

DR −→

⊗ D −→

◦

The -linear morphism

induces a -linear quasi-isomorphism

Proof:

The -linear morphism

induces a -linear quasi-isomorphism

Proof:

1

In a local coordinate system ( : CI ) we have

( ) = ( 1)

Hence, the universal Spencer complex is isomorphic to the negative Koszul complex

associated to the sequence ( ) of -linear endomorphisms of . Since

is injective and induces an injective endomorphism of the quotient +

+ , Proposition 5.1.4 allows us to conclude.

Recall that Ω denotes the sheaf of holomorphic -forms. Set

= Ω

and define

: Ω Ω

in a local coordinate system ( : CI ) by the formula

( ) = +

One checks easily that this definition does not depend on the chosen coordinate system

and that = 0. The complex is the .

Ω Ω

[ ] Ω

Let us denote by the action morphism

Ω Ω

A local computation shows that

= 0
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∼

· ∼ ·
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D D O

O

∼
D

O

· ·
D ·

· ·
D

de Rham complex of a left -module

There is a canonical isomorphism of complexes of -modules

Proof:

Proposition 5.2.5

5.3 The de Rham complex of a -module

Definition 5.3.1

X

X X

n
U

z z U

U z z

U z U z U
j

U
n

U

U z U z U
n

U U z U z U

ω
U z U z U U

X

X
X

X

X
k X X

k
X X

k
X X

k
X

X
k X

X

X
k
X X

X
X

X

X

X

X X

ε

n .

z U

∂ , . . . , ∂

∂ ∂

/∂ ∂ H j n H

/∂ ∂

ω dz . . . dz

P P

P / ∂ ∂ h

P /∂ ∂ hω

P ω.P

om , .

om , om ,

.

om ,

ω P

Q θ Q ω, θ P .

om ,

.

D

DR −→

−→ DR
D

D
D D · · · D DR 6 DR

D D · · · D
∧ ∧

7→
D D · · · D −→ O

↓ ↓ ↓ ↓
D D · · · D −→

7→

D

DR −→ H SP D

H SP D H D ⊗ D
' ⊗ D

DR −→ H SP D

⊗ D

D ⊗ −→ D
⊗ 7→ 〈 〉

DR −→ H SP D

D

D M

M DR ⊗ M

hence induces a -linear morphism of complexes

[ ] Ω

In a local coordinate system ( : CI ), the complex is isomorphic to the

positive Koszul complex associated to the sequence ( ) of right -linear

endomorphisms of . Since is injective and induces an injective endomor-

phism of + + we know that ( ) = 0 for = , ( )

being isomorphic to + + .

To conclude, we note that for = , the diagram of isomorphisms:

1

+ +

+ + Ω

is commutative.

( )

At the level of components, we have

( ) = ( Θ )

Ω

The isomorphism

( )

sends to the -linear morphism

Θ

( ) ( )

In a local coordinate system, it is easy to check that this induces a morphism of

complexes

( )

hence the conclusion.

The is the complex

Ω ( ) =
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Σ
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6 The characteristic variety

O

D
·

· ∼ ·
D ·

· ∼ ·
D ·

·
∼

D
·

D
·

D

∼
∈

∗

∗

GD
−

k
X

k
X

n

k k k
n

j

j k
z

X

X X

X
X

X

X
X

X
X

X X X X

X

X X X X

X

X
k

T X

X T X

X

T X π

,

z U

d ω m dω m dz ω ∂ m.

R om , .

om , .

R om , .

X

,

X

R om , .

R om , n .

n

π k

π

π .

M ' ⊗ M

−→

⊗ ⊗ ∧ ⊗

D M

H O M ' M

DR −→ H SP D

M

M −→ H SP M

SP −→ O

H O O ' '

D

H O D ' DR ' −

O

GD −→ ⊕ O

GD O
GM GD GM

GM O ⊗ GM

Proposition 5.3.2

D

Corollary 5.3.3 D

Corollary 5.3.4 D

6.1 Definition and basic properties

Definition 6.1.1

For any left -module there is a canonical quasi-isomorphism

Proof:

In , we have the canonical isomorphisms

In , we have the canonical isomorphisms

In particular, .

Of course,

Ω ( ) Ω

and, in a local coordinate system ( : CI ), we have

( ) = +

( ) Ω ( )

By Proposition 5.2.5, we have the isomorphism of complex

( )

Tensoring with , we get the isomorphism

Ω ( ) ( )

in ( ). By Proposition 5.2.2, we have

and the proof is complete.

( )

( ) Ω CI

( )

( ) Ω [ ]

hd ( ) =

Through the isomorphism

( )

we may identify Σ to a subsheaf of . Using this identification, we define

the of a -module by the formula:

= Σ
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X

T X

X

X

k U k d U k U k d U

X

p p

p p

k U k d U

p p

X

X

k k k d

X

k
k k

k
k k

nn

π nn

T X

x X

U x d d

U x

m , . . . ,m d , . . . , d U U

m , . . . ,m d , . . . , d

k

d d d , . . . , d d

.

X

d

k d

d

/ / .

.

Proposition 6.1.2

Corollary 6.1.3

Lemma 6.1.4 (Comparison of filtrations)

Proposition 6.1.5

GM 7→ GM

GD
O

A GM GD GM
A GM GM

M D
FM FM M ∈

F M ⊂ F M F M ⊂ F M

FM FD
FM

FM
∈

F M ⊂ F M

− −
FM FM

M D FM FM
M GM GM

GD
GM GM

∈

F M ⊂ F M⊂ F M

∈
GD GL GN

GL ⊕ F M F M GN ⊕ F M F M

−→ GL −→ GM −→ GN −→

−→ GN − −→ GM −→ GL −→

The analytic localization functor

is faithful and exact. Moreover, a -module is coherent if and only if its analytic

localization is a coherent -module.

Proof:

The annihilating ideal of a coherent -module is

generated by . In particular, is a closed conic analytic subset

of .

Let be a coherent -module. As-

sume that and are two good filtrations on . Then for any , we may

find a neighborhood of and integers , such that

Proof:

Let be a coherent -module. Assume that and are

two good filtrations on and denote by and the corresponding coherent

-modules. Then

Proof:

It is a direct consequence of well-known results of Serre [17].

supp

Since is a coherent -module, we may find a neighborhood of

and generators of order of on . After shrinking , we may

assume that have finite orders with respect to . Hence, for

, we have

if = sup( ). The other part of the result is obtained by reversing

the roles of and .

supp = supp

Since the problem is local on and since the localization functor is shift

invariant, the preceding lemma allows us to assume that there is an integer IN

such that

for every . We will proceed by increasing induction on .

For = 1, we define the auxiliary -modules and by the formulas

= ; =

We get the exact sequences

0 0

0 ( 1) 0
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k
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.

.

d >

.

k

.

.

V

T X

V T U

U X U V

.

r

k

r .

Definition 6.1.6

D

Proposition 6.1.7

′

′

′

′′

′′ ′

′′

′ ′′
−

′

′′ ′

∗

∗

·

·

∈

·

· ·

·

·

· ·

· ·

GM GM GL GN

−→ GL −→ GM −→ GN −→

−→ GN −→ GM −→ GL −→

GM GL ∪ GN GM

FM

F M F M F M

∈

F M ⊂ F M ⊂ F M

F M ⊂ F M ⊂ F M

GM GM GM

D

∩ GM

FM M
M M M ∈ D

M H M

FM FD M
D FM FD

M D

H M ⊂ H G FM

∈
M ⊂ G FM

Let be a complex of -modules and denote by the

underlying complex of -modules. Assume that the components of are -

coherent. Then the components of are -coherent and

for . In particular,

Since and are coherent, so are and . Applying the localization

functor, we get the exact sequences

0 0

0 0

The requested equality is then given by the formula

supp = supp supp = supp

For 1, we define the auxiliary filtration by the formula

= +

This is obviously a good filtration. Moreover, for any , we have

and

By the induction hypothesis, we get

supp = supp = supp

and the conclusion follows.

Since any coherent -module admits locally a good filtration, the

preceding proposition shows that there is a unique closed conic analytic subvariety

of such that

= supp

for any open subset of and any good filtration of on . We call the

of and denote it by char . For a complex ( ),

we set

char = char ( )

char ( ) supp ( ˜ )

char supp ˜
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Remark 6.1.8

Proposition 6.1.9

k

k

k k k

k k
X

k

k k

k k

k k

k k

k k

X
u

X

k X k X

X

X

j
X

j
X

k

d d .

d d

r d r d

r d r d .

T X

r d r d

r d r d .

r r

u

,

r T X.

R om , .

xt , j

xt ,

j <

Proof:

Assume is a coherent -module. Then

Moreover,

and

for .

FH M
FM

−→ F −→ F −→ FH −→

F F FD FH

G F ⊂ G F
G F ⊂ G F

G F G F

G F G F

G FH ⊂ H G FM

FM

FD − −→ FD

F F D ⊂ F D

M ∅

G FM

M D

H M D M

E M D ≥

E M D

M

Let us denote by the -th cohomology group of endowed with the

filtration induced by that of . By construction, we have the exact sequence

0 im ker 0

Since both ker and im are -coherent, so is . By Proposition 10.3.2,

we have the inclusions

im ˜ ˜ im

˜ ker ker ˜

Hence, in a neighborhood of a point of ,

im ˜ = ker ˜

implies
˜ im = ˜ ker

This shows that

supp ˜ supp ( ˜ )

and the conclusion follows easily.

In general, the inclusion of the preceding proposition is strict. For

example, let be the complex

( 1)

where is the morphism corresponding to the inclusions . Then,

char( ) =

but

supp( ˜ ) =

char( ( )) = char( )

codim char ( )

( ) = 0

codim char
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om ,

R om ,

r om , om r , .

xt , xt r ,
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X

.
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FD ·

D

FD · GD ·

D O

′ ′′

′ ′′
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′′

′ ′′

′ ′′

′ ′′

′ ′′

′ ′′

6.2 Additivity

Proposition 6.2.1

Corollary 6.2.2

D

Proof:

If

is an exact sequence of -modules then

Proof:

Assume

is a distinguished triangle in . Then

Proof:

M
D FD FM

−→ FL −→ · · · −→ FL −→ FM−→

FM FD

FH FL FD

H M D

G FH FL FD ' GH G FL GD

E M D ⊂ E G FM O

−→M −→M −→M −→

D

M M ∪ M

M
FM FM FM M

M

−→ FM −→ FM−→ FM −→

−→ GM −→ GM −→ GM −→

−→ GM −→ GM −→ GM −→

M −→M −→M −→
D

M⊂ M ∪ M

We only need to work locally. Hence, we may assume that is the underlying

-module of a coherent -module and that we have a finite resolution

0 0

of by finite free -modules. Forgetting the filtration, the complex

( )

is quasi-isomorphic to ( ). Moreover,

( ) ( )

Hence, by Proposition 6.1.7, we get

char ( ) supp ( ˜ )

and the conclusion follows by a well-known result of analytic geometry.

0 0

char = char char

Since the problem is local on , we may assume that is endowed with a

good filtration . This filtration induces good filtrations and on and

respectively and the sequence

0 0

is strictly exact. Hence, the sequence

0 0

is also exact, and, applying the localization functor, we get the exact sequence

0 0

The conclusion follows by taking the supports.

( )

char char char

This is a direct consequence of the snake’s lemma and the preceding proposi-

tion.
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p

V V V

V T X

T X

X

X X

X

X

X

j
X

involutive Lagrangian isotropic

leaves

6.3 Involutivity and consequences

Theorem 6.3.1

Corollary 6.3.2

⊂

∈ ⊂ ⊃

≥ ≤

{ }

{I I } ⊂ I

I O

M D M

M D FD FM
GD

{
√
A G FM

√
A G FM} ⊂

√
A G FM

√
A G FM M

M D

M ≥

M ≤

D

M

E M D ≥

L T T X L L

T X

V T X

p V T V T V T V T V T V T V

V T X

V X V X V X

T V p

V p V

f, g V p f g

V p

T X

,

V

T X TV TV

V

V

T X

nn r , nn r nn r .

nn r

X

X

X

xt , j

The characteristic variety of a coherent -module is a

closed conic involutive analytic subset of .

Proof:

Assume is a non zero coherent -module. Then,

(a) ,

(b) ,

(c) .

Proof:

For a linear subset , we denote by the orthogonal of with respect to

the symplectic form of .

An analytic subvariety of is (resp. ; ) if for

any smooth point , (resp. = ; ). Note that

for a non empty involutive (resp. Lagrangian, isotropic) analytic subvariety of

we have dim dim (resp. dim = dim , dim dim ).

Since is generated by the values at of the Hamiltonian fields of the holo-

morphic functions which are zero on near , we find that is involutive if and only

if the germ is zero on near for any germs of holomorphic functions ,

which are zero on near . Hence, a necessary and sufficient condition for an analytic

subvariety of to be involutive is that

where, as usual, denotes the defining ideal of in .

This implies in particular that on the smooth part of an involutive analytic subvari-

ety of , the sub-bundle of satisfies the Frobenius integrability conditions.

The of are the corresponding maximal integral immersed sub-manifolds. Their

dimension is codim .

char( )

Locally, is the underlying -module of a coherent -module . By

Proposition 3.3.4, the Poisson bracket defined algebraically using the fact that is

commutative is the same as the usual Poisson bracket of classical mechanics. Hence,

Theorem 10.3.7 shows that

Since is the defining ideal of the characteristic variety of , the proof

is complete.

dim char( ) dim

hd ( ) dim

glhd( ) = dim

Part (a) is an obvious consequence of the involutivity of char( ).

By Proposition 6.1.9, we know that

codim char ( )
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j
X
j

X

X

X

X X

X

j
X

j
X

j
X

n
X

X
n

X

n
X X

n
X

bicharacteristic leaves

holonomic

E M D
E M D

D ≤

M M

D
D D

M D M

E M D

6

M

E M D

M M

E M D

6
E M D ≥

D E M D

M' H E M D − D

M ⊂ E M D

j j > X xt ,

xt ,

X.

X

xt ,

j X

n X

xt ,

j < j > n n

xt ,

j n

xt , n,

xt ,

R om xt , n , ,

xt , ,

Assume is a coherent -module. Then is holonomic if

and only if

for .

Proof:

Definition 6.3.3

6.4 Definition of holonomic systems

Definition 6.4.1

Proposition 6.4.2

for any positive integer . For dim , we see that ( ) = 0 since

otherwise we would get a contradiction with the involutivity of char ( ).

Part (b) is then a consequence of Proposition 10.1.2.

From part (b) we already know that

glhd( ) dim

To conclude, we note that the equality holds thanks to Corollary 5.3.4.

We call the leaves of char( ) the of .

A -module is if it is coherent and has a Lagrangian

characteristic variety. Between non-zero -modules, the holonomic -modules are

the ones with a characteristic variety of the smallest possible dimension (i.e. dim ).

( ) = 0

= dim

Set = dim .

Assume is holonomic. Since

( ) = 0

for codim char( ) and for and codim char( ) = , the conclusion follows.

Assume now that

( ) = 0

for = . Since

codim char( ( ))

the -module ( ) is a holonomic. Moreover, since

( ( )[ ] )

we see that

char char ( )

and the proof is complete.
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7 Inverse Images of -modules
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→ O
−

→
−

O O

→ →

→
−

→

→
−

∗ − −

∗
→ D

−

− −

∗
O

−

→
∼

→ D
−

→

∗ ∼ ∗ ∗

transfer module of

inverse image functor for -modules

f X Y

f .

f

x X y f x

θ

θ

h m θh m hθ y f ∂ m

y , . . . , y y Y

.

f

f

f .

f X Y

f

f f

f f .

f X Y g Y Z

h g f

f .

h f g .

X Y X f Y

X Y X Y

X,x

X,x Y,y X,x Y,y

p

j

j
y

p

X X Y X Y

X Y X

Y X Y

X Y X Y

Y X

X Y
L
f

Y X

X
L
f

X Z

X Z X Y

L
f Y Z

−→

D O ⊗ D

D O D

∈

· ⊗ D −→ ⊗ D

⊗ 7→ ⊗ ◦ ⊗

⊗D −→ D

D D
D D

⊗

−→
D

D −→ D

M D ⊗ M
M D O

M ' O ⊗ M

−→ −→
◦

D D

D −→ D ⊗ D

−→ ◦

7.1 Inverse image functors and transfer modules

Definition 7.1.1

Definition 7.1.2

D D

D D

Proposition 7.1.3 Assume , are two morphisms of complex

analytic manifolds and set . Then we have a canonical isomorphism of

( , )-bimodules

It induces a canonical isomorphism

Let : be a complex analytic map. We set

=

Note that is naturally both a left -module and a right -module and

these structure are clearly compatible. Let be a point in and set = ( ). For

Θ , consider the map

: Θ Θ

+ ( )

where ( ) is a coordinate system in a neighborhood of in . Since this map

is easily checked to be independent of the chosen local coordinate system, we get a

canonical action morphism

Θ

A direct computation shows that it satisfies the conditions of Proposition 3.1.3; hence

is canonically endowed with a structure of left -module compatible with

its structure of right -module. With this structure of bimodule, is the

. It has a canonical section

1 = 1 1

Let : be a morphism of complex analytic manifolds. We

define the

: ( ) ( )

by setting

( ) =

for any object in ( ). Note that, in ( ), we have

( )

: :

=
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× → ×

×

× × ×

× →

· ×

→ ×

×

× × ×
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D
D D

6

× −→
7→

D ' { ∈ O }

D

D D · · · D

D · · · · ·

D

−→ ×
7→

D { ∈ O }

D

D D · · · D

U V

m, n

p U V V

u, v v

a u, v ∂ a u, v .

/ ∂ ∂ .

K ∂ , , ∂

n

i U U V

u u,

a u ∂ ∂ a u

/v v .

X

X Z

X

n m

U V V
α

α
α
v α U V

U V

U V U V u U V u

U V V

U V u u

V

U U V

α,β

αβ
α
u

β
v αβ U

U V

U V U V
m

U V

Proof:

Let , be two open neighborhoods of in and respec-

tively ( ). Then :

(a) The transfer module of the second projection

is given by the formula

As a left -module it is isomorphic to

It is a coherent module generated by . The Koszul complex

is a free resolution of length of this module.

As a right -module it is flat but not finitely generated.

b) The transfer module of the closed embedding

is given by the formula

As a right -module, it is isomorphic to

Forgetting the -module structure, the isomorphism is a direct consequence

of the definition of the transfer module. To check that it is an isomorphism of ( , )-

bimodules, we only need to prove its compatibility with the left action of Θ . This

easily achieved in local coordinates.

By the preceding proposition, we may use the graph embedding to reduce the study

of inverse images to the case of a closed embedding or the case of the projection from

a product to one of its factors. Since the problem is local, the following proposition

will clarify the situation.

0 CI CI

= 0

:

( )

( ) : ( )

+ +

1

( ; )

:

( 0)

= ( ) : ( )

+ +
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∗

∗
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∗

∗

∗

∗

−

−

∗ − ∗

U U V

U V
m

U

U

Y X

Y X

X

Y

Y

X

Y

X Y

n
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D · · · · ·

D
D

−→

D −→ D
D −→ D

D

−→

×

∼

×

∩ ×

Corollary 7.1.5

D D

D D

7.2 Non-characteristic maps

Proposition 7.2.1

K v , , v

m

f X Y

f

f

f .

f X Y

T X

π

X T Y
ρ $

π

T Y

π

X X
f

Y

ρ x f x ξ x f ξ

$ x f x ξ f x ξ .

ρ T Y

X T Y f

V T Y

ρ $ V

ρ $ V

T Y $ V X T Y

It is a coherent module generated by . The Koszul complex

is a free resolution of length of this module.

As a left -module, it is flat but not finitely generated (it is a countable direct

sum of copies of ).

For any morphism of complex analytic manifolds, the

functor has bounded amplitude and induces functors

Assume that is a closed conic complex analytic subset of .

Then the following conditions are equivalent :

(i) is proper on ,

(ii) is finite on ,

(iii) is in the zero section of .

Proof:

1

( ; )

:

: ( ) ( )

: ( ) ( )

In general, the inverse image of a coherent -module is not coherent. It is however

the case for non-characteristic inverse images which we shall now investigate.

Consider a map : between complex analytic manifolds. From a microlocal

point of view (i.e. at the level of cotangent bundles), we get the diagram

where vertical arrows are the canonical projections of the various bundles and

( ; ( ( ); )) = ( ; )

( ; ( ( ); )) = ( ( ); )

The kernel of will be denoted by . In general, it is a conic complex analytic

subset of . If has locally constant rank, it becomes a holomorphic bundle.

( )

( )

( )

The equivalence of (i) and (ii) comes from the fact that a compact analytic sub-

set of CI has a finite number of points. The equivalence of (i) and (iii) is a consequence

of Lemma 7.2.2 below.
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∗
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× ×

−

→ ×

− −
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1 2

1 2 1 2

1 2 0

0 2 2

b
coh

0

=1

0

1

=0

1

=0

−→

× −→

∩ ⊂

−→

M
D M

M

D

−→
D D D

D 6 ∈

× D

−→ ×
7→

D D

D −→ D

⊕ 7→

X

a

a

Y

Y

X X X

X Z

n

U V

U V U V

d
v

d

k

k u
d k
v

k

u

d
U U U V

d

`
k u

d

`

k u
k
v

is non-characteristic

for

is non characteristic for

p E X

E

E E

f X Y

V T Y f

V f V

f

f

Z X i Z

X / P P

σ P z ξ ξ T X

U V

P U V

i U U V

u u,

i / P U V

P A u, v ∂ A u, v, ∂ ∂

A A

k ∂ P

Q u, ∂ Q u, ∂ ∂

Lemma 7.2.2

Definition 7.2.3

D

Remark 7.2.4

7.3 Non-characteristic inverse images

Proposition 7.3.1

Let , be two closed cones in a real vector bundle .

Then the map

is proper if and only if

where is the zero section of and is the antipodal of .

Let , be open neighborhoods of in and respectively

and let be an operator in . Consider the closed embedding

and assume is non-characteristic for . Then up to shrinking and ,

where is an invertible holomorphic function and is a differential operator of

degree at most in . For such a , the map

Γ Γ :

+ : Γ Γ Γ + Γ

Γ Γ

(Γ ) Γ

Let : be a morphism of complex analytic manifolds and

let be a conic complex analytic subset of . We say that

if the equivalent conditions of Proposition 7.2.1 hold for and . If is an

object of ( ) and is non-characteristic for char( ) then we say, for short, that

.

The meaning of the non-characteristicity condition may be clarified by the following

simple remark.

(i) An analytic submersion is non-characteristic for any coherent

-module.

(ii) Assume is a closed analytic hypersurface of . Then, the embedding :

is non-characteristic for the -module associated to an operator

of if and only if ( )( ; ) = 0 for any non zero conormal covector .

Let us first investigate a very special but important case.

0 CI CI

Γ( ; )

:

( 0)

= ( ) + ( )

( ) ( )
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0

=1

0

1

Theorem 7.3.2

→ ×
·

→ ×

∼ ∗
× ×

× ×

×

−

×

∗

∗ −
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U
d
U

U U V
P

U U V

d
U U V U V

U V U V

d
d

k

k
d k

k

U V

v

Y

X

D D

D −→ D

D −→ D D

D D

6

∈ ∈

× D

·

−→
N D N

N D

N ⊂ N

−→ ×
7→

× −→
7→

.

f / P .

i / P

σ P u, , τ

u U τ U V

σ P u, v η, τ a u, v τ a u, v, η τ

a a

k η

S

s U V

S Q P R

R d ∂

f X Y

f

f

f ρ$

f

f

X f

i U U V

u u,

p U V U

u, v u

is left -linear and induces a quasi-isomorphism between and the complex

In particular, we have an isomorphism

Proof:

Let be a morphism of complex analytic manifolds and

let be a coherent -module. Assume is non-characteristic for . Then

(i) is a coherent -module,

(ii) .

Proof:

( )

Since is non-characteristic for ,

( )(( 0); (0 )) = 0

for any and any CI . Hence, up to shrinking and , Weierstrass lemmas

show that

( )(( ); ( )) = ( ) + ( )

where is an invertible holomorphic function and is a holomorphic function which

is homogeneous of degree in . The first part of the proposition follows easily. The

second part is obvious and so is the third one since it is clear that any operator of

order in Γ( ; ) may be written as

= +

where is of degree strictly lower than in .

In the general case, we have the following result.

:

char( ) (char( ))

Using the factorization of through its graph embedding, we may restrict

ourselves to the special cases where is a closed embeddings or a projection from a

product to one of its factors. Since the problem is local on , we may even assume

is the embedding (case a)

:

( 0)

or the projection (case b)

:

( )
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1 1
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1
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=1

=1
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×

∗
×

∗
×

×

× ×

×
× ×

∗

∗
O

−

−
×

· −
×

|
·

|

∗
×

× ×

′

∗ ′ ∗
× ×

∗

n m

U V

U U V U V

U V

U V T U V

X

U V U V

U

U
L
i

U V
v

U V U

U
v

U

n
v

d
v

U V

N

N

N

k
U V U V k

N

k
U V U V k

N D ⊂ N

× ∩ D ⊂ ×

FI D
N D O

G FI
× D

6

∈ D D
N

O
N O ⊗ N

−→ O −→ O −→ O −→

N −→ N

N ·
· ·

∈

N D
N

⊕ D D −→ N −→

N

N −→ ⊕ D D −→ N −→

U V

i p m

s s

T U V s T U V

s

s

r U V

P U V

σ P u, , τ

τ P i / P

i

i i .

i i

U V

s v s P s

v s P s

P s

n P d A u, v s

i

U V s s

P P

/ P .

i i / P i .

where , are open neighborhoods of 0 in CI and CI respectively. Finally, by

factorizing and we may assume = 1.

Let us prove part (i) of the theorem. In case (b), it is a direct consequence of

Proposition 7.1.4 so we only have to consider case (a).

Let be a section of . Since it is clear from our hypothesis that

char( )

Let us denote the annihilating ideal of in endowed with the order filtration.

Since is coherent, we know that char( ) is the zero variety of the -ideal

generated by . Hence, up to shrinking and , we may assume that there is an

operator in Γ( ; ) such that

( )(( 0); (0 )) = 0

for some CI . For such a , is non-characteristic for .

We will now prove that is concentrated in degree zero. By definition, as an

-modules

=

since the sequence

0 0

is exact, all we have to prove is that the kernel of the morphism

is zero. If it is not the case, up to shrinking and , we would have a non zero section

of such that = 0. Let be the operator associated to by the construction

of the preceding paragraph. Since = 0 and = 0 we get by induction

ad ( ) = 0

for any IN . From Proposition 7.3.1 it follows that ad ( ) = ! ( ). Hence

is zero and we get a contradiction.

To prove that is -coherent, we will proceed as follows. Up to shrinking

and , we may assume is generated by a finite number of sections , . . . , .

Denote by , . . . , the non-characteristic operators associated to these sections by

the above procedure. By construction, we have an epimorphism

0

Let us denote by its kernel. Applying the inverse image functor, we get the exact

sequence

0
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1 1 1

1

1

1

1

1
1

1 1

1
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∗
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−

O
−

−

O
−

− O
−

O
−

O
− ∗

∗
∗ ∗

×

×
×

k

U

X X f

X f k

k k k

X f k X f k X f k

X

X f

n

U V

U V n U

k
v k

i P

i i

i

U V

f f

f

r

f f f r

r

f r rf .

ρ r

ρ $ r rf

U V

P d U V

i U U V

u u,

σ P u, , τ

τ g U V g , . . . , g U

W U U V

Pf g

∂ f i g k d

W

Remark 7.3.3

7.4 Holomorphic solutions of non-characteristic inverse images

Proposition 7.4.1

D N
N N

N FN
FN FD O ⊗ FN

O ⊗ F N

−→ F N −→ F N −→ G FN −→

O ⊗ F N −→ O ⊗ F N −→ O ⊗ G FN −→

G FD

O ⊗ G FN −→ G FN −→

G FN

G FN −→ G FN −→

D

× D

−→ ×
7→

6
∈ ∈ × O ∈ O

×

◦ −

Let , be two open neighborhoods of in and respectively

and let be an operator of degree in . Consider the embedding

and assume that

for . Then for any and any , there is

an open neighborhood of in such that the Cauchy problem

; ,. . . ,

has a unique holomorphic solution in .

By construction is non-characteristic for each . Hence, by Proposition 7.3.1, the

middle term is a finite free -module and is of finite type. Since is non-

characteristic for , is also of finite type and the conclusion follows.

Let us now prove part (ii) of the theorem.

Up to shrinking nd , we may assume is endowed with a good filtration .

Let us denote by the -module obtained by filtering by

the images of the sheaves . From the exact sequence

0 0

we get the exact sequence

0

Hence we have a canonical epimorphism of -module

0

Since is finite on supp ˜ , we get a canonical epimorphism

˜ ˜ 0

and the conclusion follows.

In fact, the equality holds in part (ii) of the preceding proposition. To

prove this fact, we would need the theory of characteristic cycles which is not developed

here.

In this section, following Kashiwara, we will obtain a wide generalization of the Cauchy-

Kowalewsky theorem in the form of a formula for the holomorphic solutions of non

characteristic inverse images of -modules.

First, we recall the classical Cauchy-Kowalewsky theorem for one operator.

0 CI CI

Γ( ; )

:

( 0)

( )(( 0); (0 )) = 0

CI Γ( ; ) Γ( ; )

=

( ) = = 0 1
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U
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Definition 7.4.2

Theorem 7.4.3

D

′

−
D

′
D

∗ ∗ ′

∗

−
D D

∗

−
D D

∗

·
×

× ×

∼ ∗
× ×

D
∗

× × ∼

−
D × × ×

× |
·

× |

Y

Y X

Y X

Y

Y X

n

U V

U V U V

d
U U V U V

U V U V U
d
U

U V U V U V

U V U

P

U V U

−→
D N N

H N N −→ H N N

O ' O

H N O −→ H N O

−→
N D N

H N O −→ H N O

−→ ×
7→

× −→
7→

N R D
D D

N

D −→ D D

H D D O −→ O

H D D O

O −→ O

f X Y

f R om , R om f , f .

f ,

f R om , R om f , .

f X Y

f

f R om , R om f ,

X

f

i U U V

u u,

p U V U

u, v u

U V

/ P i P

i / P,

R om i / P, .

i R om / P,

Let be a morphism of complex analytic manifolds and

let be a coherent -module. Assume is non-characteristic for . Then the

canonical restriction morphism

is an isomorphism in .

Proof:

Next, we consider the general case.

Let : be a morphism of complex analytic manifolds. For

any pair of -modules , , we have an obvious canonical morphism

( ) ( )

Since we have

we get a canonical

( ) ( )

:

( ) ( )

( )

As in the proof of Theorem 7.3.2, we may assume is (case a) the embedding

:

( 0)

or (case b) the projection

:

( )

where , are open neighborhoods of 0 in CI and CI respectively.

For case (a), an iteration of the procedure used in the proof of Theorem 7.3.2 shows

that has a projective resolution by finite sums of -module of the type

where is non-characteristic for the operator . Hence, we may assume

from the beginning that is of this special kind. On one hand, Proposition 7.3.1

shows that

and we get

( )

On the other hand,

( )

is represented by the complex
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8 Direct images of -modules
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1

1

!

!

op op

! !

op

!
b op b op

P

P

h ∂ h i

p R om , p .

p ,

R om p ,

p

p

f X Y

Rf

f

f Rf .

f .

U

U
d
U

d

l

l
v

U

U U

U U V V

U U V

U V
∂

U V

U

U

L
X Y

X Y

L
X Y

X

X

X Y

8.1 Direct image functors

Definition 8.1.1

D D

D

D D

·

· −→ O

7→ ⊕ ◦

N D

H N O ' O

D ' D

H D O

O −→ O

O
O

D
D

−→
· ⊗ D ·

D −→ D

M M⊗ D

M D
D

D −→ D

which, by Proposition 7.4.1, is quasi-isomorphic to ker( ). With the preceding

explicit representations, the restriction map becomes

ker( )

( )

and the conclusion follows from Proposition 7.4.1.

In case (b), we may assume = . Then

( )

Moreover, since

Proposition 7.1.4 shows that

( )

is represented by the complex

which is canonically quasi-isomorphic to . Using these explicit representations,

the restriction map becomes the identity on and the proof is complete.

In this section, it is convenient to work with right -modules. The reader will easily

obtain the corresponding results for left -modules by applying the side changing

functors.

Let : be a morphism of complex analytic manifolds.

Since the functors ( ) and ( ) have bounded amplitude they define by

composition a functor

: ( ) ( )

such that

( ) = ( )

for in ( ). This is the (with proper support) for right

-modules. It has bounded amplitude, and induces a functor

: ( ) ( )

The direct image functor is compatible with the composition of morphisms.
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∼
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∼
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−

−

−

O
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generated by a coherent -module

good

! ! !

! ! ! !

! !
1

!

=1
1

b b
good

b
good

op

!
b
good

op

!
1

=1

1

1

f X Y g Y Z

h g f

h g f .

g f Rg Rf

Rg Rf f

Rh ,

X

K X

/

f X Y

f

f

f $ρ

Y f

X

/

/

L
X Y

L
Y Z

L
X Y

L
f Y Z

L
X Z

X

X

X

X
k
k ,...,N X

k k
X

X X X

X X

X

Y

k k ,...,N X

k k X

k k

X

X

X

Proposition 8.1.2

8.2 Proper direct images

Definition 8.2.1

D D

Theorem 8.2.2

D

D

−→ −→
◦

−→ ◦

◦ M M⊗ D ⊗ D
−→ M⊗ D ⊗ D
−→ M⊗ D

D
M

D O M
O G

G ⊗ D −→M

D
M D

M M O
D D D

D D

−→
M ∈ D M

M D

M ⊂ M

M
M

M D
M M O

M M M
M O G M

D

G ⊗ D −→M

Let , be two morphisms of complex

analytic manifolds and set . Then we have the canonical isomorphism

Proof:

Let be a morphism of complex analytic manifolds.

Assume and is proper on . Then

(i) is in ,

(ii) .

Proof:

: :

=

One has successively :

( ) = ( ( ) )

( )

( )

where the last isomorphism comes from the first part of Proposition 7.1.3.

In general, the direct image of a coherent -module is not coherent. This is however

the case for proper direct images provided that is good as will be shown in the next

section.

Let be a complex analytic manifold.

A right coherent -module is if has a co-

herent -submodule for which the natural morphism

is an epimorphism.

A right coherent -module is if, in a neighborhood of any compact subset

of , it has a finite filtration ( ) by right coherent -submodules such

that each quotient is generated by a coherent -module.

Good -modules form a thick subcategory of Coh( ) denoted by Good( ).

The associated full triangulated subcategory of ( ) is denoted by ( ).

:

( ) supp( )

( )

char( ) (char )

Since the problem is local on and is proper on supp , we only need to

work in a neighborhood of a compact subset of . Hence, we may assume that

has a finite filtration ( ) by coherent -modules such that each quotient

is generated by a coherent -module. It is clear that the theorem will be

true for if it is true for each quotient . Hence, we may assume from the

beginning that is generated by a coherent -module . We endow with the

filtration induced by the order filtration of through the epimorphism
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8.3 The -linear integration morphism

K X

k K

d

d

I f

R f

R f

f R

f R f

f R

f R d .

Rf

r $ ρ r .

r

X Y d d

f X Y

f d d

X

X

d k
d

L
X

k

d I

k
d X

k
k
d X

X

X
j k

d

,
X Y

Y

j,k

d I

j k
d Y

Y

j,k

d I

j k
d Y

,

,
Y

k
d

Y

Y

X Y

X X Y Y

FM FD
FD FN

⊕ F N ⊗ FD − −→ N

FM
FP

FP ⊕ G ⊗ FD −

G O
P D

⊗ G

S ⊗ P ⊗ D

⊗ P ' M D

S ⊕ ⊗ G ⊗ D

FD

FS ⊕ ⊗ G ⊗ FD −

S
FS FD FS

G
O FS

FD

G FS ' G FR

S ⊂ G FR

D

−→

−→

and denote by the resulting -module.

For any coherent -module and any compact subset of , there is an

integer such that, in a neighborhood of , the natural morphism

( )

becomes a strict epimorphism. Thus, we may assume that has a filtered projective

resolution such that

= ( )

where is a finite subset of and is a coherent -module with -proper support.

We denote by the underlying complex of -module.

Let be a bounded -soft resolution of CI by sheaves of CI -vector spaces. Since

is -soft, the simple complex associated to

= ( )

is quasi-isomorphic to ( ) . Let us endow the -module

= ( )

with the structure of right -module defined by setting

= ( ) ( )

A simple computation shows that the differentials of are then filtered morphisms.

We denote by the corresponding double complex of -modules and by

its associated simple complex.

By Grauert’s coherence theorem for proper direct images, ( ) is quasi-isomor-

phic to a bounded complex of coherent -modules. Hence, is quasi-isomorphic

to a bounded complex of coherent -modules. Moreover, one checks easily that

˜ ˜

From this formula, it follows that

char( ) supp ˜

and Proposition 6.1.7 allows us to conclude.

Let and be complex analytic manifolds of complex dimension and respec-

tively. In this section, we will associate to any morphism : of complex

analytic manifolds a canonical integration morphism

Ω [ ] Ω [ ]
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1
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=1
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b op

D

Definition 8.3.1

Lemma 8.3.2

D

distributional de Rham complex of

D

O −→ O

D F

D F

−→

F −→ F

D −→ D

−→
◦ ◦ ◦ ◦

∧ ∧

M D

D M D ⊗ M

D M −→ D M

⊗ 7→ ⊗ ∧ ⊗

D M −→ D M
⊗ −→ ⊗

−→ D M
D M
M

D D D
D

D D −→

D D D

f

X b

p q

b

d ∂ ∂

f X Y

f f

f f b b .

g Y Z

g f f g g f g f

f u ω f u f ω .

b b .

∂ b b

u P ∂ u P dz u D P

∂ b b

u P ∂ u P

z U b

b

d ∂ ∂

b

b d .

b

∂ ∂

Y

Y X

p,q
X

p,q
X

X X

p,q
Y

p,q
X

p d ,q d
X

p d ,q d
Y

X

p,q
X

p,q
X

p,q p,q
X

p ,q
X

p,q
x

i

i z

p,q p,q
X

p,q
X

p,q

n
X

,
X

X X X

X

X X X X

X X X

The differential of is compatible with the right -module

structure of its components, and, in , one has a canonical isomorphism :

Proof:

in ( ). This map will play for direct images a role which is similar to the role of

the restriction morphism

in the study of inverse images.

Let be a complex manifold. In the sequel, we denote by (resp. )

the sheaf of forms of type ( , ) with distributions (resp. differentiable functions) as

coefficients. We also denote by (resp. ) the associated Dolbeault complex with

differential = + .

Let : be a morphism of complex analytic manifolds. Recall that we

have a pull-back morphism

:

and a push-forward morphism

:

Both are compatible with the differentials. Moreover, if : is another

morphism of complex analytic manifolds, we have ( ) = and ( ) = .

The two morphisms are linked by the formula

( ) = ( )

Let be a left -module. We set

( ) =

The differentials

: ( ) ( )

+

: ( ) ( )

do not depend on the local coordinate system ( : CI ). We denote ( )

the simple complex associated to the bi-graded sheaf ( ) and the differential

= + . We call it the .

( )

( )

( )[ ] Ω

The compatibility of the differential of ( ) with the right -module

structure of its components is a direct consequence of the local forms of and .
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y y

X X

X X X X

Y

X X

Y

Y Y

Y

Y Y

Y Y

Lemma 8.3.3

Lemma 8.3.4
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! !

!
+ +

!
+ + 1

!
+ +

+ +

+ +

! !
1

!

2 3

! !
4

!

! !

∼ ·

O
∼ ·

O
∼ ·

· ∼ ·

·

·
→

·

→ ∼
O

−

∼
O

O
∼

·
→ D →

·
D →

·
→

·

b

b b .

DR b

DR d .

f X Y

f f b d b d .

f b f b f

f b

b

b .

b

f

f X Y g Y Z

g f b d g b d

g f b d b d .

f

g g f

D O

−→ D

⊗ D −→ D ⊗ D −→ D D

D −→ D D

D
D

D ' −

−→

D D −→ D D

D

D D −→ D ⊗ D
−→ D ⊗ D
−→ D ⊗ D
−→ D D

D
D O

−→ −→

D D ⊗ D −→ D D ⊗ D

D D −→ D D

◦

X X

p
X

p,
X

p
X X

p,
X X

p,
X X

X X X X

X

X

X X X X

X X Y X Y Y Y

Y

p d ,q d
X X Y

p d ,q d
X f Y

p d ,q d
X Y

p d ,q d
Y Y

p d ,q d
Y Y

X

Y Y

X X Y X Y Z Y Y Y Y Z

X X Z X Z Z Z

To any morphism of analytic manifolds is associated a

canonical integration morphism

in the category of bounded complexes of right -modules.

Proof:

Let and be morphisms of complex analytic

manifolds. One has the following commutative diagram:

In this diagram, arrow (1) is deduced from by tensor product and proper direct

image, arrow (2) is an isomorphism deduced from the projection formula, arrow (3) is

and arrow (4) is equal to .

Since is flat over , the Dolbeault quasi-isomorphism

Ω

induces the quasi-isomorphisms

Ω ( )

Hence, Weil’s lemma shows that the natural morphism

( ) ( )

from the holomorphic to the distributional de Rham complex of is a quasi-isomorph-

ism of complexes of right -modules and the conclusion follows from the quasi-iso-

morphism

( ) Ω [ ]

of Proposition 5.2.4.

:

: ( )[2 ] ( )[2 ]

At the level of components the integration morphism is obtained as the fol-

lowing chain of morphisms :

( ) ( )

( )

To get the second morphism one has used the projection formula, the fact that is

a soft sheaf and the fact that is locally free over . The third arrow is deduced

from the push-forward of distributions along .

To conclude, we need to show that the integration morphism is compatible with the

differentials of the complexes involved. Thanks to the local forms of the differentials,

this is an easy computational verification and we leave it to the reader.

: :

( ( )[2 ] ) ( ( )[2 ] )

( )[2 ] ( )[2 ]

( )
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∗ ∗

◦

∼
D →

∼ ·
→

∼ ·
→

·

∼

→

∗ D D

∗ D D

D D

! ! !

!

b op

!

! !

!

!

b op

!

b op

! !

! ! !

Proposition 8.3.5

D

Corollary 8.3.6

D

D

f X X Y Y

Y

g f g f

f

X X X X
L

X Y

X X Y X

X X Y X

Y Y Y

Y Y

p,q
X X Y

X

X X Y Y

X

X X

X X Y Y

◦

◦

−→

−→

D −→

◦

−→ ⊗ D
−→ D D
−→ D D
−→ D D
−→

D D

−→
M ∈ D

H M −→ H M

M

M N ∈ D

H M N −→ H M N

M N
N

H M −→ H M

g f u g f u

g f g f

u g f

f X Y

f d d

g Y Z

g

f d Rf d

Rf b d

f b d

b d

d

b

f X Y

Rf R om , d R om f , d

f

,

Rf R om , R om f , f .

f d

R om f , f d R om f , d

Proof:

To any morphism of complex analytic manifolds is

associated a canonical integration arrow

in . Moreover, if is a second morphism of complex analytic

manifolds then

Proof:

To any morphism of complex analytic manifolds and

any is associated a morphism

which is functorial in and compatible with composition in .

Proof:

Going back to the definition of the various morphisms, one sees easily that the

commutativity of the preceding diagram is a consequence of the Fubini theorem for

distributions, that is, the formula

( ) ( ) = ( ( ))

where and denotes the push-forward of distributions along and respectively,

being a distribution with proper support.

:

: (Ω [ ]) Ω [ ]

( ) :

= ( )

One gets the arrow by composing the morphisms :

(Ω [ ]) (Ω [ ] )

( ( )[2 ])

( ( )[2 ])

( )[2 ]

Ω [ ]

Let us point out that the second and last isomorphisms come from Lemma 8.3.2, that

the third one is deduced from the fact that ( ) is c-soft and that the fourth

arrow is given by Lemma 8.3.3.

The compatibility of integration with composition is then a direct consequence of

Lemma 8.3.4.

:

( )

( Ω [ ]) ( Ω [ ])

For any ( ), we have a canonical

( ) ( )

which is functorial both in and in and which is compatible with composition in

. To end the construction, we compose the preceding morphism for = Ω [ ] with

the morphism

( Ω [ ]) ( Ω [ ])

deduced from the integration morphism.
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X

X X Y X
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→ →

· ·

∼ · ∼ ·

∗ D O D O

∗ O O

∗ D D

O

∗ D O D O

X Y X Y

X X X X

X X Y Y

X X Y Y

d ,
X

d ,
Y

X
d ,

Y
d ,

X

X X X X Y Y

X X Y Y

X

X X Y Y

X

X

X X X X Y Y

−→
D

−→
D

−→
O

−→
O

D −→ D

−→ D −→ D
D

−→
G O

H G ⊗ D H G ⊗ D

H G H G

D O

−→
M D

H M −→ H M

M G ⊗ D
G O

H G ⊗ D −→ H G ⊗ D

f X Y

Rf d f d

f d d ,

Rf d d .

f f b d b d

b b ,

f X Y

Rf R om , d R om f , d

Rf R om , d R om Rf , d

f X Y

f

Rf R om , d R om f , d

Y

f

Rf R om , d R om f , d

Proposition 8.3.7

Corollary 8.3.8

D

8.4 Holomorphic solutions of proper direct images

Proposition 8.4.1

D

D

:

1

Ω [ ] Ω [ ]

Ω [ ] Ω [ ]

Ω [ ] Ω [ ]

Since the -linear integration morphism is deduced from the push-forward

: [ ] [ ]

through the Dolbeault quasi-isomorphisms

Ω ; Ω

the conclusion follows easily from the explicit construction of the -linear integration

morphism.

:

( )

( Ω [ ]) ( ( ) Ω [ ])

( Ω [ ]) ( ( ) Ω [ ])

:

( )

( Ω [ ]) ( Ω [ ])

( )

Working as in Theorem 8.2.2, we may assume that

=

where is a coherent -module with -proper support. Hence, we are reduced to

prove that

( Ω [ ]) ( ( ) Ω [ ])

is an isomorphism. Thanks to Corollary 8.3.8, this is nothing but the well-known

duality theorem of analytic geometry.

Let be a morphism of complex analytic manifolds.

The canonical section of induces a morphism

which, by composition with the -linear integration morphism

gives the -linear integration morphism

Proof:

Let be a morphism of complex analytic manifolds.

Assume is an object of . Then, we have the commutative diagram

where the horizontal arrows are deduced from the -linear and -linear integration

morphisms, the vertical ones being canonical isomorphisms.

Let be a morphism of complex analytic manifolds.

Assume is an object of with -proper support. Then the canonical

integration morphism

is an isomorphism in .

Proof:
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1

[ ]

∗ ∗ ∗

∗ ∗

∗

∗

∗ − ∗

∗

∗

X

X

X X

X X

θ

θ θ θ

X

θ ψ θ,ψ

9 Non-singular -modules

Jean-Pierre Schneiders

9.1 Definition

9.2 Linear holomorphic connections

\

−→

−→

D M M

⊂ M ∩
M M

M
D D M M ∅

D M M ⊂

−→

∇ −→ ⊗

∇ ⊗ ∇

∇

∇ 〈 ∇ 〉

∇ ⊗ ∇

∈
∇ ∇ −∇ −→

T X T X T X

p T X P X

q P X X

T X

V P X p V T X q q V

X

T X

p E X

X E

E T X E

he dh e h e

h e E

e E e θ

e E θ

e θ, e .

he L h e h e

h e E

θ, ψ

, E E

singular support

non singular -module

(linear) holomorphic connection on covariant

differential

horizontal

covariant derivative

Set
˙ =

and denote by

: ˙

the canonical projection to the cotangent projective bundle. Denote by

:

the projection to the base manifold. For any coherent -module , char( ) is a

conic analytic subvariety of . Therefore, it is possible to find an analytic subvariety

such that ( ) = char( ) ˙ . Since is proper, ( ) is an analytic

subvariety of . This is the of ; we denote it by sing( ). This is

obviously a subset of supp( ).

A is a coherent -module such that sing( ) = . In

other words, a coherent -module is non-singular if and only if char( ) .

To refresh the reader’s memory, we start with an informal survey of the basic definitions

in the theory of linear connections.

Let : be a holomorphic vector bundle on the complex analytic manifold

. Here, we will identify a with its

:

which is a first order differential operator such that

( ) = +

for any holomorphic function and any holomorphic section of . A holomorphic

section of is if = 0. For any holomorphic vector field , we define

the of a holomorphic section of along by the formula

=

Note that

( ) = +

for any holomorphic function and any holomorphic section of . Hence, for any

Θ , the operator

[ ] :
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[ ]

1 2

curvature of flat

dual
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X

p
p p

p p

p p p

θ,ψ θ ψ

X

X

θ

X X

X

X

X X X

∇
∗

∇

∗ ∗

∇

∗

∗

∗ ∗ ∗ ∗

∗ ∗

∇
∗
∇

∇

∇

∇

∇
∗

·
∇

∇
O

∇
O

∇
O

θ ψ

R E T X E.

R

T X E T X E

ω e dω e ω e

p ω e E

ω e ω R e .

E

E

d e , e e , e e , e

e e E E

R R .

E X

R

,

θ ψ

E

θ e e

θ e

E

T X

.

O

−→ ⊗
∇

∇ ⊗ −→ ⊗

∇ ⊗ ⊗ − ∧∇

∇ ◦ ∇ ⊗ − ∧
∇ ∇

〈 〉 〈∇ 〉 〈 ∇ 〉

−

D

∇

∇ ∇ ∇

D E
O

· ∇

∈ ∈ E E D

∇

E D

E ⊂

E

−→ E −→ ⊗ E −→ ⊗ E −→ · · · −→ ⊗ E −→

9.3 Non-singular -modules and flat holomorphic connections

Definition 9.3.1

Proposition 9.3.2 Let be a holomorphic vector bundle endowed with a flat holo-

morphic connection . Then

(i) is a coherent -module,

(ii) ,

(iii) is the complex

has order 0. Since it is also -linear and antisymmetric in and , it defines a vector

bundle homomorphism

:

This is the . A holomorphic connection is a connection with 0

curvature (i.e. = 0). The covariant differential has a unique extension

:

such that

( ) = + ( 1)

for any holomorphic -form and any holomorphic section of . A simple compu-

tation shows that

( ) = ( 1) ( )

The of a holomorphic connection on is the only holomorphic connection

on such that

= +

for any holomorphic section , of and respectively. A simple computation

shows that

=

Let be a holomorphic vector bundle on endowed with a flat

holomorphic connection . Since = 0,

= [ ]

for any holomorphic vector fields , . Therefore, by Proposition 3.1.3 there is a unique

structure of left -module on the sheaf of holomorphic sections of which extends

its structure of -module in such a way that

=

for any Θ and . We denote the corresponding -module.

char

Ω ( )

0 Ω Ω Ω 0
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∗

∗

∗

X X X X

X X

X

X

X X X X
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X X X X

X
X

X X

X

k

X X

X

X

X

X X X X

X

X

X

X

X

O ∇ D D ∇ O

O ∇ D ·

∇

∇

∇
∇

∇ ∇
∗

∇
∗

O ∇
∗
∇

D ∇
· ∗
∇

D O ∇ D O ∇

∗
∇

∗

.

k

k <

r T X T X

E X

om , .

X

R om , .

R om , R om , om , .

E X

u

E

T X

Proposition 9.3.3

D

Corollary 9.3.4

Proposition 9.3.5

D ⊗ E ⊗ O ' D ⊗ E ⊗ O

D ⊗ E ⊗ SP

E D E O
D E

F E E ≥

E G FE E ⊂

∇ D

H E O ' E

H E O ' E

H O ⊗ E O ' H O H E O

∇ D E

∇

D M

M

M⊂

M O

M D

We know by Proposition 4.1.3 that

( ) ( )

Therefore,

( )

is a resolution of by left -modules. Since is a locally free -module, the

components of this resolution are locally free -modules. Hence, is coherent and

the filtration

=
0

0 0

on is good. Since ˜ is supported by , it follows that char( ) .

Part (iii) being a direct consequence of the definitions, the proof is complete.

( )

( )

( ) Ω ( )

The first isomorphism is clear. To get the second one, we note that

( ) ( ( ))

= 0

char

Proof:

Let be a holomorphic vector bundle on endowed with a flat

holomorphic connection . Then, as -modules, we have

Hence, in ,

Proof:

Let be a holomorphic vector bundle on endowed with a flat

holomorphic connection . Then the -module represents the homogeneous

system

defining the horizontal sections of .

For a coherent -module , the following conditions are equiv-

alent:

(a) is non-singular,

(b) ,

(c) is -coherent,

(d) is the -module associated to a flat holomorphic connection.
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1

1 1

1

=1

1 1

1 1

=

1 0 1

0
1

0

1 0 0

=1

1 0

n

X

n

α
k

X

p p V

p

n

k

k

p p X

p p

`

`

β ` d

β
`
β

β
` X j j

`

k

X

X

X

n
X

p p

n

p X

p

k

k k p X

⇒ M
FM

M ⊂

GM

GM GD
GM

≥

GM ∈
− − GD

· · ·

∈ O ≥ ∈ { }
GM

G M �
FM M O

⇒ M O
M

· M −→M

∈
∇

M O
∈ M

M M

M O

∈ O

X

X

T X,

α α

ξ

k , . . . , n x X

V x m m d d

k d , . . . , d α

m ` y V

s s ` d ` d

m s m s m .

s

s a ξ

a β α j , . . . , n

s m

k

E X

θ

θ

θ E

X X

m m m m

/ z , . . . , z .

m m

b m b , . . . , b

By definition, (a) and (b) are equivalent.

(b) (c). The problem being local on , we may also assume that is endowed

with a good filtration and that is an open subset of CI . Since

char( )

we may find integers , . . . , such that

= 0

for = 1 . Let be a point in . Since is a coherent -module, we may

find a neighborhood of and generators , . . . , of order , . . . , of .

Choose

sup( ) +

and let be a germ of order of at . By construction, we may find germs

, . . . , of order , . . . , of such that

= + +

The ’s may be written as

=

with . In each term of this sum we have for at least a 1 .

From this fact we deduce that the ’s annihilate ; hence = 0. By the preceding

discussion we know that locally = 0 for 0. This means that the filtration

is locally stationary and thus is coherent.

(c) (d). Note that it is sufficient to prove that is a locally free -module.

As a matter of fact, is then the sheaf of holomorphic section of a holomorphic vector

bundle on and the action

:

of a holomorphic vector field Θ may clearly be interpreted as the covariant

derivative along associated to a flat holomorphic connection on .

Since the problem is local on , we may assume is an open neighborhood of 0

in CI and prove only that is a locally free -module near 0.

Let us choose , . . . , such that the associated classes [ ], . . . , [ ]

form a basis of the finite dimensional vector space

( )

By Nakayama’s lemma, , . . . , generate on ( ) .

Let us define the order of a relation

= 0 ( ( ) )
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0 1

−

∼

′

−

∑

∑
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`

`

`

X

9.4 Local systems

∈ O

−

−→ L

L −→ L

◦

−→
L

L

local system

monodromy

Jean-Pierre Schneiders

=1

=1

0

=1 =1

1

0 1
1

1 2

2

0 1 0 1
1

2

0 1 0 1

0

0 0 1 0

1 0

i

p

k

k k

z k

p

r

r
`k r

r
`k X z

p

r
z r

p

k

r
`k k r

p

n

γ x x

γ γ γ γ

γ γ

X

π

b

b m

δ

∂ m a m

a ∂

∂ b a b m

δ `

δ

m

m

X

,

γ , X X x x γ

,

m .

γ x x

m m m .

h , X

γ γ x x h

,

m m .

X π X

x x x x

X

x X

x , x π X, x ,

X

π X, x X

as the minimum of the vanishing orders of the ’s at 0.

Suppose we have a non trivial relation

= 0

of order . By construction, we have also

=

for some ( ) . Applying to the relation we started with gives us the relation

( + ) = 0

which is clearly of order 1 for a suitable .

Hence, if we can find a non trivial relation of order we can also find one which

has order 0. Such a non trivial relation is impossible since by construction [ ], . . . ,

[ ] form a basis.

Here, by a on we mean a locally constant sheaf of CI -vector spaces with

finite dimensional fibers. Recall that a locally constant sheaf on [0 1] is constant. In

particular, if : [0 1] is a path in from to , the sheaf is constant

on [0 1]. Therefore, we have a canonical isomorphism

:

Moreover, for any path joining to , we get

=

Let

: [0 1]

be a homotopy between two paths , joining to . Since the sheaf is

constant on [0 1] , we get

=

Recall that the Poincaré groupoid of is the category which has the points of

as objects; a morphism from to being a homotopy class of paths from to .

The preceding discussion shows that a local system on induces a functor from the

Poincaré groupoid to the category of finite dimensional CI -vector spaces. It is easily

checked that this process induces an equivalence between the corresponding categories.

Let us fix a point in . Since

Hom ( ) = ( )

we also get an equivalence between the category of local systems on and the category

of finite dimensional CI -linear representations of the Poincaré group ( ) of .
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X
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0 1

1

1

1
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D
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∗

∗

∗ ∗

∗

D

D

X

p
X

X

X

x x

p

p
X x

p

X

p
X

X X

α p

X

X

X

X

X
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X

p

x X i x X

T X i

i

p

α i .

R om , om i , .

x

β

α i β

i α

i

x

i i

i x

β x

E

X

R om ,

X

om ,

X

om , .

D

D

M
D M

M ' O ∈

D

{ } −→
M M ⊂ M

M D D
∈

M −→

H M O ' H M

D

M −→ O

N N
D O N

N

N

−→ N −→ M −→ −→

N N

M
D

H M O ' L

L

M 7→ H M O

D

L 7→ H L O

9.5 Non-singular -modules and local systems

Proposition 9.5.1

Remark 9.5.2

Proposition 9.5.3

Let be a complex analytic manifold and let be a coherent

-module. Assume is non-singular. Then, locally,

as a left -module.

Proof:

Let be a complex analytic manifold. Assume is a non-

singular coherent -module. Then,

where is a local system on . Moreover, the functor

induces an equivalence between the category of non-singular coherent -modules and

the category of local systems on with a quasi-inverse given by the functor

We will now establish a link between local systems and non-singular -modules.

( IN)

Let be a point of and denote by : the canonical embedding.

Since is non-singular, char( ) . Therefore, is non-characteristic for

and, by Theorem 7.3.2, is a coherent -module. Since is nothing but the

field of complex numbers, there is an integer IN and an isomorphism

: CI

By the Cauchy-Kowalewsky-Kashiwara theorem,

( ) ( CI )

Therefore, in a neighborhood of , we can find a morphism of -modules

:

such that = . Denote is kernel and its cokernel. Both are non-singular

-modules and coherent -modules. Since is the cokernel of , we have

= 0

and Nakayama’s lemma shows that = 0 in a neighborhood of . Since the sequence

0 CI 0

is exact, = 0 and = 0 in a neighborhood of . Combining the preceding

results, we see that is an isomorphism in some neighborhood of .

In the language of connections, the preceding result means that any

holomorphic vector bundle endowed with a flat holomorphic connection has hori-

zontal local frames.

( )

( )

( )
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p
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p
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j

A
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10.1 Linear algebra

10.1.1 Homological dimension

.

R om , R om ,

om om , ,

om om , , ,

X

A A

A A A

A M n

P P P M

M A

A N

M,N

j > n

M

A n

M' O

H M O ' H O O '

M−→ H H M O O

M O
D M

L −→ H H L O O

L

∈

−→ −→ −→ · · · −→ −→ −→

∈

left

homological dimension

global homological dimension

We know that, locally,

Therefore, locally,

( ) ( ) CI

and the first part of the proposition is clear. The canonical map

( ( ) )

is obviously an isomorphism for = ; therefore it is also an isomorphism for any

non-singular -module . In the same way, we see that the canonical map

( ( ) )

is an isomorphism for local systems on since it is so for = CI .

To split the difficulties, we first recall some basic results of linear algebra. Then, we

develop filtered algebra, and finally we switch to its sheaf theoretical counterpart.

Let be a ring with unit. Without explicit mention of the contrary, an -module is

a -module. With this convention, we identify -modules and right -modules.

The of an -module is the smallest integer IN such that

one of the following equivalent conditions is satisfied.

(a) There is a resolution

0 0

of by projective -modules.

(b) For any -module

Ext ( ) = 0

for .

We denote it by hd ( ).

The of the ring to the smallest integer IN such

that one of the following equivalent conditions is satisfied
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1 0

0 1

[ ] [ ]

n n

n

j

A

j

A

A

x

A
L
A x A x

p

finite type

finite free
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Proposition 10.1.1

10.1.2 Noether property

−→ −→ −→ · · · −→ −→ −→

−→ −→ −→ −→ · · · −→ −→

{ }

≤

−→ −→ −→ −→

⊗ '

∈

A M

P P P M

n

A N

N I I I

n

A M N

M,N

j > n

A A N

A/I,N

j > I A

A A/I I A .

A

A A x

A

A x A .

A x A x A ,

A M,N M,N

A x M N

A M

A p

A

A

Let be a ring and denote by the ring of polynomials in

one unknown with coefficients in . Then

Proof:

(a) Any -module has a projective resolution

0 0

of length .

(b) Any -module has an injective resolution

0 0

of length .

(c) For any -modules , we have

Ext ( ) = 0

for .

We will denote it by glhd( ). Note that, since an -module is injective if and only

if

Ext ( ) = 0

for any 0 and any left ideal of , we have

glhd( ) = sup hd ( ) : left ideal of

So the global homological dimension depends only on cyclic -modules.

[ ]

glhd( [ ]) glhd( ) + 1

Thanks to the exact sequence

0 [ ] [ ] 0

the result is a direct consequence of the formula

RHom ( ) RHom ( )

holding for every [ ]-module and .

We say that an -module is of if it is generated by a finite number of

elements. It is if it is isomorphic to for some IN.

For a ring the following conditions are equivalent

(a) Any submodule of an -module of finite type is of finite type.
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1 0

1

1 0

( )

( ) ( )

( ) +1 +1 ( )

+1

+

n
d

n
d

A n n

n n

A

i
A

I

i
A

I i
A

I

i
A

I i
A

i

A

i

A

I

i
A

i

A

p

i
A

i p

A p

i
A

· · · −→ −→ −→ · · · −→ −→ −→

≤

−→ −→ −→ · · · −→ −→ −→

∞

∈

−→ −→ −→ −→

−→ −→ −→

'
∈

A

A

A

A A M

L L L M

A M n P d A

P L L M .

A

A A <

A M M

n

M,A

i > n

N A

R A N

I N M A

M,A M,A

i > n

M,A M,N M,R M,A

M,N M,R

i > n p A R

M,N M,R

i > n i > n i p > A

M,N ,

Assume is Noetherian and . Then, for any

-module of finite type , the homological dimension is the smallest integer

such that

for .

Proof:

(b) Any ideal of is finitely generated.

(c) Any increasing sequence of submodules of an -module of finite type is stationary.

(d) The subcategory of -modules of finite type is stable by kernels, cokernels and

extensions.

A ring satisfying one of these conditions is said to be . In some sense,

Noetherian rings are the only rings for which finite type modules are well-behaved.

If is Noetherian, any -module of finite type has an infinite resolution

0

by finite free -modules. If hd ( ) , then = ker is a projective -module

of finite type and we have the finite projective resolution

0 0

To compute the homological dimension of an -module of finite type, we have the

following proposition.

glhd( ) +

hd ( )

IN

Ext ( ) = 0

Let be any -module. We have an exact sequence

0 0

where is some set of generators of . Since has a resolution by finite free -

modules

Ext ( ) = Ext ( ) = 0

for . Then, the exact sequence

Ext ( ) Ext ( ) Ext ( ) Ext ( )

shows that

Ext ( ) Ext ( )

for . By induction, we find for any IN an -module such that

Ext ( ) = Ext ( )

for . As soon as and + glhd( ), we get

Ext ( ) = 0

and the conclusion follows.
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n n
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n n
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1 0

1 0

0 1

1 1 0

1 0

1 0

1

1 1 1

1 1 1

1 1 1 0

1 0

10.1.3 Syzygies

Proposition 10.1.3

A

A

A

A M

L L L M

A

A M

A P A

L P L

M M <

n A P

n n

n

L L P

P L L P n >

L L L L P

P d

P L P

P

n

L L L P .

A L L P

L P L L P

n

M A n , M

P L L M

−→ −→ −→ · · · −→ −→ −→

⊕

⇒ ∞

−→ −→ −→ −→

' ⊕

−→ −→ −→ · · · −→ −→ −→ −→

−→ −→ −→ −→

−
−→ −→ −→ · · · −→ −→ −→

⊕

−→ ⊕ −→ ⊕ −→ −→

⇒

−→ −→ −→ · · · −→ −→ −→

Assume the ring is Noetherian. Then, the following conditions

are equivalent:

(a) any -module of finite type has a finite resolution

by finite free -modules,

(b) any -module of finite type has finite homological dimension and any finite

type projective -module is stably finite free (i.e. there is a finite free -module

such that is finite free).

Proof:

Let us now investigate when any -module of finite type has a finite resolution by finite

-modules.

0 0

(a) (b). Obviously, has a finite projective resolution and hd ( ) + .

We will prove by induction on that a finite type projective -module which has

a finite free resolution of length is stably finite free. For = 0, it is obvious. For

= 1, the exact sequence

0 0

splits since is projective; hence and the conclusion follows. For 1,

we have the resolution

0 0

denote the kernel of . Since the sequence

0 0

is exact, the module is projective. Moreover, it has a finite free resolution of length

1

0 0

The induction hypothesis gives us a finite free -module such that is finite

free. Since the sequence

0 0

is exact, the conclusion follows from the case = 1.

(b) (a). Let be an -module of finite type. Let = sup(1 hd ( )). We

have a resolution

0 0
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k n n

n n

n n

id i

n n

A

p

ij

p p

p p pp p

p

p u

p v

A

⊕

−→ ⊕ −→ ⊕ −→ · · · −→ −→ −→

∈ −
− ∈

· · ·

· · ·

−→

−→

Corollary 10.1.4

10.1.4 Local rings

Lemma 10.1.5 (Nakayama’s lemma)

Proposition 10.1.6

L P L

A L P

L P L L L M

A

A A M

, M

A

A

M A M M/ M

M

p g , . . . , g p M M

m g m g m g M

m A g M p > m

i , . . . , p j , . . . , p

g m g m g

g m g m g

g g , . . . , g

A

M A

A M

A/ M/ M.

A/ ,M u v

Assume the ring is syzygic. Then, any finite type -module

has a finite free resolution of length .

Assume is a local ring with maximal ideal

and let be an -module of finite type. Then, if and only if .

Proof:

Assume is a Noetherian local ring with maximal ideal and

is an -module of finite type. Then, a map

is surjective if and only if so is the associated map

If, moreover, , then is bijective if and only if so is .

where is finite free and is a projective module of finite type. Let be a finite

free -module such that is finite free. Since the sequence

0 0

is still exact, the proof is complete.

A ring is when it satisfies the equivalent conditions of the preceding

proposition and has finite global homological dimension.

sup(1 hd ( ))

Recall that a ring is if it has a unique maximal ideal.

m = 0 m = 0

The proof will work by induction on the number of generators of . Denote

this number by and assume are these generators. If = 1 then = m

implies that there is m such that = . Hence (1 ) = 0 in and

since 1 is invertible in , = 0 and = 0. If 1 then there are m for

= 1 ; = 1 such that

= + +
...

...

= + +

From the first line we see that is a linear combination of ; hence the

conclusion by the induction hypothesis.

m

( m) m

Tor ( m ) = 0
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1
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Corollary 10.1.7

10.2 Graded linear algebra

A
p

A A

A

A A A

A

A
j A

n
d

n

n n
A

n

n n A

k k

k k

k ` k `

k

k k

k k

k ` k `

⊗ −→ ⊗ −→ ⊗ −→

−→ ⊗ −→ ⊗ −→ ⊗ −→

≤

∞

· · · −→ −→ −→ · · · −→ −→ −→

≤

∈

⊂

⊂

N N u v

N / N

A/ A A/ M A/ N

v A/ ,M

A/ N A/ M A/ M

N / N N

A M A

A/ ,M M

A/ ,M j > n M n

A < A

A/

L L L M

M F d A/ , F

F F M n

GA A G A

A

A G A

G A

G A.G A G A

G A k < GA

GM GA A M

G M M

M G M

G A.G M G M

Proof:

Assume is a Noetherian local ring and is a finite type -

module. Then

(a) implies finite free,

(b) for implies .

In particular, if , is syzygic.

Proof:

Denote by and the kernel and the cokernel of . Clearly, is surjective

if and only if m = 0 since the sequence

m m m 0

is exact. If is bijective and Tor ( m ) = 0, the sequence

0 m m m 0

is exact and m = 0; hence = 0.

Tor ( m ) = 0

Tor ( m ) = 0 hd ( )

glhd( ) +

(a) is obvious from the preceding proposition since m is a field.

(b) Let

0

be a finite free resolution of . Let = ker . By construction, Tor ( m ) = 0

and is of finite type hence is finite free by (a) and hd ( ) .

A graded ring is the data of a ring with unit and a family of subgroups ( )

of satisfying:

a. = ,

b. 1 ,

c. .

Here we always also assume that = 0 for 0 (i.e. is positively graded).

A graded module over the graded ring is the data of an -module and

a family of subgroups ( ) of such that

a. =

b.
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�

−→

⊂

∈

' ⊕ −

−→ −→ · · · −→ −→ −→

∈ ∈
∈

∈

k

k k

GA

k k r

GA

k GA GA

n

n

i
i

s s

i

d n d

d

n

i

d d d

d d d d

G M k

GA GM GA GN

A

f M N

f G M G N

GM,GN

GA

r GA GM GA GM r

A M

G M r G M.

GM,GN

GM,GN GM,GN k .

GA GL d , . . . , d

GL GA d .

s GA GM

GL GL GL GM

GL

GA GM

m G M, . . . ,m G M

m G M

m a m

a G A

GA GA GA

GA

GA GA

Here we will always also assume that = 0 for 0.

A morphism of a graded -module to a graded -module is a morphism

of -modules

:

such that ( ) .

These morphisms form a group denoted by Hom ( ).

With this notion of morphisms the category of graded -modules is Abelian.

The reader will easily find the form of the kernel, cokernel, image, and coimage of a

morphism in this category.

For and any -module we define the shifted -module ( ) to be

the -module endowed with the graduation defined by

( ) =

Let us denote by GHom ( ) the graded group defined by setting

G Hom ( ) = Hom ( ( ))

A -module is finite free if there are integers such that

( )

A finite free presentation of length of a -module is an exact sequence

0

where is finite free.

A -module is of finite type if it has a finite free presentation of length 0.

This means that there are homogeneous elements such

that any may be written as

=

where .

A graded ring is if any -submodule of a -module of finite

type is of finite type. An equivalent condition is that the subcategory of -modules

of finite type is stable by kernels, cokernels and extensions.

If is Noetherian then any -module of finite type has finite free presentations

of arbitrary length.
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p
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i
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i
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p
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GA GA
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10.2.2 Homological dimension

Proposition 10.2.1

Corollary 10.2.2

GA GM n

GM,GN j > n GA GN n

GM n GM

GA

GA GA

GA

GA

A

GM G M

GA GM GA

GM,GN GM, GN

i GM GM GA GA

GA

GL GL GL GM

GM GA d , . . . , d

GA d ,GN GA,GN d GN d .

GL,GN GL, GN

GL GA GL GA

GL.,GN GL , GN

GA GA

GA GM GM n

GM,GA

i > n

If is Noetherian and is a -module of finite type then

for . In particular and .

Proof:

Assume is Noetherian and is finite. Then, for any

finite type -module , is the smallest integer such that

for .

The homological dimension of a -module is the smallest integer such that

Ext ( ) = 0 for and any -module . It is also the smallest

such that has a projective resolution of length . We denote it by hd ( ).

The global homological dimension of is the supremum of the homological di-

mensions of all -modules. It is denoted by glhd( ). It is also the supremum of

the homological dimensions of finite type -modules.

We denote by Σ the functor which associates to any -module its underlying

-module. We have

Σ =

and Σ is an exact functor.

ΣGExt ( ) = Ext (Σ Σ )

IN hd ( ) = hd (Σ ) glhd( ) = glhd(Σ )

Since is Noetherian, we have a resolution

0

of by finite free -modules. If are integers, we have

GHom ( ) = GHom ( )( ) = ( )

Thus,

ΣGHom ( ) Hom (Σ Σ )

when is a finite free -module. Since Σ is a finite free Σ -module, the

isomorphism

ΣGHom ( ) Hom (Σ Σ )

gives the requested result in cohomology.

glhd( )

hd ( )

GExt ( ) = 0
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k k

GA

p
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0

0

0

0

0

0
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0 0 0 1

−→

⊗
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⊗

−→ ⊗

−→
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10.2.3 Syzygies

Proposition 10.2.3

Proposition 10.2.4

GA

GA GM

GA GM

GA

GA

GA G A

GA

p GA G A.

p GI

G A GM GM/GI.GM

GA GM GM

GM GI.GM

GM

k G M G M GI.GM

k

GP GA G A

GP G A

GP GA

G A G A GP.

GL GP

GL GA GN GN

G A GL G A GP G A GN

Assume is Noetherian. Then, the following conditions are

equivalent :

(a) Any finite type -module has a finite free resolution of finite length.

(b) Any finite type -module has finite homological dimension and finite type

projective -modules are stably finite free.

Let be a graded ring. Assume that projective -modules

of finite type are finite free (resp. stably finite free). Then, so are the projective

-modules of finite type.

Proof:

The study of finite free resolutions of finite length in the preceding section may be

reproduced in the graded case and we get

A ring with finite global homological dimension satisfying the equivalent con-

ditions of the preceding proposition is called .

Consider the ring morphism

:

If is an isomorphism, we have nothing to prove. Otherwise, denote by its kernel.

We have

=

for any -module . If is of finite type then

=

if and only if = 0. As a matter of fact, assuming the contrary there is a lowest

integer such that = 0. A non zero element of is thus in

and should be of degree greater than + 1; hence a contradiction.

Now, let be a finitely generated projective -module. It is clear that

is a finitely generated projective -module. Hence it is finite free (resp. stably

finite free) and (up to adding to a finite free -module) there is an isomorphism

This isomorphism comes by, scalar extension, from a morphism

where is a finite free -module. Denote by the kernel and by the

cokernel of this morphism. We have the exact sequence

0
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GA

GA GA GA

k k

k k

k k

k ` k `

k

k

k k

k k

k k

k ` k `

k

k

k k

k F M k k

Corollary 10.2.5

10.3 Filtered linear algebra

Assume is syzygic then the graded ring is syzygic.

⊗

−→ −→ −→ −→

−→ ⊗ −→ ⊗ −→ ⊗ −→

⊂ ∈

⊂ ∈

∈

∈ ∈
∈

⊂ ∈

⊂ ∈

�
∈ ∈

−∞ ≤
≤

−→

−→

⊂

−→

G A GN GN

GN GL GP

GP

G A GN G A GL G A GP

GN

A A x

FA A F A

A

F A A

F A F A k Z

F A.F A F A k, `

F A

F A k < FA

a A k

a F A a

FA A M

F M M

F M M

F M F M k

F A.F M F M k, `

F M k

M k a

F M m m.n

m n m n n , n

Fu FM FN

FA u M N A

u F M F N.

F u u F M F N

hence = 0 and = 0. The exact sequence

0 0

splits since is projective. Hence we have the exact sequence

0 0

and = 0. The conclusion follows.

[ ]

A filtered ring is the data of a ring with unit and a family of subgroups ( )

of satisfying

a. = ,

b. ( ),

c. ( ).

d. 1 .

Here, we always also assume that = 0 for 0 (i.e. is positively filtered).

The order of a non zero element is the smallest integer such that

. We denote it by ord( ).

A (filtered) module over the filtered ring is the data of an -module and a

family ( ) of subgroups of such that

a. =

b. ;

c. ;

here we will always also assume that = 0 for 0.

The order of a non zero element of is the smallest integer such that

. We denote it by ord( ). By convention ord(0) = . Of course, ord( )

ord( ) + ord( ) and ord( + ) sup(ord( ) ord( )).

A morphism

:

of -modules is a morphism : of the underlying -modules such that

( )

We denote by the morphism : .
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FA

k k

k k

k k

k k

Fu Fv

k k

k r k

FA

k FA FA

k k k

k k k

kernel

cokernel

image

coimage

strict

not

exact sequence

strict exact sequence

FA FM FA FN

FM,FN FA

Fu FM FN

u M N Fu

u u F M Fu u

p F N p N u

Fu A

u u F N Fu

Fu A u

u F M

Fu Fu

FA

FA

FM FN FP

F v F u Fu

Fv

r FA FM FM r

M F M

FM,FN FA

FM,FN

FM,FN FM,FN k .

FA GA

G A F A/F A

FA

FA FN GA GM

G M F M/F M

Morphisms from an -module to an -module form a group which is

denoted by Hom ( ). With this notion of morphisms the category of -

modules is an additive category. Consider an arbitrary morphism

:

having : as underlying morphism. The of is the kernel of

filtered by the family (ker ) . The of is the cokernel of

filtered by the family ( ( )) where : coker is the canonical projection.

As usual, the of is the kernel of its cokernel. Hence, it is the -module

im filtered with the filtration (im ) . As for the of , it is the

cokernel of the kernel of . Hence, it is the -module im endowed with the filtration

( ( )) .

Note that the canonical filtered morphism

coim im

is a bijection but is not in general an isomorphism.

The morphisms for which this map is an isomorphism are called .

The category of filtered -modules is Abelian. However, one can show that

it is an exact category in the sense of Quillen [14]. Hence, it is suitable for homological

algebra. For the sake of brevity we will avoid this point of view here and refer the

interested reader to Laumon [13].

An of -modules is a sequence

such that ker = im . It follows from this definition that is strict. If moreover

is strict we say that it is a .

For any and any -module , we define the shifted module ( ) as

the module endowed with the filtration ( ) .

Finally, we introduce for any couple of -modules the filtered group

FHom ( )

by setting

F Hom ( ) = Hom ( ( ))

To any filtered ring we associate a graded ring defined by setting

=

the multiplication being induced by that of .

To a filtered -module we associate a graded -module defined by

setting

=



D 61

1 1 1

1 1

1

Proposition 10.3.1

′

′ ′
−

′′
− −

′′
−

′ ′ ′′
−

′ ′′
−

′

An Introduction to -Modules

∈ ∈

−→

−→

−→ −→

◦

−→ −→

−→ −→

∈ ∈
∈ ∈

− ∈
−

∈ ∩
∈ ≤

The condition is necessary.

The condition is sufficient.

k k k k

k k

Fu Fv

Gu Gv

k k k k k k k

k k k k k k

k k k k k k

k k k

k k k k k k

k k

k ` ` `

` ` ` ` k

Let be a filtered ring and consider two morphisms

such that . Then, the sequence

is a strict exact sequence if and only if the sequence

is exact.

Proof:

GA GM FA FM

m F M a F A G M G A

k σ m σ a m a

m a

FA

Fu FM FN

GA

Gu GM GN.

FA

GA

GA

FA A

FA

Fu FM FN, Fv FN FP

Fv Fu

FM FN FP

GM GN GP

n G N G v n n F N n

σ n v n F P Fv n F N

v n v n v n n m F M

u m n n

G u σ m σ n n

Fv p F P v `

p v n n F N ` k

G v σ n σ p .

the action of on being induced by that of on .

The image of (resp. ) in (resp. ) is its symbol of order

. We denote it by ( ) (resp. ( )). The principal symbol of (resp. ) is its

symbol of order ord( ) (resp. ord( )).

A filtered morphism of -modules

:

induces a graded morphism of -modules

:

The preceding construction clearly defines a functor from the category of -

modules to the category of -modules. We denote this functor by Gr.

The last part of this section will be devoted to the study of this functor. In par-

ticular, we will investigate how finiteness and dimensionality properties of induces

similar properties on and on .

: :

= 0

Let be such that ( ) = 0. There is such that =

( ). Hence we have ( ) . Since is strict we find such

that ( ) = ( ). Then ( ) = 0 and there is such that

( ) = . This shows that

( ( )) = ( ) =

and the conclusion follows.

Let us prove that is strict. Assume im . Let be the smallest

integer such that = ( ) with . We need to show that . Assume the

contrary. Then

( ( )) = ( ) = 0
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1

1 1 1

1

1

1
1 1

1

1

=1

1

1

=1
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∈

− ∈ −

�
∈

∈

− ∈ ∈

−

−→
⊂ ⊂

∩ ∩
∩

∩ ∩

⊕ −

−→
∈ ∈

∈

∈

` `

` ` ` ` `

` ` ` ` ` k

k k

k k k k k k

k k

k k k k k

k k k k k

k k k

k k k

k k k k

k k k

k k k

p

i
i

p

d p d

d

p

i

d d i

d d d d

Let be a filtered ring and be a morphism of

-modules. Then and . Moreover, the

following conditions are equivalent:

(a) is strict,

(b) ,

(c) .

Proof:

m F M

G u σ m σ n .

n u m F M v n u m p

F v F u k k

F N n F v G v σ n

m F M

G u σ m σ n .

n u m F N m F M

u m n u m

FA Fu FM FN

FA Fu Fu Fu Fu

Fu

Fu Fu

Fu Fu

Fu u F M/ u F M

Fu F M u F N /F M

Fu u F M /F N

Fu u F N/ u F N.

FA FM

FA d

d , . . . , d FA FM

FL FM

FL m F M, . . . ,m F M

m F M

m a m

a F A

Hence, there is an such that

( ( )) = ( )

As a consequence, we get ( ) . But ( ( )) = and we get a

contradiction.

Let us prove now that ker = im by increasing induction on . For 0,

= 0 so the result is obvious. Let ker . Since ( ( )) = 0, there is

such that

( ( )) = ( )

Hence ( ) . By the induction hypothesis there is such

that

( ) = ( )

and the proof is complete.

:

Gr ker ker Gr im Gr Gr im

Gr ker = ker Gr

im Gr = Gr im

The equivalence of (a), (b) and (c) is a consequence of the preceding proposi-

tion. To conclude we just have to note that

Gr ker = ker ker

ker Gr = ( )

and that

im Gr = ( )

Gr im = im im

An -module is if it is isomorphic to

( )

where are integers. An -module is of finite type if there is a strict

epimorphism

where is finite free. This means that we can find such

that any may be written as

=

where .
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•

•

•

−→

⊂ ⊂

⊕

⊕

−→ −→ −→ −→

−→ − −→ −→ −→

10.3.1 Noether property

Proposition 10.3.3

non necessarily strict

(filtered)

Noetherian

The condition is sufficient.

FA

FA

FA

FA

FA

FA

A

FA GA

FA GA

FM FA

FM

FM GA GM GA

GM FM GA GM

GM

FM FM

FM FM

`

F M F M F M .

`

` GA

GK F M /F M

GK F M/F M .

GK GM GK

GK GM GK .

GM GA GK GK GM

Let be a filtered ring and denote by its associated graded

ring. Then is filtered Noetherian if and only if is graded Noetherian.

Proof:

For a filtered ring , the following conditions are equivalent.

Any filtered submodule of a finite type -module is of finite type.

Any filtered ideal of is of finite type.

Any increasing sequence of filtered submodules of a finite free -module is

stationary.

Let us emphasize that in the preceding conditions we deal with

submodules and ideals.

A filtered ring satisfying the above equivalent conditions is said to be

. From this definition, it is clear that if is filtered Noetherian then the

underlying ring is itself Noetherian.

We need to prove that a filtered submodule of a finitely generated -module

is finitely generated.

If is strict, then the associated -module is a submodule of the -

module associated to . Since is Noetherian and is finitely generated

so is and the conclusion follows.

To prove the general case, we may thus assume that the image of the inclusion

is equal to . In this case, using a finite system of generators of , it is easy to

find an integer such that:

We will prove the result by increasing induction on .

For = 1, let us introduce the auxiliary -modules

=

=

These modules satisfy the exact sequences

0 0

0 ( 1) 0

Since is a finite type -module, so are and . Hence is also finitely

generated and the conclusion follows.
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⊂ ⊂

⊂ ⊂

⊕

⊂ ∈

⊕

−→

−→

−→

−→

−→
↑ ↑

−→

The condition is necessary.

′′

′′
−

′

′′ ′′

′′

′ ′′
−

′

∈

∈

′ ′

′

′ ′

` > FA FM

F M F M F M .

F M F M F M ,

FM

F M F M F M ,

FA

FA F A.

F A F A F A T

FA FA FM FA

FM F M

Fu FM FN

Fu FM FN

FA FA

FA

M L

FA L

FM FL

FA FL

M L

FM FL

FA FA

FA/ FA.T GA.

For 1, we define the auxiliary -module by setting

= +

Since we have

the preceding discussion shows that is finitely generated. Moreover,

and the conclusion follows from the induction hypothesis.

To we associate the graded ring

Σ =

Since the identity 1 and defines a central element of degree 1 in

Σ . To any -module we associate the Σ -module

Σ =

Obviously, any morphism : induces a morphism

Σ : Σ Σ

of graded Σ -modules. Hence, we get a functor Σ from the category of filtered -

modules to the category of graded Σ -modules. One checks easily that this functor

is fully faithful and that it transforms exact sequences into exact sequences. Moreover,

for any inclusion

of Σ -modules where is finite free there is a strict monomorphism

of -modules where is finite free and a commutative diagram

Σ Σ

It is thus clear that Σ is graded Noetherian if and only if is filtered Noetherian.

The conclusion follows from the formula

Σ Σ =
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Proposition 10.3.4

Proposition 10.3.5

s s

s

j

GA

j

A

A GA

n n

n n

j

GA

GA j GA j GA j

FA GA

FA j FA j FA j

FA A

· · · −→ −→ −→ · · · −→ −→ −→

⇒

≤ ≤

· · · −→ −→ −→ · · · −→ −→ −→

· · · −→ −→ −→ · · · −→ −→ −→

−→ −→

−→

−→ −→

FA FM FA

FM FA GM GA

FM FA GM GA

FA FA

FL FL FL FM

FL FA

FA FA

FM FA FN

GM,GN M,N .

M GM A GA

FL FL FL FM

FM FA

GL GL GL GM

GM GA GM,GN

GL ,GN GL ,GN GL ,GN

GA

FL,FN GL,GN

FL

FL , FN FL , FN FL , FN

FA FL

FL, FN L,N

Assume is Noetherian and is an -module. Then

(a) is an -module of finite type if and only if is a -module of finite

type,

(b) is a finite free -module if and only if is a finite free -module,

(c) any -module of finite type has an infinite resolution by finite free -modules

(i.e. there is an exact sequence

where each is a finite free -module.

Assume is Noetherian. Then, for any -module of finite

type and any -module ,

In particular, and .

Proof:

0

GExt ( ) = 0 Ext ( ) = 0

hd ( ) hd ( ) glhd( ) glhd( )

Let

0

be a filtered resolution of by finite free -modules. Applying the graduation

functor we get a resolution

0

of by finite free -modules. Assuming GExt ( ) = 0 means that the

sequence

GHom ( ) GHom ( ) GHom ( )

is an exact sequence of -modules. The natural map

GrFHom ( ) GHom ( )

is an isomorphism when is finite free. Hence the sequence

FHom ( ) FHom ( ) FHom ( )

is a strict exact sequence of -modules. When is finite free the underlying module

of FHom ( ) is Hom ( ). Hence the conclusion.
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commutator

Poisson bracket

10.3.2 Syzygies

Proposition 10.3.6

10.3.3 Gabber’s theorem

n n

GA

n
d

n
d

n n

n n

GA n n n

n n n

n

n n n n

n n n n

k k ` ` k ` k `

k ` k ` ` k

k ` k `

k ` k ` k ` k `

k k k ` ` `

k k l `

k ` k ` k `

−→ −→ −→ · · · −→ −→ −→

· · · −→ −→ −→ · · · −→ −→ −→

−→ −→ −→ · · · −→ −→ −→

≤
⊕

−→ ⊕ −→ ⊕ −→ · · · −→ −→ −→

⊕ ⊕

∈ ∈

· − ·

⊂

∈ ∈
∈ ∈

{ }

Assume is a filtered ring and is syzygic then any -

module of finite type has a finite free resolution

of length . In particular, is syzygic.

Proof:

FA GA FA

FM

FL FL FL FM

n , GM A

FL FL FL FM

FM FP d

GP GL GL GM

GP GP GL

GA GL GP FL

FA GL GA

FP FL FL FL FL FM

FP FL GA GP GL

A M A

FA FM

FA GA

a F A b F A a , a a a

a , a a a a a .

GA

F A, F A F A.

σ a , a σ a , a

a , a F A a , a F A k `

s G A s G A

s , s σ a , a

0 0

= sup(1 hd )

Let

0

be a finite free resolution of . Set = ker . Since the sequence

0 0

is exact, hd ( ) 0 and is projective. It is thus stably finite free. Let

be a finite free -module such that is finite free. Let be a finite

free -module which has as associated graded -module. We have the exact

sequence

0 0

and is finite free since its associated -module is finite free.

To conclude, note that any finite type -module is the underlying -module of

a finite type -module .

Let be a filtered ring and denote by its associated graded ring.

For any , we define the [ ] of and as usual

by setting

[ ] =

Obviously, is commutative if and only if

[ ]

In this case, one checks easily that

[ ] = [ ]

if (resp. ) have the same symbol of order (resp. ). This

property allows us to define the of two symbols and

by setting

= ([ ])
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k k ` ` k k k ` ` `

k k ` `

k `

k ` k `

U U U U

U U U U

Theorem 10.3.7

10.4 Transition to sheaves

′ ′

′ ′′ ′ ′′ ′ ′′

′ ′′ ′ ′′ ′ ′′

−

GA | | GA | |

FA | | FA | |

GA GA

FA FA

∈ ∈

{ } −{ }
{ } { } { }

{ { }} {{ } } { { }}

∈ ∈

∈ {· ·}√
{· ·}

{
√ √

} ⊂
√

GA FA GM GN
FM FN GA FA

−→ GM GN 7→ GM GN

−→ FM FN 7→ FM FN

H GM GN GH GM GN

H FM FN FH FM FN

a F A a F A σ a s σ a s

s, s s , s

s, s s s, s s s s, s

s, s , s s, s , s s , s, s

FM FA FI

a F I a F I

a , a FM

a , a F I GI FI ,

GI ,

FA GA

FA FM

GM, GM GM

GM GA FM

X

,

,

U , U ,

U , U ,

X

om , om ,

om , om ,

Let be a filtered ring and assume is a commutative Noethe-

rian -algebra. Then, for any finite type -module we have

where is the -module associated with .

where and are such that ( ) = and ( ) = . The Poisson

bracket satisfies the following easily checked identities:

=

= +

= +

Now, let be an -module and denote by its annihilating ideal. Obviously,

if and we have

[ ] = 0

and [ ] . Hence the graded ideal associated to is stable by .

However, it is not obvious at all that is also stable by . This problem was

solved by Gabber in [5]. His proof is rather technical, so we skip it here and refer the

interested reader to the original paper.

QI

Ann Ann Ann

The reader will easily extend the definition of graded and filtered rings and modules

given above to the case of filtered and graded sheaves of rings and modules on a topo-

logical space . The notion of graded or filtered morphisms are also easily extended

to sheaves as is the notion of strict filtered morphism and of graded or filtered exact

sequences.

Let (resp. ) be a graded (resp. filtered) sheaf of rings and (resp.

) two (resp. ) modules. The functors

Hom ( ); GHom ( )

(resp.

Hom ( ); FHom ( )

) clearly define sheaves of groups and graded (resp. filtered) groups on . We denote

then by

( ); ( )

(resp.

( ); ( )

)
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coherent

module

coherent

Definition 10.4.1

Remark 10.4.2

Proposition 10.4.3

A GA FA

A GA FA

A
A

FA
FA

FA GA
FA FM

GA GM

FA GA
A

A GA

FA FM GM GA

FN FA FM
A N

FA FM
A M

A

A −→ A

⊕ FA − −→ FA

FA
A N
GA

Let be a coherent filtered ring on and denote by the

associated graded ring and by the underlying ring. Then

(a) the ring and the graded ring are coherent,

(b) an -module is coherent if and only if is coherent,

(c) a strict submodule of a coherent -module is coherent if and only if

the underlying -module is locally of finite type,

(d) an -module locally of finite type is coherent if and only if the underlying

-module is coherent.

Proof:

The definition of the graduation functor will also be easily extended to sheaves of

filtered rings and modules. Finally, the reader will generalize easily to sheaves the

notion of finite free and finite type modules and that of a finite free -presentation.

The finiteness conditions require more attention since the category of modules of

finite type over a sheaf of rings is almost never well-behaved. To get satisfactory

finiteness conditions on (resp. , ) we need to go a step further and consider

modules having locally finite free 1-presentations.

The ring (resp. , ) is if the category of modules

which admits locally finite free 1-presentations is stable by kernels, cokernels and ex-

tensions as a subcategory of the category of modules. A on a coherent ring

(resp. graded ring, filtered ring) is if it has locally a finite free 1-presentation.

A sheaf of rings is coherent if and only if for any open subset of the kernel

of a morphism of free -modules is locally of finite type.

An analogous criterion holds for sheaves of graded rings.

For a sheaf of filtered rings , the criterion is that for any open subset of

the filtered kernel and the filtered image of a morphism of finite free -modules are

both locally of finite type.

Let be a filtered ring on and denote by the associated

graded ring. Then, an -module is locally of finite type (resp. finite free), if

and only if the -module is locally of finite type (resp. finite free).

(a) Let us prove that is coherent. Let be an open subset of and consider

a morphism

This is the underlying morphism of a filtered morphism

( )

We know that the kernel of this morphism is an -module locally of finite type. Since

its underlying -module is the kernel of , the conclusion follows.

To prove that is coherent, we proceed as in Proposition 10.3.3.
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U U

U U

x

x

x

u

x x

y y

V V V

V V V

x x x

x

v

x
v

x

v

X

x X

x X

u x X u r u r u

r u r u u u y

x u V x u

r u r u

x r u r u u

u x X u

v u

u

α, β u α v β

FN FM N
N FM

FN

FL| −→ FN|

FL FA
FM M

FL| −→ FM| −→
FL FN N

FA GA

FA FA ∈

GA GA ∈

⇒

⇒ FA

FL −→ FL

FA
F ∈ F G F G F
GA G F ⊂ G F F F

F F
G F G F GA

G F G F GA F

F ∈ F FA FL
FA

FL −→ FL
FA F ⊂ F

FL −→ F −→

FL ⊕FL −→ FL
7→

Assume is a filtered ring on and denote by the associated

graded ring. Then, the following conditions are equivalent:

(a) is coherent and is Noetherian for every ,

(b) is coherent and is Noetherian for every .

Proof:

(b) Proceed as in Proposition 10.3.4.

(c) Let be a strict submodule of and assume is locally of finite type.

Since the local generators of have locally a finite order in , we may view locally

as the filtered image of a morphism

where is a finite free -module. Hence the conclusion.

(d) Assume that is locally of finite type and that is coherent. Locally, we

have a strict epimorphism

0

where is finite free. Denote by its kernel. By hypothesis we know that is

coherent; hence the conclusion by (c).

(a) (b) is a consequence of the preceding proposition and of Proposi-

tion 10.3.3.

(b) (a) We know already that is Noetherian. It remains to prove that the

kernel and the image of a morphism

of finite free -modules are locally of finite type.

Assume is strict at . Then Gr ker = ker . Since ker

is a coherent -module and ker ker , Gr ker = ker Gr for

in a neighborhood of . Hence is strict in a neighborhood of and ker is

locally of finite type since ker = ker is coherent. Moreover, in a

neighborhood of , im = im is a coherent module and im is

locally of finite type.

Assume is not strict at . Since im is a sub -module of ( )

and is Noetherian, it is finitely generated. It is thus possible to find locally a

morphism

of finite free -modules such that im im and for which

( ) im 0

is a strict epimorphism. The morphism

( ) ( ( ) + ( ))
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j
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x x x

x X
x x

j j

A

A

A
∈

A

A

GA A

A GA

Proposition 10.4.5
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x w u

u w x v u

f

u f v

w u

α, β α f β

u

u u

n

j > n

,

x X j > n

,

.

.

X

X

xt , ,

F F
F F F ⊂ F

A

L −→ L

◦ A

−→
7→

FA FL

FL −→ FL
F FA F

FA

A M A
M

• A N

M N

• A N ∈

M N

M M

A

{ M M A }

FA
FA FM FA FN

GE GM GN ⇒ M N

M N A FM FN GM GN
M ≤ GM

A ≤ GA

Assume the filtered ring on is coherent. Then, for any

coherent -module and any -module

where , are the underlying -modules of , and , are the

corresponding graded modules. In particular, we have and

.

is strict at and such that locally im = im . By the preceding discussion, this

shows that im and ker are locally of finite type at . Since im im ,

there is locally a morphism of -modules

:

such that = . This gives us the morphism of -modules

ker ker

( ) + ( )

Hence ker is locally of finite type. This gives us a finite free -module and a

morphism

having ker as filtered image. Since is coherent, this shows that ker is an

-module of finite type and the proof is complete.

Assume the sheaf of ring is coherent and let be a coherent -module then the

homological dimension of is the smallest integer such that the following equivalent

properties hold

for any -module and any

Ext ( ) = 0

for any -module , any and any

Ext ( ) = 0

From this definition, we find that

hd ( ) = sup hd ( )

We define the global homological dimension of as the supremum of

hd : coherent -module

We introduce similar definitions for a coherent graded ring and its coherent graded

modules.

( ) = 0 Ext ( ) = 0

hd ( ) hd ( )

glhd( ) glhd( )
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x X

n ,

X
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X

x X

U X

x U V U k

k k k k

x

n n

n n

x k k

U U

k k

k U k U k V k V
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Proposition 10.4.6

Proposition 10.4.7

Proposition 10.4.8

M
A ∈ M

A A M

−→ L −→ L −→ · · · −→ L −→M −→

M

FA GA
GA FA FM

−→ FL −→ FL −→ · · · −→ FL −→ FM−→

GM A

FA GA A
FA

GA A

GA FA
FA ∈ FM

FA FM
GM

GA GA GM GA
∈ ⊂

GM GM ≥ FM FM ≥

FM FA
FA

GA A
FA FN

FA FM A
A

Proof:

Assume is syzygic. Then, any coherent -module has a

finite free resolution

of length .

Let be a filtered ring on and denote by its associated

graded ring. Assume is syzygic. Then, any coherent -module has locally

a finite free resolution

of length . In particular, is syzygic.

Assume is a filtered ring on and denote by and its

associated graded ring and its underlying ring. Then, is Noetherian if and only if

is Noetherian. In this case is also Noetherian.

Proof:

Proceed as for the proof of 10.3.5.

A sheaf of rings (resp. graded rings) is if it is coherent, has finite global

homological dimension and syzygic fibers. Since a coherent module on a coherent

ring is finite free in a neighborhood of if and only if is finite free we get

the following proposition.

0 0

= sup(1 hd ( ))

In the same way, we get :

0 0

sup(1 hd )

A sheaf of rings (resp. graded rings, filtered rings) is if it is coherent

with Noetherian fibers and if locally any increasing sequence of coherent submodules

of a coherent module is locally stationary.

Assume is Noetherian. By Theorem 10.4.4 we already know that is

coherent and that is Noetherian for any . Assume that ( ) is an

increasing sequence of coherent strict submodules of the coherent module

where is some open subset of . Then, ( ) is an increasing sequence of

coherent -submodules of the coherent -module . Since is Noetherian,

every point has a neighborhood for which there is an integer such

that ( ) = ( ) for . This implies ( ) = ( ) for .

We obtain the same result for an increasing sequence of general filtered submodules of

by proceeding as in 10.3.3. Hence is Noetherian.

Assume now Noetherian, working as in the proof of Proposition 10.3.3, we see

easily that is Noetherian. Since any coherent -module may be viewed as the

underlying module of a coherent -module and since a submodule of a coherent

-module is coherent when its underlying -module is coherent, we get easily

the Noetherianity of .
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A graded ring on is Noetherian if and only if the underlying

ring is Noetherian.

If the sheaf of rings is Noetherian then so is the sheaf of rings

.
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Σ

[ ]

By the preceding corollary, it is sufficient to prove that [ ] is Noetherian as

a graded ring on .

First we show that [ ] is graded coherent. Let

be a graded morphism of finite free graded [ ]-modules.

Denote its kernel. Since

= [ ]( )

is a coherent -submodule of and since we get

as submodules of . Since is Noetherian, this sequence is locally stationary

and for any there is an open neighborhood of and an integer such that

( ) = ( )

for . Hence is generated by as an [ ]-module. The -module

is thus locally finitely generated on [ ].

To prove that [ ] is Noetherian, we have to prove that if ( ) is an increasing

sequence of coherent [ ]-submodules of a finite free [ ]-module then ( )

is locally stationary. Working as above we see that

if , . Hence, locally, there are integers such that = for

, . This implies that = for ; hence the conclusion.
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