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Abstract

This memoir is devided in three parts. In the first one, we introduce the
notion of quasi-abelian category and link the homological algebra of these
categories to that of their abelian envelopes. Note that quasi-abelian cate-
gories form a special class of non-abelian additive categories which contains
in particular the category of locally convex topological vector spaces and the
category of filtered abelian groups. In the second part, we define what we
mean by an elementary quasi-abelian category and show that sheaves with
values in such a category can be manipulated almost as easily as sheaves of
abelian groups. In particular, we establish that the Poincaré-Verdier duality
and the projection formula hold in this context. The third part is devoted to
an application of the results obtained to the cases of filtered and topological
sheaves.

Résumé

Ce mémoire est divisé en trois parties. Dans la premiere, nous intro-
duisons la notion de catégorie quasi-abélienne et relions I'algébre homologique
de ces catégories a celle de leurs enveloppes abéliennes. Notons que les
catégories quasi-abéliennes forment une classe spéciale de catégories additives
non-abéliennes qui contient en particulier la catégorie des espaces vectoriels
topologiques localement convexes et la catégorie des groupes abéliens filtrés.
Dans la seconde partie, nous définissons ce que nous entendons par catégorie
quasi-abélienne élémentaire et montrons que les faisceaux & valeurs dans une
telle catégorie sont presque aussi aisés & manipuler que les faisceaux de groupes
abéliens. En particulier, nous établissons que la dualité de Poincaré-Verdier
et la formule de projection sont valides dans ce contexte. La troisiéme partie
est consacrée a une application des résultats obtenus aux cas des faisceaux
filtrés et topologiques.

AMS Mathematical Subject Classification (1991 version): 18G50, 18F20,
46M20

Keywords: Non-abelian homological algebra, homological methods for functional
analysis, sheaves with values in categories, filtered sheaves, topological sheaves.






Introduction

To solve various problems of algebraic analysis, it would be very useful to have at
hand a good cohomological theory of sheaves with values in categories like that of
filtered modules or that of locally convex topological vector spaces. The problem
to establish such a theory is twofold. A first difficulty comes form the fact that,
since these categories are not abelian, the standard methods of homological algebra
cannot be applied in the usual way. A second complication comes from the fact that
we need to find conditions under which the corresponding cohomological theories
of sheaves are well-behaved. This memoir grew out of the efforts of the author to
understand how to modify the classical results in order to be able to treat such
situations. The first two chapters deal separately with the two parts of the problem
and the last one shows how to apply the theory developed to treat the cases of
filtered and topological sheaves.

When we want to develop homological algebra for non abelian additive cate-
gories, a first approach is to show that the categories at hand may be endowed with
structures of exact categories in the sense of D. Quillen [13]. Then, using Para-
graph 1.3.22 of [1], it is possible to construct the corresponding derived category
and to define what is right or left derived functor.

This approach was followed by G. Laumon in [9] to obtain interesting results
for filtered D-modules. We checked that it would also be possible to treat similarly
the case of locally convex topological vector spaces. However, when one works
out the details, it appears that a large part of the results does not come from the
particular properties of filtered modules or locally convex topological vector spaces
but instead come from the fact that the categories considered are exact categories
of a very special kind. In fact, they are first examples of what we call quasi-abelian
categories.

To provide a firm ground for applications to other situations, we have found it
useful to devote Chapter 1 to a detailed study of the properties of these very special
exact categories.

In Section 1.1, after a brief clarification of the notions of images, coimages and
strict morphisms in additive categories, we give the axioms that such a category has
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to satisfy to be quasi-abelian. Next we show that a quasi-abelian category has a
canonical exact structure. We conclude by giving precise definitions of the various
exactness classes of additive functors between quasi-abelian categories. This is nec-
essary since various exactness properties which are equivalent for abelian categories
become distinct in the quasi-abelian case.

Section 1.2 is devoted to the construction of the derived category D(E) of a
quasi-abelian category £ and its two canonical t-structures. We introduce the two
corresponding hearts LH(E) and RH(E) and we make a detailed study of the canon-
ical embedding of £ in LH(E). In particular, we show that the exact structure of £
is induced by that of the abelian category LH(E) and that the derived category of
LH(E) endowed with its canonical t-structure is equivalent to D(E) endowed with
its left t-structure. Since the two canonical t-structures are exchanged by duality, it
is not necessary to state explicitly the corresponding results for RH(E). Note that
the canonical t-structures of D(€) and the abelian categories LH(E) and RH(E)
cannot be defined for an arbitrary exact category and give first examples of the
specifics of quasi-abelian categories. We end this section with a study of functors
from a quasi-abelian category £ to an abelian category .4 and show that LH(E) and
RH(E) may in some sense be considered as abelian envelopes of €.

In Section 1.3, we study how to derive an additive functor

F:&—F

of quasi-abelian categories. After adapting the notions of F-projective and F'-
injective subcategories to our setting, we generalize the usual criterion for F' to
be left or right derivable. Next, we study various exactness properties of RF' and
relate them with the appropriate exactness properties of F'. After having clarified
how much of a functor is determined by its left or right derived functor and defined
the relations of left and right equivalence for quasi-abelian functors, we show that,
under mild assumptions, we can associate to F' a functor

G: LH(E) — LH(F)

which has essentially the same left or right derived functor. Loosely speaking, the
combination of this result and those of Section 1.2 shows that from the point of
view of homological algebra we do not loose any information by replacing the quasi-
abelian category £ by the abelian category LH(E). We conclude this section by
generalizing to quasi-abelian categories, the classical results on projective and injec-
tive objects. This leads us to make a careful distinction between projective (resp.
injective) and strongly projective (resp. injective) objects of £ and study how they
are related with projective and injective objects of LH(E) or RH(E).
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In Section 1.4, we deal with problems related to projective and inductive limits
in quasi-abelian categories. First, we treat the case of products and show mainly
that a quasi-abelian category € has exact (resp. strongly exact) products if and only
if LH(E) (resp. RH(E)) has exact products and the canonical functor

E— LH(E) (resp. € — RH(E))

is product preserving. The case of coproducts is obtained by duality. After a detailed
discussion of the properties of categories of projective or inductive systems of £, we
give conditions for projective or inductive limits to be computable in £ as in LH(E).
In this part, we have inspired ourselves from some methods of [3, 8]. We conclude
by considering the special case corresponding to exact filtering inductive limits.

The last section of Chapter 1 is devoted to the special case of closed quasi-abelian
categories (i.e. quasi-abelian categories with an internal tensor product, an internal
homomorphism functor and a unit object satisfying appropriate axioms). We show
mainly that in such a situation the category of modules over an internal ring is still
quasi-abelian. Examples of such categories are numerous (e.g. filtered modules over
a filtered ring, normed representations of a normed algebra) but the results obtained
will also be useful to treat module over internal rings in a more abstract category
like the category W defined in Chapter 3. We conclude by showing how a closed
structure on £ may induce, under suitable conditions, a closed structure on LH(E).

In Chapter 2 we study conditions on a quasi-abelian category &£ insuring that
the category of sheaves with values in £ is almost as easily to manipulate as the
category of abelian sheaves.

In Section 2.1, we introduce the notions of quasi-elementary and elementary
quasi-abelian categories and show that such categories are very easy to manipulate.
First, we study the various natural notions of smallness in quasi-abelian categories.
We also discuss strict generating sets which play for quasi-abelian categories the
role played usually by the generating sets for abelian categories. This allows us to
introduce the definitions of quasi-elementary and elementary categories and to show
that if £ is quasi-elementary then LH(E) is a category of functors with values in
the category of abelian groups (this an analog of Freyd’s result). We also show that
the category of ind-objects of a small quasi-abelian category with enough projective
objects is a basic example of an elementary quasi-abelian category. We conclude the
section with a few results on closed elementary categories.

In Section 2.2, we show that that the category Shv(X;&) of sheaves on X with
values in an elementary quasi-abelian category £ is well-behaved. It is even endowed
with internal operations if the category £ is itself closed. Moreover, we show that

LH(Shv(X;E)) =~ Sho(X; LH(E))
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and thanks to the results in the preceding sections, we are reduced to work with
sheaves in an elementary abelian category. Such sheaves where already studied
in [14] where it is shown that they have most of the usual properties of abelian
sheaves. In Section 2.3, we give further examples of how to extend to these sheaves
results which are well known for abelian ones. In particular, we prove Poincaré-
Verdier duality in this framework. We also prove that if £ is closed and satisfies
some mild assumptions then we can establish an internal projection formula and an
internal Poincaré-Verdier duality formula by working almost as in the classical case.

Chapter 3 is devoted to applications to filtered and topological sheaves.

In Section 3.1, we study the category of filtered abelian groups and show that this
is a closed elementary quasi-abelian with enough projective and injective objects.
Its left abelian envelope R is identified with the category of graded modules over
the graded ring Z[T] following an idea due to Rees. We also show that the category
of separated filtered abelian sheaves is a quasi-elementary quasi-abelian category
having R as its left abelian envelope. Since R is an elementary abelian category,
the cohomological theory of sheaves developed in Chapter 2 may be applied to this
category and gives a satisfying theory of filtered sheaves. Since most of the results
in this section are easy consequences of the general theory, they are often given
without proof.

Note that some of the results in this section where already obtained directly
in specific situations by various authors (e.g. Illusie, Laumon, Rees, Saito, etc.).
However, to our knownledge, the fact that all the classical cohomolgical formulas
for abelian sheaves extend to filtered abelian sheaves was not yet fully established.

In Section 3.2, we show first that the category of semi-normed spaces in a closed
quasi-abelian category with enough projective and injective objects which has the
same left abelian envelope as the category of normed-spaces. Applying the results
obtained before, we show that the category of ind-semi-normed spaces is a closed
elementary quasi-abelian category and that its left abelian envelope W is a closed
elementary abelian category. We also show that the category of locally convex
topological vector spaces may be viewed as a (non full) subcategory of YW and that
through this identification, the categories of FN (resp. DFN) spaces appear as full
subcategories of W. Since the theory developed in Chapter 2 applies to W, we feel
that W-sheaves provides a convenient notion of topological sheaves which is suitable
for applications in algebraic analysis. Such applications are in preparation and will
appear elsewhere.

Note that, in a private discussion some time ago, C. Houzel, conjectured that a
category defined through the formula in Corollary 3.2.22 should be a good candidate
to replace the category of locally convex topological vector spaces in problems dealing
with sheaves and cohomology. He also suggested the name }V since he expected this
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category to be related to the category of quotient bornological spaces introduced by
Waelbroeck. We hope that the material in this paper will have convinced the reader
that his insight was well-founded.

Before concluding this introduction, let us point out that discussions we had with
M. Kashiwara on a first sketch of this paper lead him to a direct construction of the
derived category of the category of FN (resp. DFN) spaces. These categories were
used among other tools in [7] to prove very interesting formulas for quasi-equivariant
D-modules.

Note also that a study of the category of locally convex topological vector spaces
along the lines presented here is being finalized by F. Prosmans. However, in this
case the category is not elementary and one cannot treat sheaves with values in it
along the lines of Chapter 2.

Throughout the paper, we assume the reader has a good knowledge of the theory
of categories and of the homological algebra of abelian categories as exposed in
standard reference works (e.g. [10, 11, 15] and [2, 4, 6, 16]). If someone would
like an autonomous presentation of the basic facts concerning homological algebra
of quasi-abelian categories, he may refer to [12] which was based on a preliminary
version of Chapter 1.
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Chapter 1

Quasi-Abelian Categories

1.1 Quasi-abelian categories and functors

Let £ be an additive category with kernels and cokernels.

1.1.1 Images, coimages and strict morphisms

Definition 1.1.1. Let f : E — F be a morphism of &.

Following [4, 15], we define the image of f to be the kernel of the canonical map
' — Cokerf. Dually, we define the coimage of f to be the cokernel of the canonical
map Kerf — FE.

Obviously, f induces a canonical map

Coimf — Imf.

In general, this map is neither a monomorphism nor an epimorphism. When it is
an isomorphism, we say that f is strict.

The following remark may help clarify the notion of strict morphism.
Remark 1.1.2.
(a) For any morphism f : E — F of &, the canonical morphism
Kerf — FE (resp. F' — Coker f)
is a strict monomorphism (resp. epimorphism).

(b) Let f: E — F be a strict monomorphism (resp. epimorphism) of £. Then f
is a kernel (resp. cokernel) of

F — Coker f (resp. Kerf — E).
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(c) A morphism f of £ is strict if and only if
f=moe

where m is a strict monomorphism and e is a strict epimorphism.

1.1.2 Definition of quasi-abelian categories

Definition 1.1.3. The category & is quasi-abelian if it satisfies the following dual
axioms:

(QA) In a cartesian square

jopy

]

E/T)F/

where f is a strict epimorphism, f’ is also a strict epimorphism.

(QA*) In a cocartesian square

E/—,>F/

N

where f is a strict monomorphism, f’ is also a strict monomorphism.

Until the end of this section, £ will be assumed to be quasi-abelian.

Proposition 1.1.4. Let f : E — F be a morphism of £. Then, in the canonical
decomposition

Coim f
E d F
of f, j is a strict epimorphism and k is a monomorphism. Moreover, for any decom-
E—T1—F
N
I*

of f where m is a monomorphism, there is a unique morphism

position

h': Coimf — I*
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making the diagram

commutative.
Dually, in the canonical decomposition

Im f

of f, k* is an epimorphism and j* is a strict monomorphism. Moreover, for any

N

E———F—F

decomposition

of f where e is an epimorphism, there is a unique morphism
' : 1 — Imf

making the diagram

FE ' F
Im f
commutative.
Proof. Let
1:Kerf - F

denote the canonical morphism. Since j is the cokernel of 7, it is a strict epimorphism.
Let us show that k is a monomorphism. Let z : X — Coimf be a morphism such
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that ko x = 0. Form the cartesian square

E—2 Coimf

‘| E

X' — X
It follows from the fact that £ is quasi-abelian that ;' is a strict epimorphism. Since,
for'=kojor' =koxoj =0,
there is a unique morphism z” : X’ — Kerf such that ioz” = 2’. From the relation
rxoj =jox' =joiox" =0,

it follows that x = 0.
To prove the second part of the statement, note that, m being a monomorphism,
it follows from the relation

mohoi= foi=0,
that hoi = 0. Since j is the cokernel of 7, there is a unique morphism
h': Coimf — I*

such that

h'oj=h.
From the equality

koj=moh=moh' o}y,

it follows that

k=mokl.

Corollary 1.1.5. The canonical morphism
Coimf — Imf
associated to a morphism f : E — F of £ is a bimorphism.

Remark 1.1.6. The preceding proposition shows in particular that the decompo-
sition of f through Coimf (resp. Imf) is in some sense the smallest (resp. greatest)
decomposition of f as an epimorphism followed by a monomorphism. Hence, what
we call Imf (resp. Coimf) would be called Coimf (resp. Imf) in [11]. Despite
the good reasons for adopting Mitchell’s point of view, we have chosen to stick to
Grothendieck’s definition which is more usual in the framework of additive cate-
gories.
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1.1.3 Strict morphisms in quasi-abelian categories

Proposition 1.1.7. The class of strict epimorphisms (resp. monomorphisms) of £
is stable by composition.

Proof. Let u: E — F andv: F — G be two strict epimorphisms and set w = vou.
We denote by i, : Keru — E the canonical morphism and use similar notations for
v and w. We get the commutative diagram:

k
Kerw —— Kerv

Keru - EXII
G

One checks easily that the upper right square is cartesian. Since u is a strict epimor-
phism, it follows from the axioms that k is also a strict epimorphism. To conclude,
it is sufficient to prove that w is a cokernel of 7,,. Assume f : F — X is a morphism
such that f o, = 0. Since u is the cokernel of 7, and f o4, = 0, there is a unique
morphism [’ : F' — X such that f'ou = f. Since k is an epimorphism, the equality

floiyok=foi,=0

shows that f’ o, = 0. Using the fact that v is the cokernel of i,, we get a unique
morphism f”: G — X such that f” ov = f’. For this morphism, we get f"ow = f
as requested. Moreover, w being an epimorphism, f” is the only morphism satisfying
this relation. ]

Proposition 1.1.8. Let

7N

E——Wp G

be a commutative diagram in £. Assume w is a strict epimorphism. Then, v is a
strict epimorphism.
Dually, assume w is a strict monomorphism. Then, u is a strict monomorphism.

Proof. We will use the same commutative diagram as in the proof of the preceding
proposition.
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First, note that the square

E@Kerv(u—M>F

ol

E——_@—G
is cartesian. As a matter of fact, if the morphisms
X%p xLr
are such that
woe=1vof

then
vo(f—uoe)=0

and there is h : X — Kerv such that
woh=f—uoe.
It follows that for the morphism
(n): X — E@ Kerv
we have
(1o)(5)=e, (wi)(i)=f

and this is clearly the only morphism satisfying these conditions. It follows from
the axioms and the fact that w is a strict epimorphism that

(uiv): E® Kerv — F

is a strict epimorphism.
Next, let x : E — X be such that x o4, = 0. It follows that

ToUOl, =T0l,0k=0
and there is 2’ : G — X such that
zou=1aow=2aovou.
Hence,
(x —2'ov)ou=0

and since
(x—2'ov)oi, =0

we deduce from what precedes that x = 2’ o v. Since v is clearly an epimorphism,
such an z’ is unique. So, v is a cokernel of 7, and the conclusion follows. ]
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1.1.4 Strictly exact and coexact sequences

Definition 1.1.9. A null sequence

of € is strictly exact (resp. coexact) if €' (resp. €”) is strict and if the canonical
morphism
Ime’ — Kere"”

is an isomorphism. More generally, a sequence

61 n—1

B> ... % E, (n>23)

is strictly exact (resp. coexact) if each of the subsequences

eitl

Ez‘e—i>Ei+1—>Ei+2 (1§z§n—2)

is strictly exact (resp. coexact).

Remark 1.1.10. It follows from the preceding definition that strict exactness and
strict coexactness are dual notions which are in general not equivalent. However, a

short sequence
0—-EFES5FLG—0

is strictly exact if and only if u is a kernel of v and v is a cokernel of u. Hence, such
a sequence is strictly exact if and only if it is strictly coexact.

Remark 1.1.11. Thanks to the results in the preceding subsections, it is easily
seen that the category £ endowed with the class of short strictly exact sequences
forms an exact category in the sense of [13].

1.1.5 Exactness classes of quasi-abelian functors

Since there are two kinds of exact sequences in a quasi-abelian category, there are
more exactness classes of functors than in the abelian case. All these various classes
are needed in the rest of the paper. Hence, we will define them carefully in this
section.

Let us first consider left exactness.

Definition 1.1.12. Let
F.&E—F

be an additive functor.
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We say that F'is left exact if it transforms any strictly exact sequence
0—EF —E—FE"—0
of £ into the strictly exact sequence
0— F(E') — F(E) — F(E")

of F. Equivalently, F'is left exact if it preserves kernels of strict morphisms.
We say that I is strongly left exact if it transforms any strictly exact sequence

0—F —E— E"
of £ into the strictly exact sequence
0— F(E') — F(E) — F(E")

of F. Equivalently, F'is strongly left exact if it preserves kernels of arbitrary mor-
phisms.

Finally, we say that F'is regular if it transforms a strict morphism into a strict
morphism and regularizing if it transforms an arbitrary morphism into a strict mor-
phism.

Remark 1.1.13. Some authors have defined a left exact functor between arbitrary
finitely complete categories to be a functor which preserves all finite projective limits.
This definition coincides obviously with our notion of strongly left exact functor.

Other definitions of left exactness can also be introduced. They are clarified in
Proposition 1.1.15 the proof of which is left to the reader.

Definition 1.1.14. Let
F.:&—=F

be an additive functor. Let S denote a null sequence of the form
0—FE —E—FE"
and let F'(S) denote the null sequence
0 — F(E') — F(E) — F(E").

We shall distinguish four notions of left exactness for the functor F'. They are
defined in the following table by the exactness property of F'(S) which follows from
a given exactness property of S.
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F S F(S)
LL left exact | strictly exact strictly exact
LR left exact | strictly exact | strictly coexact
RL left exact | strictly coexact | strictly exact
RR left exact | strictly coexact | strictly coexact

Proposition 1.1.15. Let
F.&—F

be an additive functor between quasi-abelian categories.
(LL) The functor F' is LL left exact if and only if it is strongly left exact.

(LR) The functor F' is LR left exact if and only if it is strongly left exact and
regularizing.

(RL) The functor F is RL left exact if and only if it is left exact.
(RR) The functor F' is RR left exact if and only if it is left exact and regular.

Remark 1.1.16. Note also that with the notation of the preceding proposition, F
is LL left exact if and only if it is RL left exact and transforms a monomorphism
into a monomorphism. Similarly, F' is LR left exact if and only if it is RR left exact
and transforms a monomorphism into a strict monomorphism.

Having clarified the various notions of left exactness, we can treat right exactness
by duality.

Definition 1.1.17. Let
F.&E—F

be an additive functor.
We say that F' is right exact if it transforms any strictly (co)exact sequence

0—LF —-EFE—FE"—0
of £ into the strictly coexact sequence
F(E') — F(E) — F(E") — 0

of F. Equivalently, F' is right exact if it preserves cokernels of strict morphisms.
We say that I is strongly right exact if it transforms any strictly coexact sequence

EF —-F—E —0
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of £ into the strictly coexact sequence
F(E") — F(E) — F(E") — 0

of F. Equivalently, F'is strongly right exact if it preserves cokernels of arbitrary
morphisms.

Finally let us introduce the various classes of exact functors.

Definition 1.1.18. Let
F.:&—=F

be an additive functor.
The functor F'is ezact if it transforms any strictly (co)exact sequence

0—F —F—E"—0
of £ into the strictly (co)exact sequence
0— F(E)— F(E)— F(E") —0

of F. Equivalently, F' is exact if it is both left exact and right exact.
The functor F' is strongly ezact if it transforms any strictly exact (resp. coexact)
sequence
El s E s E//

of £ into the strictly exact (resp. coexact) sequence
F(E) — F(E) — F(E")

of F. Equivalently, F' is strongly exact if it is both strongly left exact and strongly
right exact.

The functor F'is strictly exact (vesp. strictly coezact) if it transforms any strictly
exact (resp. coexact) sequence

El SN E — E//
of £ into a strictly exact (resp. coexact) sequence
F(E) — F(E) — F(E")

of F.
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1.2 Derivation of quasi-abelian categories

1.2.1 The category k(&) and its canonical t-structures

In this subsection, we assume that £ is an additive category with kernels and cok-
ernels. Since £ is additive, it is well-known that the associated category K(€) of
complexes modulo homotopy is a triangulated category. Here we will show that it
is also canonically endowed with two t-structures which are exchanged by duality.

Definition 1.2.1. A null sequence
EF —FE—E"
of £ is split if, for any object X of &, the associated sequence
Hom (X, E') — Hom (X, E) — Hom (X, E")

is an exact sequence of abelian groups. Dually, it is cosplit if, for any object X of
&, the associated sequence

Hom(E", X) — Hom(E, X) — Hom(E', X)

is an exact sequence of abelian groups.
A complex E of £ is split (resp. cosplit) in degree n if the sequence

n—1 n
En—l d En d En+1

is split (resp. cosplit).
A complex is split (resp. cosplit) if it is split (resp. cosplit) in each degree.
Remark 1.2.2.

(a) A null sequence

El N El e_”) El//
of &£ is split if and only if the associated short sequence
0 — Kere! — E — Kere” — 0

splits. In particular, a sequence may be split without being cosplit.

(b) A complex F of £ is split if and only if it is homotopically equivalent to 0.
Hence, F is split if and only if it is cosplit.
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Lemma 1.2.3. Any object E of K(€) may be embedded in a distinguished triangle
ESO S FE — E>0 +_1>
of K(&) where E<* is the complex
B — B — Kerd}, — 0
(with Kerd%, in degree 0) and E~° is the complex
0 — Kerd}, — E* — E' ...
(with E° in degree 0).

Proof. Denote by i the canonical morphism from Kerd% to E° and let u : E<° — E
be the morphism defined by

1 for n <0,
u"=<¢ 1 for n=0,
0 for n>0.

By definition, the mapping cone M of u is the complex:

—d 0
g L), Kerd), & 5~ 2 g0 4 gt

(with E° in degree 0). Let a : £ — M and 3 : M — E>° be the morphisms
defined respectively by:

0 for n<-—1, 0 for n<—1,
a" =19 () for n=-1, and F"=4q (14) for n=-1,
1 for n>—1, 1 for n>-—1.

One checks easily that
Boa=1idg>o and aof —idy =dyoh+hody

where h is the homotopy defined by:

Therefore, £~ is homotopically equivalent to M and the conclusion follows. ]
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Proposition 1.2.4. Let =(€) (resp. K=°(€)) denote the full subcategory of IC(E)
formed by the complexes which are split in each strictly positive (resp. strictly
negative) degree. Then, the pair

(K=(€), £=°(E))
defines a t-structure on IC(E).

Proof. Thanks to the preceding lemma, we need only to prove that
Hom o (E,F) =0

for £ € K£=%(&) and F € K£7°(€). Using the preceding lemma, we get the two
distinguished triangles

1 1
o R = S e Ry LAy

Thanks to Remark 1.2.2, our assumptions show that £~° ~ 0 and that F'< ~ 0 in
K(E) and the preceding distinguished triangles allow us to conclude that E<Y ~ F
and F' ~ F>% Since one checks easily that

Hom . (E=°, F7°) = 0,
the proof is complete. ]

Definition 1.2.5. We call the canonical t-structure studied in the preceding propo-
sition the left t-structure of }C(E). We denote by LI(E) its heart and by LK™ the

corresponding cohomology functors.

Proposition 1.2.6. The truncation functors T=", 72" for the left t-structure of
K(E) associate respectively to a complex E the complex

L E"? — B — Kerdy, — 0
(with Kerd, in degree n) and the complex
0 — Kerdy ' — E" ' — E™. ..
(with E™ in degree n). Hence, LK™(FE) is the complex
0 — Kerdy ' — E"' — Kerdl, — 0

where Kerdy, is in degree 0.
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Corollary 1.2.7. The category LI (E) is equivalent to the full subcategory of IC(E)
consisting of complexes of the form

0—>Kerf—>Ei>F—>0

(F in degree 0).

Definition 1.2.8. An object A of LIC(E) is represented by the morphism
f:E—F
if it is isomorphic to the complex
0—>Kerf—>Ei>F—>0

where F' is in degree 0.

Remark 1.2.9. Through the canonical equivalence
K(E)P ~ K(E™),

the left t-structure of xC(E°P) gives a second t-structure on K(E). We call it the right
t-structure of }C(E). We denote by RI(E) its heart and by RK™ the corresponding
cohomology functors. The reader will easily dualize the preceding discussion and
make the link between the right t-structure of () and cosplit sequences of €.

1.2.2 The category D(€) and its canonical t-structures
In this subsection, we assume that the category £ is quasi-abelian.

Definition 1.2.10. A complex E of € is strictly exact (resp. coexact) in degree n if
the sequence

n—1 n
En—l d En d—>En+1

is strictly exact (resp. coexact).
A complex of £ is strictly exact (resp. coexact) if it is strictly exact (resp. coexact)
in each degree.

Remark 1.2.11. A complex of & is strictly exact if and only it is strictly coexact.

Lemma 1.2.12. Two isomorphic objects of K(E) are simultaneously strictly exact
in degree n.
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Proof. Let E, F be two isomorphic objects of /() and assume F is strictly exact
in degree n. Applying LK", we see that the complexes

-n—1 n—1
gt 1 0
0 — Kerdy ' 22— E" ! £ Kerd}, — 0

and
-n—1 —1

0 — Kerd: ' s prt %5 Kepan 0
are homotopically equivalent. Let
a:LK"(E) — LK"(F) and (:LK"(F)— LK"(E)
be two morphisms of complexes such that

idLK”(F) —Q O 5 =ho dLK"(F) + dLK"(F) oh

where h is a homotopy. We know that LK"(F) is strictly exact and we have to
show that so is LK™ (F). To this end, it is sufficient to show that 8% ' is a cokernel
of it

It is clear that 6?;1 is an epimorphism. As a matter of fact, if g : Kerd}h — X
satisfies g o 61’;—1 = (, it follows from the relation

idkeray, —a 0 3% = 63" o
that g = g o a® 0 8°. Since
googooé%_l :go@;i_looz_l =0

and 6%_1 is an epimorphism, g o a® = 0 and the conclusion follows.

Assume now f : F"! — A is a morphism such that f o i%_l = 0. From this
equality, we deduce that foa™'ois ! = 0. Since 635" is a cokernel of i’y ', we get
a unique morphism f’ : Kerdy, — X such that f’ o %' = foa~!. Therefore,

f’oﬁooég_l = f’oéﬁfl oﬁ_l = foof1 oﬁ_l.

Since
idpn1 —ato Bt =R o8t i o 7Y,

we get

f—f’oﬁooé?;l:f0h006§_1+foi7},_1oh_1.
Since f o i;f—,_l = 0, we finally get
f=(fop’+ foh®)osn!

and this concludes the proof. O
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Proposition 1.2.13. Let
ESF %G B

be a distinguished triangle of JC(E). Assume E and G are strictly exact in degree n.
Then F' is also strictly exact in the same degree.

Proof. Thanks to the preceding lemma, we may assume F' is the mapping cone of
—w[-1] : G[-1] — E.
Hence, F¥ = E*¥ ® G* and
= (%)
F 0 dax |-
Denote by ¢ : Kerd, & G"! — Kerd? the morphism induced by

(1—11}"’1) :En@Gn—l _)En@Gn

0 dyt
One checks easily that the square

n—1

Gt ——— Kerdy,

anl)[ chn

Kerd, & G"! —— Kerdy,

is cartesian. Hence, it follows from our assumptions that ¢ is a strict epimorphism.
Since
du 't B — Kerdy,

is a strict epimorphism, so is
dy ' @idge-1 : B @ G — Kerdy © G
By composing with ¢, we see, by Lemma 1.1.7, that
drt 7l — Kerdy
is a strict epimorphism and the proof is complete. ]

Corollary 1.2.14. Strictly exact complexes form a saturated null system in (E).

Proof. The axioms for a null system are easily checked thanks to the preceding
proposition. Since it is clear that a direct sum of two complexes is strictly exact if
and only if each summand is itself strictly exact, the saturation is also clear. O
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Definition 1.2.15. We denote by A/(€) the full subcategory of () formed by the
complexes which are strictly exact. Since N/ (£) is a null system, we may define the
derived category of £ by the formula:

D(E) = K(E)/ N (&)

A morphism of K(€) which has a strictly exact mapping cone is called a strict
quasi-isomorphism.

Lemma 1.2.16. Let T be a triangulated category endowed with a t-structure
(T=",7=°).
Assume N is a saturated null system of 7. Denote by
Q:T—T/N

the canonical functor and by (T /JN')=° (resp. (T /N')=°) the essential image of Q|r<o
(resp. Q7=o0). Then,
(T/N)= (T JN)=)

is a t-structure on T /N if and only if for any distinguished triangle
X, — Xop— N
where X; € T2', Xo € T=° and N € N, we have X;, X, € N.
Proof. Let us proof that the condition is necessary. Consider a triangle
X, — X — N
of T where X; € 72!, Xy € 7= and N € N. It gives rise to the triangle
Q(X1) — Q(Xo) — Q(N) ==

of T/N. Since Q(N) ~ 0,
Q(X1) — Q(Xo)

is an isomorphism in 7 /N. Its inverse belongs to

Hom 7\ (Q(Xo), Q(X1))

and our assumption shows that it is the zero morphism. Therefore, both Q(Xy) and
Q(X4) are isomorphic to 0 in 7 /N and the conclusion follows from the fact that A/
is a saturated null system.
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To prove that the condition is sufficient, we have only to show that

Hom 7 \(Q(Xo), Q(X1)) =0

for Xo € 7=° X; € 7='. A morphism from Q(Xp) to Q(X}) is represented by a

diagram
/ ) \
Xo X3

where s, a are morphisms in 7, s being an N-quasi-isomorphism. Thus, in 7, we
have a distinguished triangle

Y 2 X, — N 1L

where N € M. By the properties of t-structures, we also have in 7 a distinguished
triangle
Yo Ly - Yi EEN

where Yy € 7<% and Y} € 72!, Let us embed s ot in a distinguished triangle
Yo 225 Xy — Ny =5 .
Applying the axiom of the octahedron, we get a distinguished triangle

Y, — Ny — N *4

By our assumptions, both Y; and Ny are objects of N'. Therefore, t is an N -quasi-
isomorphism. Hence, we get the commutative diagram:

Yo
i
sot Y 0
X 0 X 1

where the map from Yj to X7 is 0 since
HomT(YO,Xl) = 0.

The conclusion follows easily. O
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Definition 1.2.17. Thanks to Proposition 1.2.13, the preceding lemma shows that
the left t-structure on C(€) induces a canonical t-structure on D(E), we call it the
left t-structure of D(E). We denote LH(E) its heart and

LH" :D(E) — LH(E)
the corresponding cohomology functors.

Proposition 1.2.18. The truncation functors T=", 72" associated to the left t-
structure of D(E) send a complex E respectively to

- — E"? — B — Kerdp, — 0
(Kerd}, in degree n) and to
0 — Coimdy ' — E™ — E™F ...
(E™ in degree n). Hence, LH"(E) is the complex
0 — Coimd} ' — Kerdp — 0
(Kerd}, in degree 0).

Proof. From the definition of the left t-structure on D(€) and Proposition 1.2.6, it
is clear that 7="(E), 72"(F) are respectively canonically isomorphic to

i = E"? - B — Kerdy, — 0
(Kerd% in degree n) and to
0 — Kerdp ' — E"' — E" — ...

(E™ in degree n). Hence, it is sufficient to prove that this last complex is isomorphic
in D(€) to the complex:

0 — Coimdp * — E™ — E™ — ...
(E™ in degree n) through the morphism u induced by the canonical morphism
jrt s Bt — Coimdly .

Since 72" (u) is clearly an isomorphism in D(&), it is sufficient to show that so is
75"(u)[n]. This morphism is represented by the diagram:

infl n—1
— E — E
0 ——Kerdy ' —— E" 1 —"—Kerd ——0

0 Jj’gl 1
6’"71

0 0 Coimdly *+ —— Kerdp, —— 0
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and its mapping cone is the complex

() /
0 — Kerd ' —£ gt 227 Kerdy, & Coimdj; ' (o), Kerdy — 0

(Kerd% in degree 0). This complex is clearly strictly exact in degree —3, —2 and 0.
To show that it is strictly exact in degree —1, it is sufficient to note that

. —sn1 . n—1
Coim ( ,F, ) =~ Coimd
i E

E

and that

'p—
(%)
1

Coimdy; ' ———% Kerdp @ Coimdp '
is a kernel of

'n—1
Kerds, @ Coimd! 27, Keran.

Corollary 1.2.19. Let E be a complex of £. Then,

(a) The cohomology object LH"(E) vanish if and only if the complex F is strictly
exact in degree n.

(b) The complex E is an object of the category D<°(E) (resp. D=°(€)) associated
to the left t-structure of D(E) if and only if E is strictly exact in each strictly
positive (resp. negative) degree.

Corollary 1.2.20. The left heart of £ is equivalent to the localization of the full
subcategory of }C(E) consisting of complexes E of the form

0—>E15—E>E0—>0

(Eo in degree 0, 6y monomorphism) by the multiplicative system formed by mor-
phisms u : E — F such that the square

Flé—F>F0

By, Eo
E

is both cartesian and cocartesian.
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Definition 1.2.21. An object A of LH(E) is represented by the monomorphism
f: E — F if it is isomorphic to the complex

0—>Ei>F—>0

where F' is in degree 0.

Remark 1.2.22. Through the canonical equivalence
D(E)™ = D(EP),

the left t-structure of D(E°P) gives a second t-structure on D(E). We call it the right
t-structure of D(E). We denote by RH(E) its heart and by RH™ the corresponding
cohomology functors. The reader will easily dualize the preceding discussion and

make the link between the right t-structure of D(€) and strictly coexact sequences
of €.

1.2.3 The canonical embedding of £ in LH(E)
In this subsection, we study the canonical embedding
E— LH(E)

and we show that it induces an equivalence at the level of derived categories.

Definition 1.2.23. We denote
I:&— LH(E)
the canonical functor which sends an object E of £ to the complex
0—FE—0

(E in degree 0) viewed as an object of LH(E).
Lemma 1.2.24. Assume the square

Flé—F>F0

By, Eo
E

is cocartesian. Then Cokerép ~ Cokerdp.
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Proof. Denote by
er : Fy — Cokerép

the canonical epimorphism. It is sufficient to show that
eroug: By — Cokerdp

is a cokernel of 6. Assume x : Fg — X is such that x 0 6 = 0. It follows from our
assumptions that there is 2’ : Fy — X such that 2’ o 6p = 0 and 2’ o ug = f. Since
er is a cokernel of 6, there is 2 : Cokerér — X such that 2” o ep = 2’/. Therefore
2" o (epoug) =z and z” is clearly the only morphism satisfying this equality. [

Definition 1.2.25. Thanks to Corollary 1.2.20, the preceding lemma allows us to
define a functor

C:LH(E)— €&

by sending an object A represented by the monomorphism
By 25 E,

to Cokerdg. For any object A of LH(E), we call C(A) the classical part of A.
Proposition 1.2.26. We have a canonical isomorphism

i:Col 5 idg
and a canonical epimorphism

e idpyey — 1o C.
Together, they induce the adjunction isomorphism
Hom LH(5)<A7 I(E)) = Hom(C(A), E).
In particular, £ is a reflective subcategory of LH(E).
Proof. Let E be an object of £. Since the cokernel of
0—FE
is clearly isomorphic to E, we get a canonical isomorphism
i(E):Col(E) — E.
Let A be an object of LH(E) represented by the monomorphism

B 22 B,
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The canonical morphism
Ey — Cokerdg

induces a morphism

e(A): A— ToC(A).

Since the square

0 —— Cokerég

| .

El—E>E0

is cocartesian, e(A) is an epimorphism in LH(E).

23

From the general results on adjunction formulas, we know that it is sufficient to

show that both the composition of
e(I(E)): I(F) - 1oCol(FE)

and
I(i(E)): IoCoI(FE)— I(E)

and the composition of
C(e(A)): C(A) - ColoC(A)

and

i(C(A)):ColoC(A) — C(A)

give identity morphisms. This follows obviously from the definition of e and i.

Corollary 1.2.27. The canonical functor
I:&— LH(E)
is fully faithful. Moreover, a sequence
F —FE —E"
is strictly exact in £ if and only if the sequence
I(E') — I(E) — I(E")

is exact in LH(E).
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Proof. From the preceding proposition, it follows that
Hom e (I(E), I(F)) = Homg(C o I(E), F).

Since C' o I ~ idg, we see that [ is fully faithful.
Assume the sequence

0 E SESE S0

is strictly exact. By a well known property of the heart of a t-structure, the cokernel
of I(¢/) : I(E") — I(E") is obtained by applying the functor LH" to the complex

0—FE S E 0

(E in degree 0). Since €’ is a monomorphism, Coker/ (¢e’) is represented by this same
complex. The map

0 E ——FE 0

0 0 E" 0

being clearly a strict quasi-isomorphism, it follows that Coker/(e’) ~ I(E"). From
the adjunction formula of Proposition 1.2.26, we know that I is kernel preserving.
Hence, the sequence

I(e) I(e")
—_—

0— I(E) I(EF) —=> I(E") — 0

is exact.
Assume now that the sequence

is strictly exact. Applying the preceding result to the sequence
0 — Kere' — E — Kere” — 0
and using the fact that I is kernel preserving we see easily that the sequence
I(E) — I(E) — I(E")

is exact.
Finally, assume the sequence

I(e//)

I(E) — I(E")

I(€)
—

I(E")
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is exact. From what precedes, it follows that

I(Coime’) = CoimI(¢'),
I(Kere") = KerI(e").

Since Coim/(e') ~ KerI(e”), the result follows from the fact that I is fully faithful.
L]

Proposition 1.2.28.

(a) An object A of LH(E) represented by the monomorphism
E 5 E

is in the essential image of I if and only if g is strict.

(b) Assume
A— B

is a monomorphism in LH(E) and B is in the essential image of I. Then A is
also in the essential image of I.

(c) Assume

0—A L A% 4 0

is a short exact sequence in LH E) where both A" and A" are in the essential
image of I. Then A is also in the essential image of I.

Proof. (a) & (b) If 6 is strict, then the sequence
0— E; 2tz Ey — Cokerég — 0

is strictly exact and by applying the functor I, we see that A ~ I(Cokerég).
Assume now that there is an object F' of £ and a monomorphism

A — I(F).

By Proposition 1.2.26, we know that this monomorphism is induced by a morphism
C(A) — F.

Hence, the canonical morphism

A — I(C(A))
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is also a monomorphism. This means, by definition, that the complex
0— Ey LN FEy — Cokerdgp — 0

is strictly exact at Ey. Therefore ¢g is strict and the conclusion follows.
(c) Assume A is represented by the monomorphism

Elé—E>EO

and A” is isomorphic to I(E") where E” is an object of £. Since the morphism
a”: A — A” comes from a morphism C(A) — E”, it is represented by a morphism

of complexes

ElLEO

L
0 N E//

Since the mapping cone of this morphism is the complex
0—>E15—E>E0ﬂ>E”—>O,
the kernel of a” is represented by the monomorphism
Ey s, Kera.

associated to 6. By assumption, this kernel is in the essential image of I. By (a),
it follows that (3 is a strict monomorphism. Since the canonical monomorphism

Kera — Ej

is also strict, Proposition 1.1.7 shows that 0 itself is a strict monomorphism and
(a) allows us to conclude. O

Definition 1.2.29. For any object A of LH(E), we define the vanishing part of A
to be the kernel V(A) of the canonical epimorphism

e(A): A— ToC(A).

Remark 1.2.30. For any object A of LH(E), V (A) is represented by a bimorphism.
Moreover, V(A) ~ 0 if and only if A is in the essential image of I.

Proposition 1.2.31. The canonical embedding
I:&— LH(E)
induces an equivalence of categories
D(I) : D(E) — D(LH(E)).
which exchanges the left t-structure of D(E) with the usual t-structure of D(LH(E)).



1.2. DERIVATION OF QUASI-ABELIAN CATEGORIES 27

Proof. By Corollary 1.2.27, we know that [ transforms a strictly exact complex of
€ in an exact complex of LH(E). Therefore, there is a unique functor P(/) making
the diagram

4>£H(£)

£
JQg JQw(s)
D(I)

D) — »D(LH(E))

commutative.
Since any object A of LH(E) may be represented by a monomorphism

By 25 B
of £, it has a resolution of the form
0— I(Ey) — I(Ey)) — A— 0.

Hence, using Proposition 1.2.28, we may apply the dual of [5, Lemma 4.6] to the
essential image of I considered as a subset of Ob LH(E). This shows that for any
complex A of LH(E) there is a complex E of £ and a quasi-isomorphism

I(E) — A.

Thanks to a well-known result on derived categories, the conclusion follows from
the fact that a complex E of £ is strictly exact in a specific degree if and only if
D(I)(E) is exact in the same degree. O

1.2.4 The category LH(E) as an abelian envelope of £

In this subsection, we show that LH(E) is in some sense an abelian envelope of &.
Although we have not stated explicitly the dual results for RH(E), we will use them
freely.

Definition 1.2.32. Let A an abelian category. We denote by Rex(&E,.A) (resp.
Lex(E,A)) the category of right (resp. left) exact functors from E to A.

Proposition 1.2.33. For any abelian category A, the inclusion functor
I:&— LH(E)
is strictly exact and induces an equivalence of categories
I': Rex(LH(E), A) — Rex(E, A).

By this equivalence, exact functors correspond to strictly exact functors.
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Proof. 1t follows from Corollary 1.2.27 that I is strictly exact. Hence I’ is a well
defined functor. Let us prove that it is essentially surjective. Let

F:&E— A

be a right exact functor.
The functor
Ho(F)or=: k(&) — A

transforms a quasi-isomorphism of }C(€) into an isomorphism of A. As a matter of
fact, let
u: X —Y

be such a quasi-isomorphism. Since Q(u) is an isomorphism in D(E), so is 75°Q (u) ~
Q(7=%). Denote by Z the mapping cone of

7% 730X — =0,
By construction, Z*¥ = 0 for & > 0. Since Z is strictly exact, the sequence

Z?—=7z1'—=2"—0
is strictly exact. Applying F', we get the exact sequence

F(Z™% — F(Z™" — F(Z° —o.
Hence H*(K(F)(Z)) = 0 for k > —1. Since the triangle
K(E)(T=X) — K(F)(r=Y) — K(F)(Z) *
is distinguished in fC(A), the long exact sequence of cohomology shows that
H o k(F) o 7=%(u)

is an isomorphism in A.
It follows from the preceding discussion that there is a functor

G:DE — A
such that Go Q = H® o IC(F) o 7=0. Let
F':LH(E) — A

be the restriction of G to LH(E). Since F’' o I ~ F| it remains to show that F’ is
right exact. Assume

!

0—A 5 A% 4 0
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is an exact sequence in LH(E). Since we may replace A" and A by isomorphic
objects, we may assume that A" = A% = 0 for k > 0 and that o is induced by a
morphism of K(€) that we still denote a’. Let Z be the mapping cone of a/. By
construction, Z € =(€) and we have a distinguished triangle

AL Az
in K(€). Hence, A” ~ Z in D(€) and
F'(A") = H'(K(F)(Z)).
Applying H° to the distinguished triangle
K(F)(A) — K(F)(A) — K(F)(Z) =
of K(A), we get the exact sequence
F'(A) — F'(A) — F'(A") — 0.

Note that when F' is strictly exact, K(F)(Z) is strictly exact in any degree k # 0
and we get the short exact sequence

0— F'(A") — F'(A) — F'(A") — 0.

To see that I’ is fully faithful, it is sufficient to recall that any object A of LH(E)
may be embedded in an exact sequence

I(E) — I(Ey) — A— 0.
[]

Lemma 1.2.34. Let £ be a full subcategory of the abelian category A. Assume £
is essentially stable by subobjects (i.e. for any monomorphism

A—FE
of A with E in £ there is E' in £ and an isomorphism A ~ E'). Then,

(a) Any morphism of £ has a kernel and a coimage and they are computable in

A.

(b) A sequence
ELFSGE
of € is exact in A if and only if

Coimu ~ Kerv

in &.
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(c) If

E—"“>F

I

E/ —,> F/
u
is a cartesian square in £ and u is a strict epimorphism then so is u/'.

Proof. To avoid confusions, we will make use of the canonical inclusion functor
J: &€ — A
(a) Let
u: b — F

be a morphism of £. Since
KerJ(u) — J(FE)

is a monomorphism, there is an object K of £ and an isomorphism
KerJ(u) ~ J(K).

This gives us a morphism
J(K) — J(E)

which is a kernel of J(u). Since £ is a full subcategory of A, this morphism is of the
form J(k) where
k:K —FE

is a morphism in £. One checks easily that k is a kernel of u in £. Hence,

J(Keru) ~ KerJ(u).
Since the canonical morphism

CoimJ (u) — J(F)

is a monomorphism, there is an object C' of £ and an isomorphism
CoimJ (u) ~ J(C).

Proceeding as above, we get a morphism

c:BE—C

such that
J(e): J(E) — J(C)



1.2. DERIVATION OF QUASI-ABELIAN CATEGORIES 31

is a cokernel of

J(k) : J(Keru) — J(E).

Therefore,
c: EFE—C

is a cokernel of k : Keru — F and C' is a coimage of u. Hence,
J(Coimu) ~ CoimJ (u).
Parts (b) and (c) follow directly from (a). O

Proposition 1.2.35. Let £ be a quasi-abelian category and let A be an abelian
category. Assume that the functor

J:&E— A
is fully faithful and that
(a) for any monomorphism
A — J(E)
of A there is an object E' of £ and an isomorphism
A~ J(E,

(b) for any object A of A, there is an epimorphism
J(E) — A
where E is an object of £.
Then, J extends to an equivalence of categories
LH(E) =~ A.
Proof. 1t follows from (b) that for any complex A € D™ (A) there is a complex E of
D~ (€) and a quasi-isomorphism
J(E) — A.
Moreover, thanks to the preceding lemma, a complex E € D~ (€) is strictly exact in

degree k if and only if J(FE) is exact in degree k. It follows from these facts that .J
induces an equivalence
D (&) =D (A)
which exchanges the left t-structure of D~ (€) with the canonical t-structure of
D~ (A). In particular,
LH(E) =~ A.
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1.3 Derivation of quasi-abelian functors

In this section, we assume that £ and F are quasi-abelian categories and we will
give conditions for an additive functor

F.&E—F

to be left or right derivable (Although we do note state explicitely the corresponding
results for multivariate functors, the reader will figure them out easily). We will also
investigate to what extend F' is determined by its left and right derived functors.
Finally, we will explain how to replace F' with a functor

G LH(E) — LH(E)

with the same left or right derived functor.

1.3.1 Derivable and explicitly derivable quasi-abelian func-
tors

As in the abelian case, we introduce the following definition.

Definition 1.3.1. Let
F:&—F

be an additive functor and denote as usual
Qe : K(E) — DE), Qr:K(F)— D(F)

the canonical functors.
Assume we are given a triangulated functor

G:D (&) — D' (F)
and a morphism
9:Qro K" (F) — GoQe.

Then, (G, g) is a right derived functor of F if for any other such pair (G, ¢'), there
is a unique morphism

h:G— G
making the diagram

G o Qs
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commutative. The functor F' is right derivable if it has a right derived functor. In
this case, since two right derived functors of F' are canonically isomorphic, we may
select a specific one. We denote such a functor RF' and call it the right derived
functor of F.

Dually, assume we are given a triangulated functor
G:D (E) =D (F)
and a morphism
g:GoQs— Qrok (F).
Then, (G, g) is a left derived functor of F' if, for any other such pair (G’, ¢'), there
is a unique morphism
h:G — G

making the diagram

GlOQs

G o Qe

commutative. The functor F is left derivable if it has a left derived functor. In this
case, since two left derived functors of F' are canonically isomorphic, we may select

a specific one. We denote such a functor LF' and call it the left derived functor of
F.

In order to give a criterion for derivability, we will adapt the usual results for
abelian functors.

Definition 1.3.2. Let
F.&E—F

be an additive functor.
A full additive subcategory P of £ is F'-projective if

(a) for any object E of £ there is an object P of P and a strict epimorphism
P— FE.

b) in any strictly exact sequence
(b) y y q
0—-F —F—FE —0
of & where E and E” are object of P, E' is also in P.
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(c) for any strictly exact sequence
0—-EF —FE—E"—0
where F’', E and E” are objects of P, the sequence
0— F(E)— F(E)— F(E")—0
is strictly exact in F.
Dually, a full additive subcategory Z of £ is F'-injective if
(a) for any object E of £ there is an object I of Z and a strict monomorphism

EF— 1.

(b) in any strictly exact sequence
0—EF —-EFE—FE"—0
of £ where E’ and FE are object of Z, E” is also in Z.

(c) for any strictly exact sequence
0—-F —FE—FE—0
where E', E and E” are objects of Z, the sequence
0— F(E)— F(E)— F(E") —0
is strictly exact in F.

Lemma 1.3.3. Let P be a subset of Ob(E). Assume that, for any object E of &,
there is an object P € P and a strict epimorphism

P— FE.

Then, for any object E of C~(€) there is an object P of C~(P) and a quasi-
isomorphism
u:P— F

where each
uk . PP — EF

is a strict epimorphism with P* € P.
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Proof. We may restrict ourselves to the case where E¥ = 0 for k > 0. To simplify
the notations, we set as usual E, = E~*. We will proceed by induction. Assume we
have already Py, ug, d such that

dE

0 Ey —— FEp, Ey——0
]
i
0— P, —— Py Py——0

is a k-quasi-isomorphism (i.e. the mapping cone is strictly exact in degree greater
or equal to k). Let us form the cartesian square

E
Eiiq M Kerd,'fE
UW ukT
E, ., " Kerdy
Let
w: Pop1 — By

be a strict epimorphism with Pyy; in P and set

dfﬂzvow U1 = v o w.
Let us show that
dE
0By — B Ey——0
uk+1T ukT uOT
i
e T e Py——0

is a (k + 1)-quasi-isomorphism. It follows from the definition of the mapping cone
and from the induction hypothesis that the only thing to prove is that the sequence

U 41 dkE+1 Uk
(_dlljﬂ) 0 —dy
Poyr —— 1 ® Py ———— Epy @ B

is strictly exact. By construction,

(*)

By —= Ep1 ® P

dkE+1 Uk
0 —df

Eppn® Py ———— B, ®© Py

is a kernel of
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Since w is a strict epimorphism, the conclusion follows easily.
To conclude, let us show that ug. is a strict epimorphism. By applying L Hy, it
follows from the induction hypothesis that

uy - Kerd, — Kerd}

is a strict epimorphism. Therefore, v' is also a strict epimorphism and by composi-
tion, so iS Ugy1- []

Proposition 1.3.4. Let P be an F'-projective subcategory of £. Then, the full
subcategory N~ (P) of I~ (P) formed by strictly exact complexes is a null system
and the canonical functor

K~ (P)/N™(P) — D (€)

is an equivalence of categories. Dually, let T be an F-injective subcategory of €.
Then, the full subcategory N'*(Z) of K (Z) formed by strictly exact complexes is a
null system and the canonical functor

K'(I)/NT(Z) — D" (€)
is an equivalence of categories.
Proof. Thanks to Lemma 1.3.3, the proof goes as in the abelian case. ]
Proposition 1.3.5. Let £, F be quasi-abelian categories and let
F:&—F
be an additive functor.

(a) Assume £ has an F-injective subcategory. Then, F' has a right derived functor
RF : DY (&) — D (F).

(b) Dually, assume & has an F'-projective subcategory. Then, F' has a left derived
functor
LF:D () — D (F).

Proof. Thanks to Lemma 1.3.3 and Proposition 1.3.4, the proof goes as in the abelian
case. L]

The preceding proposition is the main tool to show that a functor is derivable.
However, it does not give a necessary and sufficient condition for derivability. This
is the reason of the following definition.
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Definition 1.3.6. An additive functor
F:&—F

is explicitly right (resp. left) derivable if € has an F-injective (resp. F-projective)
subcategory.

Remark 1.3.7. Let
F:&—F

be a right derivable left exact functor. Call F-acyclic an object I of £ such that
F(I)~ RF(I)

and assume that for any object E of £ there is an F-acyclic object I and a monomor-
phism
E—1.

Then, F-acyclic objects of £ form an F-injective subcategory and F' is explicitly
right derivable.

1.3.2 Exactness properties of derived functors

Proposition 1.3.8. Let
F:&—F

be an additive functor of quasi-abelian categories and let T be an F'-injective sub-
category of £. Consider the right derived functor

RF : D+(5) — D+(]:).
Then

(LL) The functor RF is left exact for the left t-structures of D (E) and D (F) if
and only if the image by F of any monomorphism

Il — IO
of & where Iy, I, are objects of T is a monomorphism of F.

(LR) The functor RF is left exact for the left t-structure of D*(E) and the right
t-structure of D (F) if and only if the image by F of any monomorphism

Il—>]0

of & where Iy, I, are objects of T is a strict monomorphism of F.



38 CHAPTER 1. QUASI-ABELIAN CATEGORIES

(RL) The functor RF is left exact for the right t-structure of D(E) and the left
t-structure DT (F).

(RR) The functor RF is left exact for the right t-structure of D" (E) and the right
t-structure DT (F).

Proof.
(LL) The condition is necessary. Let A be an object of LH(E) represented by a
monomorphism

L1,
where Iy, I are objects of Z. It follows that RF'(A) is isomorphic to the complex

0— FI) 2 P(I) — 0

(F'(Ip) in degree 0). Our assumption implies that this complex is strictly exact in
degree —1. Therefore, F'(6) is a monomorphism in F.
The condition is also sufficient. Let E be an object of D=°(€). Since

E~77E,

we may assume that E* = 0 for & < —1. Replacing E by an isomorphic complex if
necessary, we may even assume that E* is an object of Z for any k € Z. Since FE is
an object of D=°(&),

E-! _ O

is a monomorphism of £. Hence,
F(E™") — F(E)

is a monomorphism of F and

is an object of D=°(F).
(LR) Let us show that the condition is necessary. Let A be an object of LH(E)
represented by a monomorphism

L%
where Iy, I are objects of Z. It follows that RF'(A) is isomorphic to the complex

0— FI) 2 P — 0
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(F'(Ip) in degree 0). Our assumption implies that this complex is strictly coexact in
degree —1. Therefore, F'(6) is a strict monomorphism in F.

The condition is also sufficient. Let E be an object of D(E) which is strictly
exact in each strictly negative degree. Replacing E by an isomorphic complex if
necessary, we may assume that E¥ = 0 for ¥ < —1 and that E* is an object of Z for
any k > —1. Since F is strictly exact in degree —1, the differential

-l _, g°
is a monomorphism. Therefore, our hypothesis shows that
F(E™") — F(E")
is a strict monomorphism in F and the complex
RF(E)~ F(E)

is strictly coexact in each strictly negative degree.

(RL) & (RR) Let E be an object of DT (&) which is strictly coexact in each strictly
negative degree. Replacing E by an isomorphic complex if necessary, we may assume
that E* = 0 for k < 0 and that E* is an object of Z for any & > 0. Therefore, the
complex

RF(E)~ F(E)
is strictly coexact in each strictly negative degree. O

Remark 1.3.9. One checks easily that the condition in part (LL) of the preceding
proposition is equivalent to the fact that

LH ' o RF(A)~0

for any object A of LH(E). Similarly the condition in part (LR) of the preceding
proposition is equivalent to the fact that

RH ' o RF(A) ~0

for any object A of LH(E).

Proposition 1.3.10. Let
F:&—F

be an explicitly right derivable functor of quasi-abelian categories and consider its
right derived functor
RF : DY(€) — D (F).
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Then the canonical morphism
IoF - LHoRFol  (resp.IoF — RHoRFol)

is an isomorphism if and only if F' is RL (resp. RR) left exact.

Proof. We consider only the RL case, since the RR case may be treated similarly.
Assume that
IoF~LHoRFol.

Let
0—EF —FE—FE"—0

be a strict exact sequence of £ and consider the induced distinguished triangle
I(E") — I(E) — I(E") X%
of DT (F). Applying RF and passing to cohomology, we get the exact sequence
0 — LH0oRFoI(E') — LH o RF o I(E) — LH° o RF o I(E")
of LH(F). Using our assumption, we see that the sequence
0—IoF(E)—IoF(E)— I[oF(E")
is exact in LH(F). Therefore the sequence,
0— F(E)— F(E)— F(E")

is strictly exact in F and F'is RL left exact.
Conversely, assume F' is RL left exact. Let Z be an F-injective subcategory of
£ and let I be a resolution of an object E of £ by objects of Z. The sequence

0—-E—1"—1T
being strictly coexact in £, our assumption shows that the sequence
0— F(E) — F(I°) — F(I")
is strictly exact in F. Therefore,
ToF(E)~ LHo F(I)~LH" o RF o I(E)

as requested. O
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Proposition 1.3.11. Let
F.&—F

be an explicitly right derivable functor of quasi-abelian categories and consider its

right derived functor
RF : DT(&) — DH(F).

Then
(LL) The functor RF is left exact for the left t-structures of D (€) and DT (F) and

LH°0cRFol~IoF
if and only if F' is LL left exact.

(LR) The functor RF is left exact for the left t-structure of D*(E) and the right
t-structure of Dt (F) and

RH°oRFol~IoF
if and only if F' is LR left exact.

(RL) The functor RF is left exact for the right t-structure of D (€) and the left
t-structure Dt (F) and
LHocRFolI~IoF

if and only if F' is RL left exact.

(RR) The functor RF is left exact for the right t-structure of D*(E) and the right
t-structure Dt (F) and
RH’oRFol~IoF

if and only if F' is RR left exact.

Proof. (LL) This follows from the preceding proposition and Proposition 1.3.8.
(LR) From the preceding proposition and Proposition 1.1.15, the condition is clearly
sufficient. Let us show that it is also necessary. By Proposition 1.3.10, we already
know that F'is RR left exact. Since F' transforms any strict morphism into a strict
morphism, to conclude, it is sufficient to show that F' transforms any monomor-
phism into a strict monomorphism. Let A be the object of LH(E) represented by a
monomorphism
E 25 E,

of £. Consider the associated distinguished triangle

E1—>E0—>A+—1>
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of DY(E). Applying the functor RF and taking cohomology, we get the exact
sequence

0 — RH°o RF o I(E)) — RH" o RF o I(Ey) — RH® o RF(A)

of RH(F). Hence the sequence

0 — F(E) 292, p(By)

is strictly coexact in F and F'(6g) is a strict monomorphism in F.
(RL) & (RR) This follows directly from Proposition 1.3.10. O

1.3.3 Abelian substitutes of quasi-abelian functors

In this subsection, our aim is to show that, under suitable conditions, a functor
F: & — F gives rise to a functor G : LH(E) — LH(F) which has the same left or
right derived functor.

Definition 1.3.12. Two explicitly right (resp. left) derivable quasi-abelian func-
tors are right (resp. left) equivalent if their right (resp. left) derived functors are
isomorphic.

Proposition 1.3.13. Let
F:&—F

be an additive functor.
Assume F' is explicitly right derivable. Then F' is right equivalent to an explicitly
right derivable left exact functor

F'.&—F

which is unique up to isomorphism.
Dually, assume F' is explicitly left derivable. Then F' is left equivalent to an
explicitly left derivable right exact functor

FQ E—F
which is unique up to isomorphism.

Proof. Let Z be an F-injective subcategory of £. Let E be an object of £ and let I
be a right resolution of E by objects of Z. Since

RF(E) ~ F(I),
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it is clear that
LH" o RF(E)

is in the essential image of

[:&— LH(E).

Set
FO=CoLHo1.

By construction, the functor F© is left exact and is isomorphic with ' on Z. There-
fore, Z forms an FP-injective subcategory of £ and we get

RF° ~ RF.

Hence F° is right equivalent to F.
Assume now that G : &€ — F is an explicitly right derivable left exact functor
which is right equivalent to F'. Since we have

LH° o RG(E) ~ I oG(E)
and RF ~ RG, we see that
G(E) ~C o LH" o RG(E) ~ F"
and the conclusion follows. O

Proposition 1.3.14. Let
F.&—F

be an additive functor between quasi-abelian categories. Assume F' is explicitly
right derivable. Denote 7 an F'-injective subcategory of £ and consider the right
derived functor

RF : DY) — DY (F).

In order that there exists an explicitly right derivable functor
G:LH(E) — LH(F)

and an isomorphism

RF = RG o D(I),

it is necessary and sufficient that one of the following equivalent conditions is satis-
fied:

(a) The functor RF is left exact with respect to the left t-structures of D (€) and
DH(F).
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(b) The functor F° is strongly left exact.
In such a case, G is right equivalent to the explicitly right derivable left exact functor
LH® o RF : LH(E) — LH(F).

Moreover, the restriction of this functor to £ is isomorphic to F' if and only if F' is
strongly left exact.

Proof. First, let us show that conditions (a) and (b) are equivalent.
(a) = (b). Let
0—-A—A—-A"—0

be a short exact sequence of LH(E). From the associated distinguished triangle
RF(A') — RF(A) — RF(A") 25
and the fact that LH~! o RF(A”) ~ 0, we deduce that the sequence
0 — LH°o RF(A") — LH° 0o RF(A) — LH" o RF(A")
is exact in LH(F). Hence,
LH" o RF : LH(E) — LH(F)
is a left exact functor. Consider now a morphism
¢:F —F

in £. Since the sequence
0 — Kere' - F' — E

is strictly exact in £, it gives rise to an exact sequence in LH(E). Applying LHoRF,
we get the exact sequence

0 — LH° o RF o I(Kere') — LH o RF o I(E') — LH" o RF o I(E)
of LH(F). Therefore, the sequence
0 — F°(Kere') — F°(E') — F°(E)
is strictly exact in F and FY is a strongly left exact functor.

(b) = (a). Let
Il — IO
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be a monomorphism of £ with both I; and Iy in Z. Since F° is strongly left exact,
FO(I) — F°(Io)

is a monomorphism of F. The conclusion follows from the fact that F° and F
coincide on 7.
Now, let us come back to the main proof.

Necessity. Since RG is left exact with respect to the left t-structures of D™ (€) and
DT (F), so is RF and condition (a) is satisfied.

Sufficiency. Denote G the functor
LH® o RF : LH(E) — LH(F)

and let J denote the full additive subcategory of LH(E) formed by the objects A
such that
LH" o RF(A) ~0

for any k& # 0. It follows from condition (a) and from the long exact sequence of
cohomology associated to F' that G is a left exact functor and that for any short
exact sequence

0—- A —-A—-A"—0
where A" and A are objects of J, A” is also an object of J and the sequence
0—GA") — GA) — GA") —0

is exact in LH(F). Let A be an object of LH(E). As an object of D(E), A is
isomorphic to a complex

I e AN NG S RN
of objects of Z. It follows that A is represented by the monomorphism
I — Kerd".

Since the square

]'—1 - ]’0

I

I ' —— Kerd®

is cartesian, it represents a monomorphism

A—J
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where J is the object of LH(E) represented by the monomorphism
It —1°

Since the sequence
0—I(I")—1I(I" —J—0

is exact in LH(E) and I(I71), I(I°) are objects of 7, we see that J is also an object
of J. Together with what precedes, this shows that 7 is G-injective. Now, let F
be an object of D' (&) and let

E—J

be an isomorphism where J is a complex of Z. We have
RGoD(I)(E)~Gol(J)~ F(J)~ RF(E)

as requested.
Assume now that

G : LH(E) — LH(F)
is an explicitly right derivable functor such that
RF ~ RG' o D(I).
It follows from this formula that
RGoD(I)~ RG o D(I).
Since D(I) is an equivalence of categories, we see that
RG ~ RG".

Therefore G’ is right equivalent to G.
The conclusion then follows from the definition of F©. O

Proposition 1.3.15. Let
F.&—F

be an additive functor of quasi-abelian categories. Assume F' is explicitly left deriv-
able and consider its left derived functor

LF:D(£) — D (F).
Then, there exists an explicitly left derivable functor

G: LH(E) — LH(F)
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such that
LF = LG oD(I)

and any such functor is left equivalent to the explicitly left derivable right exact
functor

LH o LF : LH(E) — LH(F).

Moreover, the restriction of this functor to £ is isomorphic to F' if and only if F' is
regular and right exact.

Proof. Let P be a F-projective subcategory of £. It follows from the construction of
LF that it is right exact with respect to the left t-structures of D~ (£) and D~ (F).
Therefore,

LH° o LF : LH(E) — LH(F)

is a right exact functor. Denote it by G and denote Q the essential image of Ijp.
Consider a short exact sequence of LH(E)

0—A —-A—-A"—0

where A and A” are objects of Q. Since [ is a fully faithful strictly exact functor,
this sequence is isomorphic to the image by I of a strict exact sequence

0—F —FE—E"—0

of & where E and E” are objects of P. It follows that E’ is an object of P and
consequently that A’ is an object of Q. Moreover, since the sequence

0— F(E')— F(E)— F(E")—0
is strictly exact in F, the sequence
0—GA) — GA) —GA")—0

is exact in LH(F). In order to show that Q is G-projective, it is thus sufficient
to note that since any object A of LH(E) is a quotient of an object of the form
I(E) where E is an object of &, it follows from the fact that P is F-projective that
A is also a quotient of an object of Q. The preceding discussion shows that G is
explicitly left derivable. Consider the functor

LF :D (§) — D (F).
Since G o I(P) ~ F(P) for any object P of P, we get the requested isomorphism

LGoD(I)~ LF.
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Assume now that

G : LH(E) — LH(F)
is an explicitly left derivable functor such that
LF ~ LG o ().
It follows from this formula that
LG oD(I) ~ LG o D(I).
Since D(I) is an equivalence of categories, we see that
LG ~ LG,

Therefore G’ is left equivalent to G.
The last part of the result follows from Subsection 1.3.2 O

Proposition 1.3.16. Let £ and F be quasi-abelian categories and let
F:&—F (resp. E: F — &)
be an explicitly left (resp. right) derivable functor. Assume that
Hom ,(F(X),Y) ~ Hom (X, E(Y))
functorially in X € £, Y € F (i.e. F is a left adjoint of E). Then,
Hom .z (LF(X),Y) = Hom e, (X, RE(Y))
functorially in X € D~ (€), Y € D (F).

Proof. Let P be an F-projective subcategory of £ and let Z be an E-injective sub-
category of F. Using the canonical morphisms

idD(]:) — 7.2” (n S Z)

and the properties of E-injective and F-projective subcategories, one checks easily
that any morphism
u:LF(X)—Y

of D(F) may be embedded in a commutative diagram of the form

LF(X) “»Y

|k

where
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(a) P (resp. I) comes from an object of K~ (P) (resp. KT (7)),
(b) the morphisms u': F(P) — I, a: Y — I come from morphisms of K (F),
(c) the isomorphism F'(P) — LF(X) comes from a quasi-isomorphism
6:P—X
of K=(&).

To such a diagram, we associate the unique morphism v : X — RFE(Y') making the
diagram
X " RE(Y)

|
P E(I)

commutative. Note that in this diagram ¢’ : P — FE(I) is obtained from u’ by
adjunction and that RE(Y) — E([) is induced by a. We leave it to the reader to
check that v depends only on u and that the process of passing from u to v defines
a functorial morphism

HomD(f)(LF(X), Y)— HomD(g)(X, RE(Y)).
Proceeding dually, we get a functorial morphism
Hom 5, ¢ (X, RE(Y')) — Hom p, 5 (LF(X),Y)

and it is easy to check that this defines an inverse of the preceding one. The con-
clusion follows. O

Corollary 1.3.17. In the situation of the preceding proposition,
LH o LF : LH(E) — LH(F)

is a left adjoint of
LH® o RE : LH(F) — LH(E).

Proof. Since FE is a right adjoint of F', F is strongly left exact. In particular,
RE(LH(F)) c D=°(&)
for the left t-structure. The conclusion follows from the isomorphisms

Hom 1y ) (LH® 0 LF(X),Y) = Hom p,z0(5 (77" 0 LF(X),Y)
~ Hom p, z (LF(X),Y)
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and

Hom /¢ (X, LH® o RE(Y)) ~ Hom <o (¢) (X, =0 RE(Y))
~ Hom p, ¢ (X, RE(Y'))

holding for any X € LH(E), Y € LH(F). O

1.3.4 Categories with enough projective or injective objects

Definition 1.3.18. An object I of & is injective (resp. strongly injective) if the
functor
Hom(-,I): &P — Ab

is exact (resp. strongly exact). Equivalently, I is injective (resp. strongly injective)
if for any strict (resp. arbitrary) monomorphism

u: B — F

the associated map
Hom (F,1) — Hom (E, I)

is surjective.
Dually, an object P of £ is projective (resp. strongly projective) if the functor

Hom(P,-) : &€ — Ab
is exact (resp. strongly exact). Equivalently, P is projective (resp. strongly projec-
tive) if for any strict (resp. arbitrary) epimorphism

u: B — F

the associated map
Hom (P, E) — Hom (P, F)

is surjective.

Remark 1.3.19. What we call a strongly projective object was simply called a
projective object by some authors. We have chosen to stick to our definition for
coherence with our notions of exact and strongly exact functor and also because
projective objects are more frequent and more useful than strongly projective ones.

Definition 1.3.20. A quasi-abelian category £ has enough projective objects if for
any object F of £ there is a strict epimorphism

P—-F
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where P is a projective object of £.
Dually, a quasi-abelian category € has enough injective objects if for any object
E of £ there is a strict monomorphism

E—1T

where [ is an injective object of £.

Remark 1.3.21. Let
F:&—F

be an additive functor.

Assume & has enough injective objects. Then, the full subcategory Z of £ formed
by injective objects is an F-injective subcategory. In particular, F' is explicitely right
derivable.

Dually, assume &£ has enough projective objects. Then, the full subcategory P
of £ formed by projective objects is an F-projective subcategory. In particular, F
is explicitely left derivable.

Proposition 1.3.22. Let P (resp. Z) be a full additive subcategory of €. Assume
that:

a) The objects of P (resp. I) are projective (resp. injective) in &.

b) For any object E of £, there is an object P of P (resp. I of ) and a strict
epimorphism (resp. monomorphism)

P—E (resp. £ —1I).

Then the canonical functor
K~ (P) =D () (resp. K'(I) — D" (£))
is an equivalence of categories.

Proof. We treat only the part corresponding to P. The statement for Z will follow
by duality.

Thanks to Lemma 1.3.3 the proof may proceed as in the abelian case and it is
sufficient to show that strictly exact objects of L~ (P) are isomorphic to 0. Let P
be an object of L~ (P). Assume P is strictly exact. By definition, this means that
the sequences

0 — Kerd] — P, — Kerd; , — 0

are strictly exact for any k € Z. If Kerd! , is projective in &, the sequence splits and
Kerd] is also projective. Therefore, a decreasing induction shows that the complex
P is split and the conclusion follows by Remark 1.2.2. O
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Proposition 1.3.23. Using the assumptions and notations of the preceding propo-
sition, a sequence

ESESE
is strictly exact (resp. coexact) in £ if and only if the sequence of abelian groups

Hom (P, E') — Hom (P, E) — Hom (P, E")

(resp. Hom (E",I) — Hom (E,I) — Hom (E',I) )
is exact for any P € P (resp. I € I).

Proof. We consider only the case of P, the other one is obtained by duality. The
condition is clearly necessary, let us prove that it is also sufficient.
We will first show that a sequence

0—-E SESE
is strictly exact if the sequence
0 — Hom (P, E') — Hom (P, E) — Hom (P, E")

is exact for any P € P. Let x : X — E be a morphism of £ such that " ox = 0. It
follows from the preceding proposition that we may find a strict exact sequence of

the form
PLPSX 0

where P, and F, are in P. It follows from our hypothesis that the sequence
0 — Hom (P, E') — Hom (P, E) — Hom (P, E")

is exact for k € {0,1}. Therefore, there is a morphism 2’ : Ly — E’ such that
e’ oz’ =xoe. Since
dox'od=x0€065=0,

it follows that 2’ o & = 0. Hence, there is a morphism z” : X — E’ such that
2" oe=1a'. Clearly,
dor’"oe=¢eoax'=x0e€

and we see that e’ o 2 = x. Since 2" is clearly the only morphism satisfying this
property, it follows that e’ is a kernel of ¢” and the sequence

0-ESESE

is strictly exact.
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To conclude, it is sufficient to show that a morphism
f:EFE—F
of £ is a strict epimorphism if the associated morphism
Hom (P, E) — Hom (P, F)
is surjective for any P € P. But this is obvious since a relation of the form
e=fo¢

where € : P — F'is a strict epimorphism implies that f is itself a strict epimorphism.
m

Proposition 1.3.24.
(a) An object P of £ is projective if and only if I(P) is projective in LH(E).

(b) The category £ has enough projective objects if and only LH(E) has enough
projective objects. Moreover, in such a case, any projective object of LH(E)
is isomorphic to an object of the form I(P) where P is projective in &.

Proof. (a) Assume P is a projective in £. Consider an epimorphism v : A — B in
LH(E) and a morphism f : I(P) — B. We have to show that f factors through u.
Since we may replace A, B by isomorphic objects, we may assume that A and B
are respectively represented by the monomorphisms FE ls, FEy and F} LN Fy and
that u comes from the morphism of complexes

FlLFO

o)

B —— Ey
We may also assume that f is represented by the morphism of complexes

Flé—F>F0

]

Since u is an epimorphism,

EOGBF1M>F0
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is a strict epimorphism. It follows from the fact that P is projective in £ that there
are two morphisms ¢’ : P — FEy, ¢ : P — F; such that ¢ = ugo ¢’ + 6p o ",
Therefore the morphism of complexes

Elé—E>E0

|

induces a morphism f": I(P) — A such that uwo f' = f.
Since [ is an exact functor, it follows from the adjunction formula

Hom ., ¢ (C(A), E) = Hom (A, I(E))

that C transforms a projective object of LH(E) into a projective object of £. There-
fore an object P of £ such that I(P) is projective in LH(E) is projective in &.

(b) Assume & has enough projective objects and let A be an object of LH(E).
We know that there is an epimorphism

I(E) — A
where E is an object of £. Choose a strict epimorphism in £
P—FE
where P is projective. We know that,
I(P) — I(E)

is an epimorphism in £LH(E) and that I(P) is projective. Therefore, LH(E) has
enough projective objects.
Assume now that LH(E) has enough projective objects and let E be an object

of £. There is an epimorphism
P — I(E)

in LH(E) where P is a projective object in LH(E). Since C has a right adjoint, it is
cokernel preserving and transforms epimorphisms in LH(€) into strict epimorphisms
in £. Therefore,

C(P)— E

is a strict epimorphism. Since we have already remarked that C'(P) is a projective
object of &, it is clear that £ has enough projective objects.

Since any projective object @ of LH(E) is a quotient of an object of the form
I(P) where P is a projective object of &, it is a direct summand of such and object.
It follows from Proposition 1.2.28 and part (a) that it is itself isomorphic to the
image by I of a projective object of £. m
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Remark 1.3.25. Assume £ has enough projective objects. For any object E of £
and any injective object I of £, we have

Hom (£, I) ~ RHom(E, I) ~ RHom .4 (I(E), I(1)).

)

J
Therefore, Ext CH(E)

injective in LH(E).

(I(E),I(I))vanish for j > 0. Nevertheless, I(]) is not in general

Proposition 1.3.26.
(a) An object J of € is strongly injective if and only if I(.J) is injective in LH(E).
(b) Assume that for any object E of £ there is a strict monomorphism
E—J
where J is a strongly injective object of £. Then, &£ is abelian.
Proof. (a) Let J be an object of £ and assume I(J) is injective in LH(E). Let
E—F
be a monomorphism in £. We know that
I(E) — I(F)
is a monomorphism in LH(E). Therefore,

Hom 14y (L(F'), 1(J)) — Hom 1\ (1(E), I(J))

)
is surjective. Since the functor
I:&— LH(E)
is fully faithful, it follows that
Hom(F,J) — Hom(F, J)

is surjective. This shows that J is strongly injective in £.
Assume now that J is a strongly injective object of £. Up to isomorphism, a
monomorphism u of LH(E) is represented by a cartesian square

EOLFO

o] o]

ElLFl
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whose associated sequence

(%J) (uo —6F)

0 —F —>Ey®F; Fy

is thus strictly exact. Denote o and (3 the second and third morphism of the pre-
ceding sequence and denote v the canonical morphism

Ey ® Fy — Coim}f.

In LH(E), a morphism f from

B 25 E,
to I(J) is given by a morphism
for By —J

such that fyp o ér = 0. Denote g the morphism

By F L% g

Since g o a = 0, there is a morphism ¢’ : Coimf — J such that
/
g=gon.
Since the canonical morphism
Coimf — Fj

is a monomorphism in £ and J is strongly injective in £, we can extend ¢’ into a
morphism ¢” : Iy — J. Clearly, this morphism induces a morphism A from

JagLn Fy
to I(J) in LH(E) such that f = howu. Hence I(J) is injective in LH(E).
(b) We know that for any complex E of £ there is a complex J of £ and a
quasi-isomorphism
u: b —J

such that, for any k € Z, J* is a strong injective object of £ and
uf L BF — JF

is a strict monomorphism. Let

B > E
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be a bimorphism of £ and denote by E the associated object of LH(E). From what
precedes, we may find a complex J and a quasi-isomorphism

u:FBE—J
such that
U12E1—>J1, U02E0—>J0

are strict monomorphisms and J* are strong injective objects of £. Hence, the
complex

Jl i) KerdOJ

is isomorphic to F and ¢’ is a bimorphism. Since J; is a strong injective object, ¢’
has an inverse in €. It follows that E is quasi-isomorphic to 0. Therefore ¢ is an
isomorphism of £. The conclusion follows easily. N

1.4 Limits in quasi-abelian categories

1.4.1 Product and direct sums

In this subsection, we study products in quasi-abelian categories. Our results show
mainly that a quasi-abelian category £ has exact (resp. strongly exact) products if
and only if LH(E) (resp. RH(E)) has exact products and the canonical functor

E— LH(E) (resp. € — RH(E))

is product preserving. We also give criteria for these conditions to be satisfied. We
leave it to the reader to state the dual results for direct sums.

Lemma 1.4.1. Let A be an additive category and let I be a small set. Then, A’
is an additive category and the canonical functor

KA = K(A)
is an equivalence of triangulated categories.

Proof. For any C € C(A!) and any i € I, denote C; the complex of A defined by
setting
Gt = (C");
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This gives us a canonical functor

C(AI) — C(.A)I
C = (Ciier

which is trivially an isomorphism of categories. Since two morphisms
f:C—D, ¢g:C—D
are homotopic in C(A’) if and only if
fi:Ci—D;, g¢g;:C;i— D,

are homotopic in C(A) for every i € I, it is clear that we have a canonical isomor-
phism of categories

KA 5 (A
In A!, we have

Hence, the preceding functor exchanges the distinguished triangles of iC(A’) with
the distinguished triangles of JC(A). O

Lemma 1.4.2. Let A be an additive category with products. Then, both C(A) and
KC(A) have products.

Proof. The functor
H AT — A
iel
being additive gives rise to a functor
e : elA”) — c(A)
iel

and to a functor

IC(H) (AN — K(A).

By composition with the canonical equivalences
C(A) — c(A")

and

K(A)" — KA,
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this gives us functors

which are easily checked to be product functors for the corresponding categories. [

Proposition 1.4.3. Let £ be a quasi-abelian category and let I be a small set.
Then, ' is quasi-abelian and the canonical functor

D(E") — D(E)

is an equivalence of triangulated categories which is compatible with the left and
right t-structures. In particular, we have canonical equivalences

LH(E) ~ LH(E), RH(EN) ~ RH(E) .
Proof. For any morphism f : £ — F of £, we have
(Kerf); = Kerf; and (Cokerf); = Cokerf;.

Therefore, an object E of KC(E7) is strictly exact in degree n if and only if the
complex C; is strictly exact in degree n for any ¢ € I. The conclusion follows easily
from this fact. O

Definition 1.4.4. A quasi-abelian category € has ezact (resp. strongly exact) prod-
ucts if it is complete and if the functor

[[:¢—¢
el
is exact (resp. strongly exact) for any small set I.

Proposition 1.4.5. Let £ be a complete quasi-abelian category. Assume &£ has
enough projective objects. Then, £ has exact products.

Proof. Let
u; By — F; (1el)

be a small family of strict epimorphisms of £. We have to prove that

HEz‘ [Ticr wi HFZ

i€l el
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is a strict epimorphism. Let

U:P—>HF,~

be a strict epimorphism where P is a projective object of £. For any i € I, it follows
from our assumptions that there is w; : P — FE; such that

P; OV = U; O W;.
Let w: P — [],c; £ be the unique morphism such that

Pi OW = w;.

Clearly,
<H Uz> ow ="v
i€l
and the conclusion follows from the fact that v is a strict epimorphism. ]

Proposition 1.4.6. Assume &£ is a quasi-abelian category with exact products.
Then, the category D(E) has products. Moreover, for any small set I,

H : D(E) — D(E)

is a triangulated functor which is exact for the left t-structures. It is exact for the
right t-structures, if and only if products are strongly exact in £.

Proof. Since the functor

[[:¢—¢

el

is exact, it gives rise to a functor

p([]) : p(E") — D(E).

el
By composition with the canonical equivalence
D) = D(E)

this gives us a functor
Pier: D) — D(E).

We will show that this is a product functor for D(E).
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Let E be an object of D(E) and let F be an object of D(E)?. We have to prove
that the canonical morphism

el
is bijective.
Let
EL R

be a family of morphisms of D(£). We may assume that there is a strict quasi-
isomorphism
s: F— G

of (&) and a family of morphisms
gi: E— G (iel)

of IC(€) such that the morphism f; is represented by the diagram

Gy
gi ? Sq

for each ¢ € I. Denote
g:F— H G;
el
the morphism of KC(£) associated to the family (g;)ier. Since Pier is a functor,
[1;c; 5 is a strict quasi-isomorphism of iC(€). Hence, we may define

[ E — PcrF;

as the morphism of D(&) represented by the diagram

Since the diagram
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commutes in KC(£), we see that the diagram

f

E——|]F)
el
fi lpz'
F;

is commutative in D(&). This shows that (*) is surjective.
To show that (*) is injective, we have to prove that if

fiE=][F

el

is a morphism of D(&) such that the diagram

el
0 l .
F;

commutes in D(E) for every i € I, then f = 0. Let

be a diagram of }C(&) representing f.
Recall that a diagram

z Z S
y s .
of IC(E) where s is a strict quasi-isomorphism, represents the morphism
xXLy

of D(E) if and only if there is a commutative diagram of i(€) of the form
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where ¢ is a strict quasi-isomorphism.
For any i € I, we have p; o f = 0. Therefore, there is in () a commutative
diagram of the form

EL)G#HE

iel
Zi
0 »
t

%

Zi«"—F,

where ¢; is a strict quasi-isomorphism. Denoting
z:G — H Z;

the morphism of K(€) associated to (z;)icr, we get, in K(€), the commutative dia-
gram

E—"Ge"—]]F
el

0 z E
HZiHiEItiHE

el il

Since Py is a functor, [],.,t; is a strict quasi-isomorphism. Therefore, f = 0 in
D(E).

Since product functors are always strongly left exact, the last part of the propo-
sition is clear. ]

Corollary 1.4.7. Assume £ is a quasi-abelian category with exact products. Then,

(a) The abelian category LH(E) (resp. RH(E)) is complete and the canonical
functor

E— LHE) (resp. E — RH(E))

is product preserving.
(b) Products are exact in LH(E).
(c¢) Products are exact in RH(E) if and only if they are strongly exact in E.

Proof. Let (A;)icr be a family of objects of LH(E). We know that A; may be
represented by a monomorphism
E; — F
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of £. Hence, it is clear that the object

Products being strongly left exact functors, this complex is in LH(E). Since LH(E)
is a full subcategory of D(£), it follows that [[,.; A; is the product of the family
(Ai)ier in LH(E). Using the fact that

II:p@E)" —p(e)

el

is triangulated, we check easily that products are exact in LH(E). This proves (b).
Let (A;)ier be a family of objects of RH(E). We know that A; may be represented
by an epimorphism
E; — F;

of £. Hence, it is clear that the object [],.; As of D(E) is isomorphic to the complex

This complex has components in degree 0 and 1. Hence, it is in D=°(&) for the right
t-structure of D(E). It follows that

[T Hom gy (X, As) = Hom o (X, ] Ai) = Hom gy (X, RH(J [ A2)).
el el el
Hence,
RH*(J] A
el

is a product of the family (A;);e; in RH(E). If products are strongly exact in &,

RE(JTA) ~ ][ A

el el

and the exactness of products in RH(E) follows as in the case of LH(E). Conversely,
if products are exact in RH(E), a family of morphisms (u;);c; of £ gives rise to the

exact sequences
I(u;)
—

I(E;) I(F;) — I(Cokeru;) — 0
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in RH(E) and since
[T1E) — ] 1(F) — ] 1(Cokeru;) — 0
el el el

is exact in RH(E), one sees that products are strongly exact in &.
To conclude, it remains to note that thanks to the preceding constructions of
products in LH(E) and RH(E), the last part of (a) is obvious. O

Proposition 1.4.8. Let £ be a quasi-abelian category and assume that LH(E)
(resp. RH(E)) is complete. Then, £ is complete.

Proof. Let us prove that £ has products if so has LH(E). Let (E;)jcs be a small
family of objects of £. Let

pi [[1(E) — I(E))
jes
denote the canonical projections of the product to its factors. Let
g : C([1(E)) — E,
jes
denote the morphism obtained by composing C'(p;) with the canonical isomorphism

COI(E]> l> Ej.

We will prove that
C(IT1(E))
jeJ
together with the projections ¢; form a product of the family (E;);c.
First, let
zj: X — E; (jeJ)

be a family of morphisms of £. Denote

o I(X) — [[1(E))
jeJ
the unique morphism of LH(E) such that

Let
r: X — C(J]1(E))

jedJ
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be the morphism obtained by composing C(z’) with the canonical isomorphism

X =5 Col(X).
Clearly,
g o = T;
for j € J.
Next, let

v X = C(J]1(E))
j€J
be a morphism such that
giox =0 (je€d).

In LH(E), let us form the cartesian square

[11E) 100 1(E))

JjeJ JjeJ
o T
Yy I(X)

where the first horizontal arrow is the canonical epimorphism. Since

I(g5) oy = pj
it is clear that
pjou=1I(g))oyou=1I(gjox)ov =0
and we deduce that u = 0. Therefore,
I(z)ov=you=0.

Since y is an epimorphism, so is v and we get I(x) = 0. Hence, z = 0.

To conclude, let us prove that £ has products if so has RH(E). By duality it is
equivalent to show that £ has direct sums when LH(E) has direct sums. From the
adjunction formula

Hom(C(A), E) = Hom (A, I(E))
it follows that, for any small family (F;);c; and any object X of £, we have
Homg(C(@ I(E;)), X) ~ Hom LH(S)(@ I(E;), 1(X))
iel iel

~ H Hom 5, ¢ (1 (E7), I(X))

el

~ [ [Hom,(E;, X).

el
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Hence,
C(@ I(E;))
iel
is a direct sum of the family (E;);cr in &. O

1.4.2 Projective and inductive systems

In this subsection, we study categories of projective systems of a quasi-abelian cat-
egory. We leave it to the reader to state the dual results for inductive systems.

Let &€ be a quasi-abelian category and let Z be a small category. Recall that the
category of projective systems of £ indexed by Z is the category

err
of contravariant functors from Z to &.

Proposition 1.4.9. Let £ be a quasi-abelian category and let T be a small category.
Then, the category of projective systems of £ indexed by 7 is quasi-abelian.

Proof. Since for any morphism
u: b — F

of £, we have
(Keru)(7) ~ Keru(7),
(Cokeru) (i) ~ Cokeru(i).
the conclusion follows easily. O

Definition 1.4.10. Let F' be an object of £ and let ¢ be an object of Z.
Assuming & is complete, we denote F the object of £ defined by setting

FZ(’L/) _ FHomI(i,i’) _ H F

o L
ae omI(z,z)

A projective system isomorphic to a system of the form F* will be said to be of
elementary type.
Similarly, assuming &€ is cocomplete, we denote F; the object of EX” defined by
setting
E(Z/) _ F(HomI(i’,i)) _ @ F

acHom _(#/,i)
T

A projective system isomorphic to a system of the form F; will be said to be of
coelementary type.
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Remark 1.4.11. With the notation of the preceding proposition, F* is exchanged
with F; if one exchanges & with £°° and Z with Z°P.

Proposition 1.4.12. If £ is complete, then
Hom gzo0 (E, F') ~ Hom - (E(i), F)
and there is a strict monomorphism

E — [ EG)

i€l

for any object E of E¥°".
Similarly, if £ is cocomplete, then

Hom ¢zon (F}, E) ~ Hom (F, E(1))
and there is a strict epimorphism

P EG: —E

ieT
for any object E of EX°".

Proof. Thanks to the preceding remark, it is sufficient to prove the first statement.
For any i’ € Z, we have

Hom . (E(i'), F'(i)) ~ Hom,,(Hom (i, '), Hom (E(i'), F)).
These isomorphisms give us the isomorphism
Hom gzo0 (E, F*) ~ Hom g,z (hi, h" o E).
Using standard results on representable functors, we get
Hom gzo0 (E, F*) =~ h" o E(i) ~ Hom (E(i), F).
Now let us prove the second part of the result. For any ¢ € I, the identity morphism
induces, by an isomorphism of the preceding kind, a morphism

E — E(i)".
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Together, these morphisms give us a canonical morphism
u:E— [[E()
Choose i’ € I. To conclude, we have to prove that u(i") is a strict monomorphism.
Note that
IO =1[eo@ =11 11 EO.
i€l 1€L 1€ aEHomI(i,i’)

Composing u(i") with this isomorphism, we get a morphism

(i) E@) =T JI  EG)

1€l aEHomI(i,i’)
such that
Pa ©Pi © U@/) = E(Oé)

for any o : 4 — ¢’ in Z. For o = idy this shows that v(i’) is a strict monomorphism
and the conclusion follows. ]

Remark 1.4.13. Taking E to be a constant functor in the preceding proposition
shows that
lim F'(i') ~ F

'€l

if £ is complete.

Corollary 1.4.14. Let £ be a complete (resp. cocomplete) quasi-abelian category.

(a) Assume F' is an injective (resp. a projective) object of £. Then, for any i € T,
F' (resp. F;) is injective (resp. projective) in EX™.

(b) Assume £ has enough injective (resp. projective) objects. Then ™ has
enough injective (resp. projective) objects

Proposition 1.4.15. Let £ be a quasi-abelian category with exact direct sums and
let T be a small category. Then, there is a canonical equivalence

LH(ET") ~ LH(E)™.
Proof. The canonical inclusion functor

[:&— LH(E)
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gives rise to a fully faithful functor
1:87" — LHE.
Let E be an object of EZ” and let
A— I(E)
be a monomorphism of LH(£)T™. Since
A(i) — I(E(1))

is a monomorphism of LH(E) for any ¢ € Z, we can find for any ¢ € Z an object
E'(i) of £ and an isomorphism

[(E' (i) ~ Ai).
Using these isomorphisms, we may turn E’ into an object of £ such that
I(E') ~ A.

Therefore, I(£Z™) is a full subcategory of LH(E)F” which is essentially stable by
subobjects. Let A be an object of LH(E)T™. We know that there is a canonical

epimorphism
P Ai); — A
i€l

Since, for any ¢ € Z, there is an epimorphism
I(E(i)) — A(i)
with E(i) in £, we get an epimorphism

P 1(E@)): — A
iel
By definition,

BrEn)H =0 @ 1(20)~1( P Ew)

el el ot — el o —>1

D 1(E®));

el

Therefore,

is an object of I(£7™). Applying Proposition 1.2.35, we get the conclusion. O
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1.4.3 Projective and inductive limits

Proposition 1.4.16. Let £ be a quasi-abelian category and let Z be a small cate-
gory. Assume £ has exact products. Then,

f(liL?E(i)) 21%11(]3(2’))

in LH(E). Moreover, a similar formula holds in RH(E) if and only if the functor

!iLn:SI—u‘:
i€

is regular.

Proof. The first part follows directly from the fact that I has a left adjoint. Let us
now consider the second part.

The condition is sufficient. Denote J the full subcategory of £ formed by the
functors E for which the canonical morphism

is an isomorphism in RH(E). Thanks to Corollary 1.4.7
I:&— RH(E)

preserves products. Hence, for any object F' of £ and any ' € Z, we have

-/

I(F"(1) = I(F)" (i)

for any i € 7 and it follows from Remark 1.4.13 that F* is an object of J. Since
one checks also easily that a product of objects of J is in J, it follows from Propo-
sition 1.4.12 that any objet E of £ may be embedded in a strictly coexact sequence
of the form

0—-E—J"—J

where J° and J! are in J. For such a sequence, the sequence
0—JoFE —IoJ—=ToJ'
is exact in RH(E)L. Projective limit functors being strongly left exact, the sequence

0 — lim I(E(i)) — Lim I(J°(i)) — lim I(J'(7))

€T €L €L
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is exact in RH(E) and the sequence
0 — lim E(i) — lim J°(i) — lim J'(4)
i€T i€T i€T

is strictly exact in £. Thanks to our assumption, the last morphism in this second
sequence is strict. Hence the sequence

0 — I(lim B(i)) — I(lim J°(:)) — I(lim J'(2))

1€l i€l i€l

is exact in RH(E). The conclusion follows easily.
The condition is necessary. Let

f:E—F
be a strict morphism of £Z. Since the sequence
0 — Kerf - F — F
is strictly coexact in &%, the sequence
0 —IoKerf -ToFE —1IoF
is exact in RH(E)?. Hence, the sequence

0 — lim I (Kerf(i)) — lim I(E(i)) — lim I(F(i))
i€T i€l i€l

is exact in RH(E). Thanks to our assumption, it follows that the sequence

0 — I(limKerf(7)) — I(lim E(i)) — I(lim F'(7))
1€T 1€ 1€L

is also exact in RH(E). Hence, the sequence

0 — lim Kerf(i) — lim E(i) — lim F'(i)
i€T i€T i€T
is strictly coexact in €& and the morphism

lim E(i) — lim F(i)
1€T 1€T

1s strict. ]

Proposition 1.4.17. Let £ be a cocomplete quasi-abelian category. Then filtering
inductive limits are exact in LH(E) and commutes with

I:&— LH(E)

if and only if filtering inductive limits are strongly exact in £.
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Proof. The condition is easily seen to be necessary, let us prove that it is also suffi-
cient. A strongly exact functor being regular, the dual of the preceding proposition
shows already that filtering inductive limits commute with /. To prove that filtering
inductive limits are exact in LH(E), note that the functor

h_r)n:51—>5
ieT

being strongly exact, it is strictly exact. Hence, by Proposition 1.2.33, it gives rise
to an exact functor

L: LH(ED) — LH(E)

and a canonical isomorphism

Lolgr ~I¢olim.
i€l

Composing L with the canonical equivalence
LH(E) ~ LH(ET) (*)
we get an exact functor
L' LH(E — LH(E).
Let A be an object of LH(E)*. Equivalence (*) shows that, in LH(£)*, we have an
exact sequence of the form

0—>IgoE1ﬁ>IgoEo—>A—>0

where
6 E1 — EO

is a monomorphism of £Z. It follows that the sequence
0 — Lolgz(Fy) — Lolegz(Ey) — L/(A) — 0
is exact in LH(E). Therefore, the sequence

0 — lim Te(B4 (1)) — lim Te(Eu(3)) — L'(A) =0

€T i€l

is exact in LH(E). It follows that

and one checks easily that this isomorphism is both canonical and functorial. The
conclusion follows directly. O
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1.5 Closed quasi-abelian categories

1.5.1 Closed structures, rings and modules

Recall (see e.g. [10]) that a closed additive category is an additive category & en-
dowed with an internal tensor product

T:ExE—E,

a unit object

U € Ob(&),

an internal homomorphism functor
H:EPxE—=E
and functorial isomorphisms
T(E,F)~T(F,E)
T(UE)~FE

Hom (T(E, F),G) ~ Hom . (E, H(F,G));

these data being subject to a few natural coherence axioms.
Let € be a closed additive category. By a ring in £, we mean an unital monoid
of £. It corresponds to the data of an object R of £, a multiplication morphism

m:T(R,R) — R
and a unit morphism
u:U — R.

These data being assumed to give rise to the usual commutative diagrams expressing
that m is associative and that u is a unit for m.

Let R be aring in £. By an R-module, we mean an object E of £ endowed with
a (left) action of R. This action is a morphism

a:T(R,M)— M

which gives rise to the usual commutative diagrams expressing its compatibility with
the multiplication m and the unit u of R.
A morphism of an R-module F to an R-module F' is defined as a morphism

f:E—F
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of £ which is compatible with the actions of £ and F. One checks easily that, with
this definition of morphisms, R-modules form an additive category which we denote

by Mod(R).

We leave it to the reader to check the following result.

Proposition 1.5.1. Let £ be a closed additive category and let R be a ring of £.
Assume £ is quasi-abelian (resp. abelian). Then, Mod(R) is quasi-abelian (resp.
abelian). Moreover, the forgetful functor

Mod(R) — &
preserves limits and colimits. In particular, a morphism of Mod(R) is strict if and
only if it is strict as a morphism of £.

Proposition 1.5.2. For any object E of £, the multiplication m of R induces an
action of R on
T(R,E).

For any R-module F', we have
Hom 4 gy (T(R, E), F') = Hom(E, F).
In particular, T(R, E) is projective in Mod(R) if E is projective in E.

Proof. The fact that T'(R, F) is an R-module is obvious. Let us prove the isomor-
phism. Define
¢ : Hom o 5y (T(R, E), F') — Hom (E, F)

by setting
w(h) =hoa

where o : F — R ® F is the composition

u®id g
E~T(U,E) — T(R, E)

and
¢ : Homg(E, F') — Hom 4 (T'(R, E), F)

by setting
(h) = ap o T(idg, h)

where ar is the action of R on F'. A simple computation shows that 1 is an inverse
of ¢ and the conclusion follows. O
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1.5.2 Induced closed structure on LH(E)

Proposition 1.5.3. Let £ be a closed quasi-abelian category with enough projec-
tive objects. Denote

T:ExXE—E

the internal tensor product, U the unit object and
H: &P %xE—=E

the internal homomorphism functor. Assume that for any projective object P the
functor T'(P,-) is exact and that T(P, P') is projective if P’ is projective. Then,

(a) H(P,-) is exact if P is projective,
(b) H(-,I) is exact if I is injective,
(c) H(P,I) is injective if P is projective and I is injective.

Moreover, T' is explicitly left derivable, H is explicitly right derivable and we have
the canonical functorial isomorphisms

(d) LT(X,Y) ~ LT(Y, X),

(e) LT(X,U) ~ X ~ LT(U, X),

(f) RHom (LT(X,Y), Z) ~ RHom (X, RH(Y, Z)),
(g) RH(U,Z) ~ Z.

where X, Y € D~ (€), Z € D(E).

Proof. Thanks to our assumptions, (a), (b) and (c) follow directly from the adjunc-
tion formula

Hom (T(X,Y), Z) = Hom (X, H(Y, Z)).

Let P denote the full subcategory of £ formed by projective objects. It follows
from the hypothesis that (P,€) is T-projective and that (P°P,€) is H-injective.
Therefore, T' is explicitly left derivable and H is explicitly right derivable. To prove
(d), (e) and (f), we may reduce to the case where X, Y are objects of X~ (P). In this
case, LT(X,Y) ~T(X,Y) and RH(Y,Z) = H(Y, Z). Since T'(X,Y) is an object of
I~ (P), everything follows from the fact that £ is a closed quasi-abelian category.
To prove (g), we use (f) with Y = U. This gives us the isomorphism

RHom (X, Z) ~ RHom (X, RH(U, Z))
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where X € D (€), Z € DY(E). Fix Z € DT(€) and denote C the cone of the
canonical morphism

Z — H(U,Z) — RH(U, Z).
It follows from what precedes that
RHom (X,C) ~0
for any X € D~(€). Hence, the complex
Hom (X, C)

is exact for any X € P and C itself is strictly exact (see Proposition 1.3.23). There-
fore, C' ~ 0 and
Z~ RH(U,Z).

L]

Corollary 1.5.4. In the situation of the preceding proposition, LH(E) is canoni-
cally a closed abelian category. Its internal tensor product is given by

T =LHo LT : LH(E) x LH(E) — LH(E),
its unit object by U = I(U) and its internal homomorphism functor by
H=LHo RH : LH(E)®® x LH(E) — LH(E).

The functor T (resp. H) is explicitly left (resp. right) derivable and we have the
canonical isomorphisms

LT(I(X),I(Y)) ~ LT(X,Y)

and
RH(I(Y),I(Z)) ~ RH(Y, Z)

for any X, Y € D~ (€) and any Z € DT ().

Assume moreover that the functor
T(P-):E—E

is strongly exact for any projective object P of £. Then, for any projective object
Q of LH(E) the functor

T(Q,-) : LH(E) — LH(E)

is exact and T(Q, Q') is projective if )’ is projective in LH(E).
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Proof. Tt follows from parts (d) and (e) of the preceding proposition that 7" is
symmetric and that I(U) is a unit. The coherence axioms are also easily checked.
Let Y, Z € LH(E). We know that Y is isomorphic to a complex P of L~ (P).
Therefore,
RH(Y,Z)~ H(P, Z).

The first non-zero component of H(P, Z) is of degree —1 and is isomorphic to
H(P°, z7Y,
the second non-zero component is of degree 0 and isomorphic to
Hom (P°, Z2°) @ Hom (P, Z71)

the differential being
Hom (P°, d,")
Hom (d5', Z7Y) )"

Since Z € LH(E), d,' is a monomorphism. So, the differential of degree —1 of
H(P,Z) is also a monomorphism and RH(Y, Z) € D=°(€) for the left t-structure.
Moreover, we have also LT(X,Y) € D=Y(&) for any X, Y € LH(E). Therefore,
using part (e) of the preceding proposition, we get successively

Hom 1) (T(X,Y), Z) ~ Hom 920(5)(720 o LT(X,Y),Z)
~ Hom ,D(g)(LT(X, Y),Z)
~ Hom ’D(5)<X’ RH(Y,Z))
~ Hom p<o(¢) (X, =00 RH(Y, 7))
~ Hom 1y (X, H(Y, Z))

for X, Y, Z € LH(E). i
Since LH(E) has enough projective objects, T is clearly left derivable.
Consider P € P and an exact sequence

0—A—-A—-A"—0
of LH(E). This sequence corresponds to a distinguished triangle
A A A
of DT(E). Hence,

RH(P,A') — RH(P,A) — RH(P,A") %
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is a distinguished triangle of D*(E). Since H(P,-) is strongly left exact,
RH(P,Y) ~ H(P,Y)
is in LH(E) when Y is replaced by A’; A or A”. Therefore, the sequence
0— H(I(P),A") — H(I(P),A) — H(I(P),A") — 0

is exact in LH(E). It follows that (I(P), LH(E)) is H-injective and that H is
explicitly right derivable.

To conclude, it is sufficient to recall that any object X of D™ (&) is isomorphic
to the image of an object of L~ (P) and to note that if X, Y € P and Z € &, we
have

LT(I(X), I(Y)) ~ T(I(X),1(Y))
~ LH? o LT(X,Y)
~T(X,Y)

and

RH(I(Y),1(Z)) ~ H(I(Y),1(Z))
~ LH o RH(Y, Z)
~ H(Y,Z).

Let us now treat the last part of the statement. Thanks to Proposition 1.3.24,
we may assume that ) = I(P) and that @)’ = I(P’) where P and P’ are projective
objects of £. Let

0 —-A —-A—-A" =0

be an exact sequence of LH(E). This corresponds to a distinguished triangle
A A A
of D7(E). Applying LT (I(P),-), we get the distinguished triangle
LT(I(P),A) — LT(I(P),A) — LT(I(P),A") 2%

We know that
LT(I(P),X)~T(PX)

for any object X of D™ (E). Therefore, the long exact sequence of cohomology shows
that T'(I(P),.) is exact on LH(E) if

LH (T (P,A")) ~0
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for any object A” of LH(E). This will clearly be the case if
T(P-):E—E

preserves monomorphisms. Keeping in mind the fact that T(P,-) is exact and
strongly right exact, this last condition is equivalent to the one in our statement.
To conclude we only have to note that

T(I(P),1(P")) ~ I(T(P, P"))

and use Proposition 1.3.24. O



Chapter 2

Sheaves with Values in
Quasi-Abelian Categories

2.1 Elementary quasi-abelian categories

2.1.1 Small and tiny objects

In this subsection, we study various notions of smallness for an object of a quasi-
abelian category. We leave it to the reader to state the corresponding results for the
dual notions.

Definition 2.1.1. An object E of a cocomplete additive category £ is

(a) small if
Hom (E, @) Fi) ~ €D Hom (E, Fy),
i€l el

for any small family (F;);er of €.

(b) tiny if
lim Hom (£, F(i)) ~ Hom (£, lim F(4))
€T i€l
for any filtering inductive system

E:7T—E&.

Remark 2.1.2. Here, we have followed Grothendieck’s definition of a small object.
We don’t know if the notion of a tiny object was already defined before. Of course,
every tiny object is small. It is also easy to see that in a abelian category, every small
projective object is tiny but this is not necessarily the case in a quasi-abelian one.
There is also a possible stronger condition of smallness. This condition is clarified
in the following proposition.
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Proposition 2.1.3. Let £ be a cocomplete quasi-abelian category. An object E of
& is such that

Hom (B, liny F/(j)) =~ liy Hom (B, (7))
JjeJ JjeJ
for any inductive system
F.7—-¢&

if and only if F is a small strongly projective object of £.

Proof. Taking for 7 a discrete category or a category of the form

e
<,,..\ P e \\,L /_>
T 2R
\\_/ -

one sees that
Hom (£, .)

preserves direct sums and cokernels. Hence, E is a small strongly projective object
of £.

Conversely, if E is a small strongly projective object, Hom (E, .) is both cokernel
and direct sum preserving. Viewing

lim F'(j)
JjeET
as the cokernel of the canonical morphism
D Fu)—Pru
a:j—>j’ JeT
allows us to conclude. [

Proposition 2.1.4. Let £ be a cocomplete quasi-abelian category. Assume filtering
inductive limits are exact in £. Then, a small projective object of £ is tiny.

Proof. Let 7 be a small filtering category and let P be a small projective object
of £. Denote Q the full subcategory of £7 formed by the functors E for which the
canonical morphism

liy Hom (P, E(i)) — Hom (P, lim E(i))

€T €T

is an isomorphism. Since P is small, it is clear that O is stable by direct sums.
Moreover, for any E in £ and any ¢ € Z, we have

Hom (P, Ey(i')) ~ Hom (P, @ E)~ €P Hom(P,E) ~ Hom (P, E);(i')

a:i—>/ at—>1



2.1. ELEMENTARY QUASI-ABELIAN CATEGORIES 83

and it follows from the dual of Remark 1.4.13 that the functor E; belongs to Q.
Therefore, using Proposition 1.4.12, we see that any object E of £ may be embedded
in a strictly exact sequence of the form

Q1 — Qo —F —0

where ()1 and )y belong to Q. Since filtering inductive limits are exact in £, the
sequence

lim @1(4) — lim Qo (i) — lim E(i) — 0
i€l i€l i€l

is strictly exact in £. Since P is projective in £, we see that the sequences
Hom (P, Q1(7)) — Hom (P, Qo(i)) — Hom (P, E(i)) — 0 (ie)

Hom (P, lim Q1(7)) — Hom (P, lim Qo(i)) — Hom (P, lim E(i)) — 0

€T i€l i€l
are exact. Inductive limits being exact in the category of abelian groups, it follows
that
lj_n>1 Hom (P, E(i)) ~ Hom (P, h_n>1 E(7)).

€T i€l

2.1.2 Generating and strictly generating sets

Although, in this subsection, we consider only generating and strictly generating
sets, the reader will easily obtain by duality similar considerations for cogenerating
and strictly cogenerating sets.

Let us recall (see e.g. [10]) that a subset G of Ob(€) is a generating set of &€ if
for any pair

—
E F
f/
of distinct parallel morphisms of £, there is a morphism
GSE
with G € G, such that
foe# foe.

It is clearly equivalent to ask that for any strict monomorphism s : S — E which is
not an isomorphism, there is a morphism

G—FE
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with G € G which does not factor through s. Moreover, if £ is cocomplete and G is
small, it is also equivalent to ask that for any object E of £ there is an epimorphism

of the form
@ G; — F
jeJ
where (G;);ey is a small family of elements of G
The preceding notion is suitable for the study of abelian categories where any
monomorphism is strict. For quasi-abelian ones, the following definition is more
useful.

Definition 2.1.5. A strictly generating set of £ is a subset G of Ob(&) such that
for any monomorphism

m:S — FE

of £ which is not an isomorphism, there is a morphism
G—FE

with G € G which does not factor through m.

Lemma 2.1.6. Let u : E — F be a morphism of £. Then, the following conditions
are equivalent:

(a) w is a strict epimorphism,

(b) u does not factor through a monomorphism s : S — FE which is not an
isomorphism.

Proof.
(a) = (b). Let s: S — E be a monomorphism. Assume u': S — E is such that

!/
Uu=sou.

Since wu is a strict epimorphism, so is s. Hence, s is an isomorphism and the conclu-
sion follows.
(b) = (a). Since u factors through the monomorphism Coimu — FE,

Coimu ~ F

and w is a strict epimorphism.
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Proposition 2.1.7. Let £ be a cocomplete quasi-abelian category. A small subset
G of Ob(€) is a strictly generating set of £ if and only if for any object E of £, there
is a strict epimorphism of the form

SrEiag2
jeJ
where (G;);es Is a small family of elements of G.

Proof. Assume @ is a strictly generating set of £. Consider the canonical morphism

) G5 E.

Geg,heHom (G,E)

Using the preceding lemma, let us prove by contradiction that e is a strict epimor-
phism. Let
m:S — FE

be a monomorphism which is not an isomorphism and assume e = m o f for some
f:X — S. Forany G € G and any h € Hom (G, E), we get

h:mofoi(gm.

in contradiction with Definition 2.1.5.
Conversely, assume we have a strict epimorphism

Pa -~ E
jeJ
and let m : S — E be a monomorphism which is not an isomorphism. Assume that

for any j € J
hos;j:G; = E

factors through m. This gives us a family of morphisms

such that
hosj=moh}.

WG — s

jeT

Consider the morphism

associated to the family (h});cs. Clearly,

moh' = h.
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This contradicts the fact that h is a strict epimorphism. Therefore, one of the
hos;
does not factor through m and G is a strict generating set of €. m

Proposition 2.1.8. Let G be a small strictly generating set of the cocomplete quasi-
abelian category €. Then, a sequence

0—-E SESE
is strictly exact in £ if and only if the sequence of abelian groups
0 — Hom (G, E') — Hom (G, E) — Hom (G, E")

is exact for any G € G.
Assume moreover that the elements of G are projective objects of £. Then, a
sequence

is strictly exact in £ if and only if the sequence of abelian groups
Hom (G, E') — Hom (G, E) — Hom (G, E")
is exact for any G € G.
Proof. Proceed as in the proof of Proposition 1.3.23. O

Proposition 2.1.9. Let £ be a cocomplete quasi-abelian category. Assume £ has
a small strictly generating set G of small (resp. tiny) objects. Then, direct sums
(resp. filtering inductive limits) are strongly exact in £.

Proof. Let
0—F —FE—FE

be a strict exact sequence of £Z, where Z is a small discrete (resp. filtering) category.
For any ¢ € Z, the sequence

0— E'(i) — E(i) — E"(1)
is strictly exact in £. Hence, for any G € G, we get the exact sequence
0 — Hom (G, E'(i)) — Hom (G, E(i)) — Hom (G, E"(i))

By taking the inductive limit and using the fact that G is small (resp. tiny), we get
the exact sequence

0 — Hom (G, lim E'(7)) — Hom (G, lim E(i)) — Hom (G, lim E"(i))
i€T i€T icT

The conclusion follows easily from Proposition 2.1.8. O
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2.1.3 Quasi-elementary and elementary categories

Definition 2.1.10. A quasi-abelian category is quasi-elementary (resp. elemen-
tary) if it is cocomplete and has a small strictly generating set of small (resp. tiny)
projective objects.

Remark 2.1.11. One checks easily that an abelian category is elementary if and
only if it is quasi-elementary. So, the preceding definition is compatible with the
definition of elementary abelian categories in [14].

Proposition 2.1.12. A quasi-abelian category £ is quasi-elementary if and only if
LH(E) is elementary.

Proof. Let us prove that the condition is necessary. Thanks to the dual of Propo-
sition 2.1.9, direct sums are strongly exact in £. Therefore, the dual of Proposi-
tion 1.4.7 shows that LH(E) is cocomplete and that

[:&— LH(E)

preserves direct sums. Let P be a strictly generating small set of small projective
objects of £. Clearly, I(P) is a generating small set of LH(E) and Proposition 1.3.24
shows that the objects of I(P) are projective in LH(E). To check that I(P) is small
for any object P of P, we may proceed as follows. Let (A4;);cr be a family of LH(E).
We get a family of short exact sequences of LH(E)

0— I(F) — I(E;) — A — 0.

Therefore, the sequence

P1r) —-PI1E)—Pa—o

iel el il

is exact in LH(E) and the sequence

Hom (I(P), @ I(F;)) — Hom (I(P), @ 1(E;)) — Hom (I(P), P Ai) — 0

iel il il

PDi1(E) = 1D E)

i€l el

is exact in Ab. Since

and P is small, we get the exact sequence

@Hom (P, F;) — @Hom (P, E;) — Hom (I(P), @AZ) — 0.

iel el el
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It follows that

@ Hom (I(P), A;) =~ Hom (I(P), P A:)

i€l el

and we see that I(P) is small in LH(E).

The condition is also sufficient. Since LH(E) is cocomplete, it follows from the
dual of Proposition 1.4.8 that & is cocomplete. Let P be a generating small set of
small projective objects of LH(E). It follows that C'(P) is a generating small set of
projective objects of £. To check that C'(P) is small for any object P of P, we can
proceed as follows. Since the canonical morphism

@[<Ez> - [(@ E;)
i€l iel
is epimorphic, we get an epimorphism
Hom (P, € I1(E;)) — Hom (P, I(EP E»)).
i€l iel
Since P is small, we see that the canonical morphism
&P Hom (P, I(£;)) — Hom (P, I(EP E:))
i€l iel
is surjective. By adjunction, it follows that the canonical morphism
& Hom (C(P), E;) — Hom (C(P), P E;)
i€l iel
is surjective. Since it is also clearly injective, C'(P) is small. m

Remark 2.1.13. Thanks to the preceding proposition, we may reduce the follow-
ing Proposition to Freyd’s characterization of functor categories. However, for the
reader’s convenience, we give a direct proof.

Proposition 2.1.14. Let £ be a cocomplete quasi-abelian category and let P be
a full additive subcategory of £. Assume that the objects of P form a strictly
generating small set of small projective objects of £. Then, the functor

h:&— Add(P?, Ab)
E — Hom,(., E)

is strictly exact and induces an equivalence of categories

LH(E) ~ Add(P, Ab).
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Proof. For any strictly exact sequence
PLEeLE
of £ and any object P of P, the sequence
Hom (P, E') — Hom (P, E) — Hom (P, E")

is exact since P is projective. Hence, the functor h is strictly exact and induces a
functor

h:D () — D (Add(P,.Ab)).
Consider the category £ whose objects are defined by

Ob(L) = {(P,)ier : I small set, P, € Ob(P)}
and whose morphisms are defined by

Hom ,((P)ier, (P))jer) H@Homg (P, P)).

i€l jed

So, a morphism f of
Homﬁ((Pi)lElv (P_]/)JEJ>

may be considered as an infinite matrix (f;;) with

fﬂB—>P; VZGI, VJGJ

the set
{j: fi # 0}
being finite for any ¢ € I.
Now, let us define the functor
S:L—E&

by setting

z zEI @P

el

for any object (P;);cr of L. For any morphism

[ (Pier — (P)jes

S(f): Pr— Pr.

iel jeJ

we define
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by setting
Jos; = Zs o fii
JjeJ
where
s,:Pi—>@P,~, s;Pj’—>@Pj’
iel jed

are the canonical morphisms.
Since P; is small for any ¢ € I, the functor S is fully faithful. As a matter of
fact, for any objects (F;)ics and (P});es of £, we have successively

Hom ¢ (S((P)ic1), S((P))jes)) ~ Hom (P P, P P)

i€l jeJ

~ H@Homg P, Pj)

el jed
~ Hom ,((P))icr, (P})jes)-
Hence, L is equivalent to a full subcategory S(L£) of £. Since the direct sum of a

family of projective objects is a projective object, the objects of S(L) are projective.
Moreover, by hypothesis, for any object E of £, there is a strict epimorphism

S((P)ier) — E

where (P;);cr is an object of L. Therefore, by Proposition 1.3.22 we have an equiv-
alence of categories

K (S(L) =D (&).
and the functor S induces an equivalence of categories
K™ (L) =D (&).
Let P be an object of P. Recall that the functor
Popor — Ab
is a small projective object of Add(P°P, Ab). As a matter of fact, for any object F
of Add(P°P, Ab), we have
Hom (k" F) ~ F(P).
Hence, for any family (F');e; of Add(P°P, Ab) we get

Hom (", @ Fi) =~ (6D F)(P)

el el

:@E(P

il

:@Hom(hP,F

el
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and A is small. Moreover, if
0—F —F—F'—0
is an exact sequence of Add(P°P, Ab) then the sequence
0— F'(P) — F(P)— F"(P) —0
is exact. Therefore, the sequence
0 — Hom (h", F') — Hom (k" F) — Hom (k" F") — 0

is also exact and h? is projective.
For any object F' of Add(P°P, Ab), we define the morphism

v @ ' — F

{(P,f):P€P, fEF(P)}
by setting
vospy =vp(f)
where
Vp(f) b — F
is defined by

Le(f)(P)(g) = Fg)(f)

for any object P' of P and any morphism g of Hom,(P’, P). Let us show that v is
an epimorphism. It is sufficient to show that for any object P’ of P the morphism

v(P') P W’(P) — F(P)

{(P,f):PeP, fEF(P)}

is surjective. Consider f’ € F(P'). Since idp € h”'(P') = Hom(P', P'), we have

v(ser (P (idpr)) = Ypr (f)(P)(idp)
— Flidp)(f)
= f
and the conclusion follows.

Let
S L — Add(PP, Ab)

be the functor defined by setting

S/((Pz‘)z‘el) = @ hPi-

el
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Thanks to the preceding discussion, we may apply to S’ the same kind of arguments
we applied to S and conclude that S’ induces an equivalence of categories

S K7(L) & D (Add(P, Ab)).

Moreover, since in the diagram

D (Add(P, Ab))

K~(£)
we have clearly ho S = 5'; it follows that
h:D (£) — D™ (Add(P?, Ab))

is also an equivalence of categories.
Using the fact that h is strictly exact, we see that it exchanges the hearts of
D~ (€) and D™ (Add(PP, Ab)) corresponding left t-structures. So, h induces an

equivalence of categories
h:LH(E) — LH(AIA(PP?, Ab)).
Since the category Add (P, Ab) is abelian,
LH(Add(PP, Ab)) ~ Add(P°, Ab)
and the proof is complete. O

Proposition 2.1.15. Let £ be a quasi-abelian category. Assume & is quasi-elemen-
tary. Then,

(a) Both the categories € and LH(E) are complete with exact products. Moreover,
I:&— LH(E)
preserves projective limits.

(b) Both the categories £ and LH(E) are cocomplete with strongly exact direct
sums. Moreover,

[:€— LH(E)

preserves direct sums.
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(c) Both the categories £ and LH(E) have enough projective objects. Moreover,
LH(E) has enough injective objects.

Proof.

(a) It follows from the preceding proposition that LH(E) is complete. Hence, Propo-
sition 1.4.8 shows that £ is complete. Thanks to Proposition 1.4.5, £ has exact
products. Hence, the conclusion follows from Corollary 1.4.7.

(b) This follows from Proposition 2.1.12.

(c) Obvious. O

Proposition 2.1.16. Let £ be a quasi-abelian category. Assume & is quasi-elemen-
tary. Then, £ is elementary if and only if one of the following equivalent conditions
is satisfied

(a) The functor
I:&— LH(E)

preserves filtering inductive limits.
(b) Filtering inductive limits are exact in £.

(c) Filtering inductive limits are strongly exact in £.

Proof. This follows from Proposition 2.1.4, Proposition 2.1.9 and Proposition 1.4.17.
m

Proposition 2.1.17. Let £ be a small quasi-abelian category with enough projec-
tive objects. Then,
Ind(E)

is an elementary quasi-abelian category and there is a canonical equivalence of cat-
egories

LH(Znd(E)) =~ Ind(LH(E)).

Proof. Proceeding as in the abelian case (see [14]), it is easy to check that Znd(E)
is an elementary quasi-abelian category. Denote P the full additive subcategory of
& formed by projective objects. It follows from Proposition 2.1.14 that

LH(Ind(E)) ~ Add(P°, Ab)

Since any object of LH(E) is a quotient of an object of I(P) and since any such
object is projective, Znd(LH(E)) is an elementary abelian category and

Tnd(LH(E)) ~ Add(P°, Ab).

The conclusion follows easily. O
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2.1.4 Closed elementary categories

Proposition 2.1.18. Let £ be a closed quasi-abelian category with T as internal
tensor product and let R be a unital ring in £.

(a) Assume P is a small (resp. tiny) object of €. Then, T'(R, P) is a small (resp.
tiny) object of Mod(R).

(b) Assume G is a strictly generating set of €. Then,

{T(R,G) : G € G}

is a strictly generating set of Mod(R).
(c) Assume & is quasi-elementary (resp. elementary). Then Mod(R) is quasi-
elementary (resp. elementary).

Proof. Part (a) follows directly from Proposition 1.5.2.

To prove (b), let E be an R-module and let s : S — FE be a monomorphism
of Mod(R) which is not an isomorphism. Since G is a strictly generating set of &,
Definition 2.1.5 shows that there is G — E in £ which cannot be factorized through
s in €. Tt follows that the associated morphism T'(R,G) — E of Mod(R) cannot
be factorized through s in Mod(R) and we get the conclusion.

Part (c) is a direct consequence of (a) and (b). O

Proposition 2.1.19. Let £ be a small quasi-abelian category with enough projec-
tive objects. Assume & is endowed with a closed structure with T as internal tensor
product, H as internal homomorphism functor and U as unit object. Then, there is
a closed structure on Ind(E) which extends that of £ and any two such extensions
are canonically isomorphic. Assume moreover that for any projective object P of €
the functor

T(P-):E—E

is exact (resp. strongly exact) and that T(P,P') is projective for any projective
object P' of £. Then, similar properties hold for projective objects of Ind(E).

Proof. Assume Znd(€) is endowed with a closed structure extending that of &.
Denote T” its internal tensor product, H' its internal homomorphism functor and
U’ its unit object. Using the canonical fully faithful functor

w7 E — Tnd(€)

we may express the fact that the closed structure of Znd(€) extends that of £ by
the formulas

U/ ~ “U”, T/<“E”, :an) ~ “T(E, F)”, Hl(“E”, chn) ~ “H(E, F)”.
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Let E:Z7 =& F:J — & and G: K — & be three filtering inductive systems of
E. Tt follows from the adjunction formula between 7" and H' that

T/(ll_I>1’l “E(i)”, h_H)l (LF<]>77) 2 h—n>1h—n>1 “T(E(Z), F<]>>77
€T JjET 1€ jeJ

and that
H' iy “F ()", limy “G(k)”) = lim limy “H(F (j), G(K))"
jeT kek jET kek
These formulas show directly that 7" and H' are unique up to canonical isomorphism.
We may also use them to construct a closed structure on Znd(€) extending that of
& (details are left to the reader).
Since any projective object of Znd (&) is a direct factor of a projective object of

the form
@ (LB”
iel
with P, projective in &£, the last part of the statement is clear. O

2.2 Sheaves with values in an elementary quasi-
abelian category

In this section, we will fix a small topological space X and an elementary quasi-
abelian category £ and we will show that the category of sheaves with values in £
can be manipulated almost as easily as the category of abelian sheaves.

2.2.1 Presheaves, sheaves and the associated sheaf functor

Definition 2.2.1. A presheaf on X with values in € (or E-presheaf) is a functor
F:0p(X)? =&

where Op(X) denotes the category of open subsets of X with the inclusion maps as
morphisms. If V' C U are two open subsets of X, we denote

rvy t F(U) — F(V)

the associated restriction morphism. We define the category of presheaves on X
with values in £ by setting

Psh(X; &) = EOPO™,
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Let F' be an object of Psh(X;E). We define the fiber F, of F' at x € X by setting

F,= lim F(V)

VeveP

where V, denotes the set of open neighborhoods of x ordered by inclusion.
For any U € V,, we denote

rfo:F(U)—>Fm

the canonical morphism.

For any open subset U of X and any £-presheaf ', we denote Fjy the £-presheaf
obtained by restricting the functor ' to Op(U)P.

An object F' of Psh(X;E) is a mono-presheaf if for any open subset U of X and
any covering V of U, the morphism

T:F(U)—>HF(V)

Vey

defined by setting py or = 7’{2(] is monomorphic. Equivalently, F' is a mono-presheaf
if and only if hg o F' is an abelian mono-presheaf for any object E of £.

An object F of Psh(X;E) is a sheaf (or E-sheaf) if for any open subset U of X

and any covering V of U we get the strict exact sequence

0—FU)SJ[Fv) S I FOVnw)
vey wwrey

where 7 is defined as above and
/! F F
Ppww T =Twaww ©PW — Twaw',w’ © PW’-

Equivalently, F' is a sheaf if and only if hg o F' is an abelian for any object E of &.
We denote by Shv(X; E) the full subcategory of Psh(X;E) formed by sheaves.

Proposition 2.2.2. The category Psh(X;E) is a quasi-abelian category and
LH(Psh(X;E)) =~ Psh(X; LH(E)).

Moreover, if P is a strictly generating full additive subcategory of small projective
objects of £. Then, the canonical functor

h:Psh(X;E) — Add(P,Psh(X; Ab))
which associates to an £-presheaf F' the functor

Pl—>hpOF
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factors through an equivalence of categories
LH(Psh(X;E)) — Add(P; Psh(X; Ab)).
In particular, h is a fully faithful strictly exact functor.

Proof. The first part of the result follows from Proposition 1.4.9. Since £ has exact
direct sums, it follows from Proposition 1.4.15 that

LH(Psh(X;E)) ~ Psh(X; LH(E)).
Since Proposition 2.1.14 shows that
LH(E) ~ Add(P; Ab),
the conclusion follows easily. O

Definition 2.2.3. Let V be a covering of X. We define L(V; F') to be the kernel of
the morphism

[TFrv) = I Ewvaw).

Vey ww'ey

We set also
L(X;F) = hLEl L(V; F)
VeCu(X)op

where Cv(X) denotes the set of open coverings of X ordered by setting V < V' if
for any V € V there is V/ € V' such that V" C V’.

Finally, we define the E-presheaf L(F') by setting
L(F)(U) = L(U; Fi).

We have a canonical morphism
F — L(F).
Proposition 2.2.4. (a) For any E-presheaf F', L(F) is an £-mono-presheaf.
(b) For any £-mono-presheaf ', L(F') is an E-sheaf.

Proof. L(F') is an &-mono-presheaf (resp. an E-sheaf) if and only if hp o L(F') is an
abelian mono-presheaf (resp. an abelian sheaf) for any tiny projective object P of

E. Since it is clear that
hpOL(F) :L(hPOF)

we are reduced to the case where £ = Ab which is well-known. ]
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Definition 2.2.5. We define the associated sheaf functor
A Psh(X;E) — Shv(X;E)
by setting A = L o L. We have a canonical morphism
a(F): F — A(F).
Proposition 2.2.6. For any morphism
u:F—G
from the presheaf F' to the sheaf G there is a unique morphism
v:AF)— G

making the diagram

commutative. Therefore, F' ~ A(F') if and only if F' is a sheaf, and we have the
adjunction isomorphism

Hom g, x.¢(A(F), G) = Hom 5, v ) (F, G)

which shows that Shv(X; ) is a reflective subcategory of Psh(X;E).
Moreover, for any x € X, we have a canonical isomorphism

A(F), ~ F,.

Proof. We have
WA(F)][P] = A[L(F)[P]].

Hence, there is a unique morphism
V'[P A[A(F)[P]] — h(G)[P]

such that
V'[Pl o a(h(F)[P]) = h(u)[P].

Since h is full there is a morphism

v:A(F) — G
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such that
h(v) ="

For such a v, we get
h(voa(F))[P] = "o a(h(F)[P]) = h(u)[P]

and since h is faithful, we have

voa(F)=u.
Moreover, any morphism

w:A(F) — G
such that

woa(F)=u
satisfies the equality

h(w) =’
and h being faithful, we get
w="v
Since
hA(F)][P] = A(h(F)[P]),

we get

hp(A(F)2) = h[A(F)][Plz ~ h(F)[Pl. = hp(Fs)

and the last part of the result follows easily.

2.2.2 The category of sheaves

Proposition 2.2.7. The category
Shv(X; E)
is quasi-abelian. Moreover, a sequence
EFE—F—G
is strictly exact (resp. coexact) in Shv(X; &) if and only if the sequence
E, — F, — G,
is strictly exact (resp. coexact) in € for any x € X. In particular, a morphism

u: B — F

99
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of Shv(X; E) is strict if and only if
Uy By, — F,
is strict for any x € X.

Proof. Let
u: B — F

be a morphism in Shv(X;E). Define the object K of Psh(X;E) by setting
K(U) = Keru(U)

for any open subset U of X. Since
h(K) = Kerh(u),

it is clear that K is an E-sheaf. By construction, K is a kernel of u in Shv(X;E).
Define the object C' of Psh(X;E) by setting

C(U) = Cokeru(U).

Since C' is a cokernel of u in Psh(X;E), the adjunction formula for A shows that
A(C) is a cokernel of u in Shv(X;E).
It follows from what precedes that any morphism

u: b — F
of Shv(X; ) has a kernel, a cokernel, an image and a coimage and that
(Keru), ~ Ker(u,), (Imu), ~ Im(u,),

(Cokeru), ~ Coker(uy), (Coimu), ~ Coim(uy).

Therefore, to conclude, it is sufficient to prove that u is an isomorphism if u, is an
isomorphism for every z € X. Since

h(u)[Ple ~ hp(us)
this is a direct consequence of the corresponding result for abelian sheaves. ]

Proposition 2.2.8. The category Shv(X;E) is complete and cocomplete. More-
over, direct sums and filtering inductive limits are strongly exact.
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Proof. Let
F:J— Sh(X;€)

be a functor and let L be the projective limit of F' in Psh(X;E). Since

hXoL:lithxOF(j)
JeET

for any object X of £, L is an E-sheaf. Hence, L is a projective limit of F' in
Shv(X;E). Let R be the inductive limit of F' in Psh(X;E). It follows from the
adjunction formula for A that A(R) is an inductive limit of F' in Sho(X;E&). The
last part follows from the fact that in Shv(X; &) we have

(im F'(j))z = lim F'(j)a-
jed jed

L]

Definition 2.2.9. Let E be an object of £ and let U be an open subset of X.
Consider the E-presheaf F' defined by setting

PV) = E if VcU
o if VeU

the restriction map
iyt F(V) — F(W)

being idg if W C V and 0 if W ¢ V. By construction, for any &-presheaf G, we
have
Hom p; x.oy(F, G) = Hom g (E, G(U)).

We set

Clearly,
Hom g, v.¢)(Ev, G) = Hom(E, G(U)).

Proposition 2.2.10. For any open subset U of X, the functor
(v : € — Sho(X;€)

is strictly exact and preserves inductive limits. Moreover

FE if z€U
(Bv)e =~ .
0 if 2¢U
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Proposition 2.2.11. Let G be a strictly generating small set of objects of £. Then,
{Gv : G € G, U open subset of X}
is a strictly generating small set of objects of Shv(X;E).

Proof. Consider the canonical morphism
w: P FUw—F
UeOp(X)

corresponding to the morphism
FU)y - F
deduced from the identity morphism
F{U)— FU).

For any = € X, we have

The morphism

Pru) —F

Usx
induced by u, corresponds to the restriction morphisms

r;ij :F(U) — F,.

Hence, u, is a strict epimorphism for any x € X. This shows that u is a strict
epimorphism. Since G is a small strictly generating set of &, for any U € Op(X),
there is a small family (Gu,;)ier, of G and a strict epimorphism of £

@ GUJ* — F(U)
i€l
Since (-)y preserves inductive limits,
P (Gui)y — FU)y
i€ly
is a strict epimorphism in Shv(X;E). Hence, we get a strict epimorphism
D DG —r
UeOp(X) icly

The conclusion follows easily. O
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Proposition 2.2.12. The canonical inclusion
I:&— LH(E)
gives a canonical functor
Shv(X;E) — Shv(X; LH(E)).
This functor induces an equivalence of categories
LH(Shv(X;E)) ~ Shv(X; LH(E)).

Proof. Since I is continuous, I o F' is an E-sheaf for any £-sheaf F'. This gives us a
canonical functor

J: Sho(X;E) — Sho(X; LH(E)).

Ones checks easily that J is fully faithful and that its essential image is stable by
subobjects. Moreover,

J(F>x21(Fx>

Let G be a strictly generating small set of objects of £&. We know that 1(G) is a
generating small set of LH(E). Hence, for any object F' of Shv(X; LH(E)), there is
a small family (U, G})er of Op(X) x G and a strict epimorphism

PuG) — F.

leL

Moreover, since I commutes with filtering inductive limits, one checks easily that

(L(G))v, = J(Gi)ry)

and that

B (G)u) = JED(Gw)-

leL leL

Hence, we have an epimorphism

J@Gw) — F

lel

The conclusion follows from Proposition 1.2.35. O
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2.2.3 Internal operations on sheaves

Let € be a closed elementary quasi-abelian category and let T' (resp. H, U) be its
internal tensor product (resp. its internal homomorphism functor, its unit object).

Definition 2.2.13. Let F' and G be two objects of Psh(X;E). We denote by
H(F,G) the kernel of the morphism

- ]I HEFO),GU) - [ HEW),GV))
UeOp(X) U,VeOp(X)

of £ defined by setting
puv © h = H(idpwy, riiy) o pv — H(ryy, idawy) o py
for any V' C U in Op(X). Clearly,
U~ H(Fl|v,Glv)

is a presheaf. We denote it by H(F,G).

Proposition 2.2.14. Assume F', G are two objects of Shv(X;E). Then, H(F,G)
is an object of Shv(X;E).
Proof. Let V' C U be open subsets of X and let W be a covering of X. Since G is

a sheaf, we have the strictly exact sequence

0-GV)— [[ cvnw)— [ ¢vnwnw).

wew wWw'ew

From the adjunction formula linking 7" and H, it follows that H(F(U),-) is a con-
tinuous functor. Therefore, we get the strictly exact sequence

0— H(FU — [[ #F@),cvaw)) — [[ HEQU),GVAWAW)).
wew Www’ew

Using a tedious but easy computation, we deduce from this fact that the sequence

0—HFGX)— [[ HEGOW)— ][] HE.GW W)
Wew W,W’ew
is strictly exact in £. And the conclusion follows. m

Definition 2.2.15. Let E, F' be two objects of Shv(X;E). We denote T (E, F') the
E-sheaf associated to the E-presheaf

U T(B(U), F(U)).
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Proposition 2.2.16. We have the canonical functorial isomorphism
Hom Shv(X;S)(T(E’ F), G) =~ Hom Shv(X;S)(E7 H(F,G))
for E, F, G in Shv(X;E).

Proof. Let h € Hom g, v.¢\(7 (E, F),G) and let U D V be open subsets of X. By
composition with the canonical morphism

T(EQ), F(V)) = T(E(V), F(V)) — T(E, F)(V),

the morphism

h(V):T(E,F)(V)— G(V)

induces a morphism

hyyv : T(E(U), F(V)) — G(V).
By adjunction, this gives us a morphism

hyy « EU) — H(F(V),G(V))
for any V' C U in Op(X). Hence, we get a morphism

hy o B(U) — H H(F(V),G(V))

and one checks easily that hf; factors through
hi; : E(U) — H(F|vy,Glv).
Moreover, the family (h{f)ucopx) defines a morphism
o(h) : E — H(F,QG)

in Sho(X;€).
Now, let h € Hom g, ¢(E, H(F,G)) and let U be an open subset of X. The
morphism

gives rise to a morphism
h'(U): E(U) — H(F(U),G(U)).
By adjunction, we get a morphism

R"(U) : T(EU),F(U)) — G(U)



106 CHAPTER 2. SHEAVES WITH VALUES IN QUASI-ABELIAN CATEGORIES

which is easily checked to be a morphism of presheaves. We denote
wh):T(E,F)— G

the associated morphism of Shv(X;E). An easy computation shows that 1 is an
inverse of ¢ and that ¢ and ¢ are functorial in £, F' and G. O

Corollary 2.2.17. The category Shv(X;E) endowed with T as internal tensor
product, Ux as unit and H as internal homomorphism functor is a closed quasi-
abelian category.

2.3 Sheaves with values in an elementary abelian
category

2.3.1 Poincaré-Verdier duality

Let f: X — Y be a continuous map of locally compact topological spaces and let
A be an elementary abelian category. Recall that

Shv(X;A) (resp. Shv(Y;A))
denotes the category of sheaves on X (resp. Y) with values in A. For short, we set
D'(X, A) = D" (Shw(X, A))  (x =+, —,0)

and use similar conventions for K.
As usual, for any closed subspace @ of X and any A-sheaf F' on X, I'g(X; F)
denotes the kernel of the restriction morphism

F(X) — F(X\ Q).

Definition 2.3.1. For any sheaf ' € Shv(X;.A), we define the sheaf
H(F) € Sho(Y; A)

by the formula

L(U; f(F)) = lim Lo(fH(U): F)
QCI1(U),Q f-proper

We call f-soft a sheaf F' such that Fy is fi-acyclic for any U € Op(X).
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Of course, f; is left exact and gives rise to a derived functor
Rf DT (X;A) — DT (Y; A).

Hereafter, we will show that under the assumption that f; has finite cohomolog-
ical dimension, Rf, has a right adjoint functor. To get this result, we will adapt the
reasoning of [6] to our more general situation.

Definition 2.3.2. Let K(F') denote a bounded functorial f-soft resolution of F' €
Shv(X; A) (e.g. a truncated Godement resolution). For any G € Shv(Y;A), we

define the presheaf
fi(G) € Psh(X; A)

through Proposition 2.2.2 by asking that
Hom (P, T(U: fx(G))) = Hom (fi( K(Px)v), G)

for any P in a generating small set of small projective objects of A.

Proposition 2.3.3. For any G € Shv(Y; A), fr(G) € Shv(X;.A). Moreover, if G
is injective, fr-(G) is flabby.

Proof. Let (U;)iesr be a covering of an open subset U of X. We know that, for any
k € Z, the complex

RN @Kk(PX>UimUj - @Kk(PX)Ui — Kk(PX)U — 0
i,j€I el

is exact. Since K*(Px)y is fi-acyclic for any open subset V of X and f has finite
cohomological dimension, the complex

'H@f' PXUZHUJ @f‘ Ju;) — filKK ( x)u) — 0

is also exact. It follows that the sequence

0 — Hom (fi(K(Px)u), &) — [ Hom (A(K (Px)v,). &) — [ Hom (fi(K(Px)u,w,). C)

i€l i,J€T
is exact. Hence, we see that the sequence

0 — Hom (P, T'(U; fi(G))) — Hom (P, [ [T(Us, fic(G))) — Hom (P, [[ T(U: NU;; i (G)))
i€l i,J€1
is exact for any P in a small generating family of small projective objects. It follows
that the sequence

0 — I(U; fi (G —>HF (Uss fi(G —>HFUﬂUj,fK( )

el i,j€1
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is exact and that fr(Q) is a sheaf. Let us assume now that G is injective. Let V
be an open subset of U. We have the monomorphism

K(Px)y — K(Px)u.
Hence, we get the epimorphism
Hom (fi(K(Px)v), G) — Hom (fi(K(Px)v), G).
As above, we deduce that
D(U; f(G)) — T(V; f1(G))
is an epimorphism. ]

Definition 2.3.4. Let Z7(Y, A) denote the full subcategory of KLt (Y,.A) formed by
complexes of injective sheaves. We denote by

flDT(Y; A — DX A)
the functor induced by
fr :TH(Y;A) — £ (X A)
through the equivalence of categories
IHY;A) 5 DHY; A).
Proposition 2.3.5. There is a canonical morphism of functors
Rf.f !(G) — G.

Proof. Let G be an injective object of Shv(Y;A). Since fi-(G) is flabby, it is also
f-soft and

Rff(G) = fifx(G).
By definition,
Lo(f71(U);: fi ().

f-proper

L(U; fifx(G)) =

I

Cr-1(U),

o

From the exact sequence
0 — To(f'(U); f(G)) — D(f1(U): fx(G) — D(fTH(U)\ Q; fx(G))
we deduce that Hom (P, To(f~1(U); fi(G))) is a kernel of

Hom (fi(K (Px) 1)), G) — Hom (fi(K(Px)s-1ne), G)
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Since the sequence

0 — K(Px)r1wne = K(Px)f1w) — K(Px)e — 0
is exact, it follows that

Hom (P, To(f ™' (U); fi(G))) = Hom (fi(K (Px)q), G).
Since @) is f-proper, we have an obvious map

Py — filPg) — (K (Px)q).
Hence, there is a canonical morphism
Hom (P, To(f~(U); fx(G))) — Hom (P.I(U; G))
which gives rise to a canonical morphism
L(U; fifi(G)) — T(U;G)
as requested. O
Theorem 2.3.6. The canonical morphism
RHom (F, f/(G)) — RHom (Rf\(F), G)

induced by the morphism
Rf.f !(G) —G

is an isomorphism.

Proof. We know that any sheaf F' € Shv(X;.A) has a resolution by sheaves of the

type
PP,

where V' is an open subset of X and P a member of a generating small set of small
projective objects of A. Since f has finite cohomological dimension, we may reduce
ourselves to the case where ' = Py and G is injective. In such a case, since fi(G)
is flabby, we have

RHom (Py, f/(G)) ~ Hom (P, T(U, fc(G)))
~ Hom (fi(K(P)v),G)
~ RHom (Rf,(Py),G)

and the conclusion follows. ]
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2.3.2 Internal projection formula

In this section, A denotes a closed elementary abelian category with T" as internal
tensor product, U as unit object and H as internal homomorphism functor. We
assume moreover that for any projective object P of A, T(P,-) and H(P,-) are
exact functors. It follows from the results in the previous section that Shv(X;.A)
endowed with 7 as internal tensor product, H as internal homomorphism functor
and Ux as unit object is a closed abelian category.

Definition 2.3.7. We say that an object P of Shv(X;.A) has projective fibers if P,
is a projective object of A for any = € X.

Lemma 2.3.8. (a) Assume P is an A-sheaf with projective fibers. Then,
T(P,-): Shw(X;A) — Shv(X; A)

is exact. Moreover, if P' is another A-sheaf with projective fibers, then T (P, P’)
has projective fibers.
(b) Assume [ is an injective A-sheaf. Then,

H(-, 1) : Sho(X; A)® — Shv(X; A)

is exact. Moreover, if P is an A-sheaf with projective fibers, then H(P,I) is an
injective A-sheaf.

Proof. Part (a) follows directly from the fact that
T(E,F), = T(E,, F,).
To prove the first part of (b), let
0—-F —-F—FE —0

be an exact sequence of Shv(X;.A). Let P be a projective object of A and let U be
an open subset of X. Since the A-sheaf Py has projective fibers, it follows that the

sequence
0—7(Py,E)—T(Py,E)—T(Py,E")—0

is exact. Using the fact that I is injective, we get the exact sequence
0 — Hom (7 (Py, E"),I) — Hom (7 (Py, E),I) — Hom (7 (Py, E'),I) — 0.
The adjunction formula between 7 and H then gives the exact sequence

0 — Hom (Py, H(E",I)) — Hom (Py, H(E,I)) — Hom (Py,H(E',I)) — 0.
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Since for any A-sheaf F', Hom (Py, F') ~ Hom (P, F(U)), we see that the sequence
0— H(E,I)(U) — H(E,I)(U) — H(E",T)(U) —0

is exact for any open subset U of X and the conclusion follows.
The last part of (b) is obtained by similar methods. O

Remark 2.3.9. One can also prove that if I is an injective A-sheaf, then H(FE, I)
is flabby for any A-sheaf E.
Proposition 2.3.10. The functor
T :Sho(X;A) x Sho(X; A) — Sho(X; A)
is explicitly left derivable and the functor
H : Sho(X; A)°P x Sho(X; A) — Sho(X; A)
is explicitly right derivable. Moreover, we have the canonical functorial isomor-
phisms :
(a) LT(E,F)~LT(F,E),
(b) LT (Ux,E) ~ E,
(¢) RHom (LT (E, F'),G) ~ RHom (E, RH(F, G)),
(d) RH(Ux,E) ~ E.

Proof. Let P denote the full subcategory of Shv(X;.A) formed by .A-sheaves with
projective fibers. By Proposition 2.2.11, any A-sheaf F' is a quotient of an object of

the form
iel
where P, is a projective object of A and U; is an open subset of X. Since

(@(B)m) - & r.
iel e €lLUBz

it is clear that €, _;(Pi)v;, belongs to P. Hence, any A-sheaf is a quotient of an
object of P. By the preceding lemma, it follows that (Shv(X;.A), P) is T -projective.
Hence, 7 is explicitly left derivable.

Denote Z the full subcategory of Shv(X;.A) formed by injective A-sheaves. We
know already that any object of Shv(X,.A) is a subobject of an object of Z. By
the preceding lemma, (Shv(X;.A),Z) is H-injective. Hence, H is explicitly right
derivable. The last part of the proposition follows directly by replacing the various
objects by suitable resolutions. O
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Lemma 2.3.11. Let X be a locally compact topological space. Let P be a projec-
tive object of A and let E be an A-sheaf on X. Then, the canonical morphism

T(Fc(Xa E>7P> - Fc(Xa T(E7 PX))
is an isomorphism. In particular, 7 (E, Px) is c-soft if E is c-soft.

Proof. We will work as in [6, Lemma 2.5.12].

Without losing any generality, we may assume X is compact. Let (K;);cr be a
finite covering of X by compact subsets. Since F is an A-sheaf, we have an exact
sequence of the form

0 —T(X;E) —» PT(K; E) — PT(K: N K B).

iel ijel

The object P being projective in A, the functor T'(-, P) is exact and we get the
morphism of exact sequences

0 T(0(X;E),P) @ TT(K; E), P) "~ P T((K: N K;; E), P)

el i,7€1

0‘ | §
0 ——T(X;T(E, Px)) —+ @ T(K;; T(E, Px)) — (KN K;T(E, Py))

iel ijel

Let us show that « is a monomorphism. It is sufficient to show that for any small
projective object @ of A and any

h:Q— TI(X;E),P)

such that a« o h = 0 we have h = 0. Since

liny T(I(U; E), P) = T(E,, P) = liy D(U:T(E, Py)) *)
U>sx U>sx
U open U open

and @ is tiny (see Remark 2.1.2), we can find a finite compact covering of X such
that
Aoh=0.

Since A is monomorphic, the conclusion follows.
To show that « is epimorphic, it is sufficient to show that for any small projective
object @ of A and any
h:Q — T'(X;7T(E, Px))
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there is
h':Q — T(I'X; E),P)

such that oo b’ = h. Using once more (*) and the fact that @ is tiny, we can find a
finite compact covering of X such that

A/Oh:ﬂoh//

for some

W Q — PT((K;E), P).

el

It follows from the first part of the proof that § and v are monomorphic. Since
O=p oNoh=pyoBoh"=~vopuoh”

we see that o h” = 0. Hence,
h” — >\ o h/

for some

h':Q — T(I'(X; E),P).
For such an h’, we have
Noaoh'=podoh=03oh" =Noh,
Hence, oo b/ = h and the proof is complete. m

Lemma 2.3.12. Let f : X — Y be a morphism of locally compact topological
spaces. Let P be an A-sheaf on Y with projective fibers and let E be an A-sheaf
on X. Then, the canonical morphism

T(HE,P) — AT(E,f7'P)
is an isomorphism. Moreover, T (E, f~'P) is f-soft if E is f-soft.
Proof. Since
T(RE, P)y = T((FB)y, By) = T (0): E), P,)

and
J(T(E, f7P))y =T f T (W) T(Elp-14y), (Pl s-111)))

for any y € Y, we are reduced to the preceding lemma. O
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Proposition 2.3.13. Let f : X — Y be a morphism of locally compact topological
spaces. Assume fi has finite cohomological dimension. Then,

LT (Rf\E,F)~ Rf\LT(E, [ 'F)
for any E in D™ (Shv(X;.A)) and any F in D~ (Shv(Y; A)).

Proof. This follows directly from the preceding lemma if we replace £ by a soft
resolution and F' by a resolution by A-sheaves with projective fibers. O

2.3.3 Internal Poincaré-Verdier duality

Proposition 2.3.14. Let f : X — Y be a morphism of locally compact topolog-
ical spaces. Assume f, has finite cohomological dimension. Then, the canonical
morphism

Rf.RH(E, f'F) — RH(Rf/E, F)
induced by
Rff'F — F
is an isomorphism in DT (Shv(Y;A)) for any E in D~ (Shv(X;.A)) and any F in
DT (Shv(Y; A)).
Proof. 1t is sufficient to prove that
RT(fH(V);RH(E, f'F)) — RU(V;RH(Rf,E, F))

is an isomorphism for any open subset V' of Y. We may even restrict ourselves to
the case V' =Y and prove only that

RHom (P,RT(Y;RH(E, f'F))) = RHom (P,RI'(X;RH(Rf,E, F)))
for any projective object P of A. This follows from the chain of isomorphism below:

RHom (P,RI(Y;RH(E, f'F))) ~ RHom
~ RHom
~ RHom
~ RHom
~ RHom
~ RHom

Py,RH(E, ['F))
LT (E, Py), f'F)
Rf\LT(E, f~'Px)
LT (RfE, Px), F)
Px,RH(RfE,F))

P,RI(X;RH(RfE, F))).

 F)

o~ o~ o~ o~ o~ o~



Chapter 3

Applications

3.1 Filtered Sheaves

3.1.1 The category of filtered abelian groups

To fix the notations, let us recall the following definitions.

Definition 3.1.1. A filtration on an abelian group M is the data of an increasing
sequence (Fy)rez of abelian subgroups of M such that

U Fo= M

k€EZ

A filtered abelian group M is an abelian group M., endowed with a filtration

(M) kez-

We call M, the underlying abelian group of M.
A morphism of filtered abelian groups u : M — N is the data of a morphism

Uso : Moo — Nao
of the underlying abelian groups such that
Uso(My) C Ni
for any k € Z. The set of morphisms from M to N is denoted
Hom (M, N).

It is clearly endowed with a canonical structure of abelian groups. With this notion of
morphisms, one checks easily that filtered abelian groups form an additive category.
We will denote it by FAb.
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The following two obvious propositions will clarify the structure of limits in FEAb.

Proposition 3.1.2. The category FAb has kernels and cokernels. More precisely,
let w: M — N be a morphism of filtered abelian groups. Then,
(a) Keru is the abelian group uz!(0) endowed with the filtration

(uze (0) N My)kez,
(b) Cokeru is the abelian group Ne/uo(Ms) endowed with the filtration

As a consequence, we see that
(c) Imu is the abelian group us (M) endowed with the filtration

(oo (Moo) N Ni)kez,
(d) Coimu is the abelian group My, /uzt(0) endowed with the filtration
(M +u (0)/uz) (0))kez.
It may equivalently be described as the group u~(Ms) endowed with the filtration
(too(Mk))kez.
In particular, the morphism w is strict if and only if
Uso (M) = too(Moo) N Ny,
for every k € 7.

Proposition 3.1.3. The category FAb has direct sums and products. More pre-
cisely, let (M;);er be a small family of filtered abelian groups. Then,
(a) @,c; M; is the abelian group @, ;(M;)s endowed with the filtration

(b) I1;,c; M; is the abelian subgroup

U 11040

keZ iel

of [[,c;(M;)so endowed with the filtration
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Remark 3.1.4. It follows from the last point of Proposition 3.1.2 that FAb is not
abelian. Moreover, Proposition 3.1.3 shows that if I is infinite, ([[;,.; Mi)oo may
differ from [ [, ;(M;)eo-

Proposition 3.1.5. The category FAb is a complete and cocomplete quasi-abelian
category in which direct sums and filtering inductive limits (resp. products) are
strongly exact (resp. exact).

Proof. 1t is direct consequence of the two preceding propositions. O

Definition 3.1.6. Let M be a filtered abelian group and let [ € Z. We denote by
M(l) the filtered abelian group obtained by endowing M, with the filtration

(Ml+k)keZ‘
Clearly,
M — M(I)

is a functor of FAb into itself. We call it the filtration shifting functor. Let M, N
be two filtered abelian groups.

The sequence
(Hom (M, N (k)))kez
of subgroups of
Hom (M, N)
is increasing and gives a filtration of
|J Hom (M, N (k).
keZ

We denote FHom (M, N) the corresponding filtered abelian group.
Denote (M ® N); the image of the canonical morphism

@Mz @ Ny — Mo ® N
S

induced by the canonical inclusions
My — M, Nyt — Neo.

Clearly, ((M & N)j)kez forms a filtration of Mo ® Ns. We denote by M @ N the
corresponding filtered abelian group.

Finally, we denote by FZ the filtered abelian group obtained by endowing Z with
the filtration defined by setting

Z if k>0,
FZ; =
0 otherwise.
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Proposition 3.1.7. The category FAb endowed with -®- as internal tensor product,
FHom (-, ) as internal Hom -functor and FZ as internal unit forms a closed additive
category. In particular, we have

(a) Hom (M ® N, P) ~ Hom (M, FHom (N, P)),
(b) M@N ~ N ® M,
(¢c) M@FZ ~ M,

for any objects M, N, P of FAb.

Proposition 3.1.8. (a) For any | € Z, we have
FHom (FZ(—1), M) ~ M,

for any object M of FAb. In particular, FZ(—1) is a tiny projective object of FAb.
(b) For any object M of FAb, the canonical morphism

P P rz(-i) - M
I€Z heM,

induced by the preceding isomorphism is a strict epimorphism. In particular,

(FZ(=1))iez
forms a strictly generating family of objects of FAbD.

Corollary 3.1.9. The category FAb is an elementary closed quasi-abelian category:.

In particular, FAb has enough projective objects. Moreover, for any projective object
P of FAb, the functor
P®-: FAb — FAb

is strongly exact and P ® P’ is projective if P is projective.

To show that FAb has enough injective objects, we need first a few auxiliary
results.

Definition 3.1.10. For any filtered abelian group M, we denote by M (co) the
filtered abelian group obtained by endowing M, with the constant filtration.

Proposition 3.1.11. Assume R is a cogenerator of Ab. Let F'R denote the object
of FAb obtained by endowing the abelian group R with the filtration defined by

setting
R ifk>0
Fm:{ rE=T

0 otherwise.



3.1. FILTERED SHEAVES 119

Then,
T Frk)

keZU{oo}

is a strict cogenerator of FAb.

Proof. Let M be an arbitrary filtered abelian group. We have to show that the
canonical morphism

hEHom]__Ab(M,erZU{OO} FR(k)) k€eZU{oco}

is a strict monomorphism. First, note that
Hom g (M, [[ FR(k)= T[] Hom gy (M, FR(k))
keZU{oco} keZU{oo}

and that
Hom -, (M, FR(k))

is the subset of Hom (M, R) formed by morphisms hy : M — R such that
hi(M—g-1) = 0,
where we set M_,, = 0 by convention. Therefore, to give

h € Hom ,,, (M, [ [ FR(K))
keZ

is to give a family
(hr : Moo — R)rez

of morphisms of abelian groups such that hy(M_x_1) = 0. Moreover, for any m € M,
we have

[i(m)nlr = hi(m)

for any h € Hom ., (M, [ [, F'R(k)) and any k € Z.
Let us show that 7 is a monomorphism. Assume m € My, \ {0}. Since R is a
cogenerator of Ab, we can find a morphism

hoo : Moo — R
such that ho(m) # 0. Setting hy = 0 for any k € Z, we get a morphism

h € Hom (M, [ [ FR(K))
keZ
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such that
[i{(m)n]os # 0.

Hence, i(m) # 0 and the conclusion follows.
Let us now prove that 7 is strict. Assume m € My, is such that i(m) has degree
less than [. This means that
[i(m)nlx € F Riy

for any h € [[Hom zy, (M, [[;c70(00y F'R(K)) and any k € Z. Therefore,
hk(m) =0

for any &k < —I. Assume m ¢ M;. Denote p : My, — My /M, the canonical
projection. Since

p(m) # 0,

we can find a morphism b’ : M« /M, — R such that h'(m) # 0. Consider the
morphism

h€Hom (M, [[ FR()

keZU{co}

defined by setting

Wop ifk=-1-1

hr =

0 otherwise.
We get a contradiction since

h_l_l(m) 7é 0
and —[ — 1 < —I[. Therefore, m € M; and the proof is complete. ]

Proposition 3.1.12. Assume [ is an injective object of Ab. Then,
FI(k)
is an injective object of FAb for any k € Z U {co}.
Proof. Let M be an object of FAb. For k = oo, we have
Hom (M, F1(00)) = Hom 4, (M, 1)
and the result is obvious. Let us assume k # oco. In this case, we have
Hom (M, FI(k)) = Hom (Moo /M__1,1).

Let
0—-M —-M-—-M'—0
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be a strictly exact sequence in FAb. We get a commutative diagram of Ab

0 0 0
o—M,,— My, — M, —0
0 M, M M. 0

Mc/x;/M/—k—l — Moo/M—k—l 7 Mc/:o/Mﬁk—l

0 0 0
where all the columns and the first two lines are exact. Therefore, the last line is
also exact. Since [ is injective in Ab, the sequence
0 «— Hom (M. /M', |, 1)+ Hom (My/M_j_1,I) «— Hom (M2 /M", |, I)«— 0
is exact. This shows that F'I(k) is injective in FAb. O
Corollary 3.1.13. The category FAb has enough injective objects.

Proof. Apply the preceding propositions to an injective cogenerator of Ab (e.g.
Q/Z). ]

3.1.2 Separated filtered abelian groups

Let us recall that any filtered abelian group M may be turned canonically into
a topological abelian group by taking {Mj, : k € Z} as a fundamental system of
neighborhoods of 0 in M. In the sequel, when we apply topological vocabulary to
a filtered abelian group, we always have this particular topological structure in mind.
In particular, a filtered abelian group M is separated if and only if (., M} = 0.

Definition 3.1.14. We denote %.Ab the full subcategory of ZAb formed by separated
filtered abelian groups.

Proposition 3.1.15. Let (M;);c; be a family of separated filtered abelian groups.
Then, the filtered abelian groups

Pr;  and  J[M

iel iel
are separated. In particular, they form the direct sum and direct product of the
family (M;);er in FAb.
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Proposition 3.1.16. The category .%Ab has kernels and cokernels. More precisely,
let w: M — N be a morphism of FAb. Then,
(a) Keru is the subgroup uz'(0) endowed with the filtration

(us (0) N My )kez,

(b) Cokeru is the group Ne/uoo(M) endowed with the filtration

(Nk + UOO(M)/UOO(M)MEZ.

Hence,
(¢) Imu is the group us(M) endowed with the filtration

(Uoo (M) N Ni.)kez,
(d) Coimu is the group My /u}(0) endowed with the filtration
(Mo + uz (0)/ug (0) ez
It is isomorphic to the group u. (M) endowed with the filtration

(UOO(Mk))keZ-

In particular, u is strict in FAb if and only if it is strict in FAb and has a closed
range.

Proposition 3.1.17. The category FAb is quasi-abelian.

Proof. We know that FAb is quasi-abelian. By the characterization of the strict
epimorphisms in JAb and the structure of kernels in FA4b, the axiom (QA) is auto-
matically satisfied. Let us deal with the axiom (QA*). Consider the co-cartesian
square

M/ o N/

g

MT>N

of FAb. Assume u is a strict monomorphism of FAb. This means that u is a strict
monomorphism of FAb and that its range is closed. We know that

w:M— N&M

m = (u(m),v(m))
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is a strict monomorphism of FAb. Let (my)ren be a sequence of M such that
w(ng) — (n,m’)
in N @ M’, it follows that
u(mg) —n

in N. Since u is a strict monomorphism with closed range, there is m € M such
that
mg — M

in M and u(m) = n. Therefore,
v(my) — wv(m)

and since M’ is separated, we get

v(m)=m'.

Hence,
w(m) = (n,m’)

and we see that the range of w is closed. Therefore, the sequence
0—-M-—-No&M —N —0
is strictly exact in FAb. It follows that u' is a strict monomorphism of ZAb and that
Cokeru ~ Cokeru/.

Since Cokeru is separated, Cokeru’ is also separated and v’ has a closed range. [}

Proposition 3.1.18. In %Ab,
(FZ(1))iez

forms a small strictly generating family of small projective objects. In particular,
FAb is a quasi-elementary quasi-abelian category.

Proof. This follows directly from Proposition 3.1.15 and Proposition 3.1.16 since FZ
is clearly separated. O

Remark 3.1.19. The object FZ is not tiny since there are filtering inductive system
of FAb with a non zero inductive limit in ZA4b but a zero inductive limit in FA4b. As
an example, consider an object M of FAb and the system

(M(1) )iz
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In FAb, we see easily that
lim M (1)

S

is the group M., with the constant filtration. Hence, in FAb,

lim M (1) = 0.

€T

Definition 3.1.20. We denote by
I .%.Ab — FAbD
the canonical inclusion functor. We denote by
L FAb — .%.Ab

the functor defined by ~
L(M) = M/ Niez, M.

Proposition 3.1.21. There is a canonical adjunction isomorphism

~

Hom z,, (M, }(N)) ~ Hom 2, (L(M), N).

In particular, the functor I is compatible with projective limits and the functor L
is compatible with inductive limits.

Proposition 3.1.22. The functor
I .%.Ab — FAD
is strictly exact and induces an equivalence of categories
T : D(FAb) — D(FAD).
Its quasi-inverse is given by
LL : D(FAb) — D(FAD).

Through this equivalence, the left t-structure of D(%Ab) is exchanged with the left
t-structure of D(FAD). In particular,

~

T : CH(FAD) ~ LH(FAD).
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Proof. Since any projective object of FAb is a direct factor of a filtered abelian group
of the form
P rz)
iel
which is separated, it is also separated. Let M be an object of D(.%Ab) and let
P 1)
be a projective resolution of }(M "). Since the components of P are separated,
L(P)~ P ~ M
in D(.%Ab). Hence,
LLol~id.

Let
P~ M
be a projective resolution of M* € D(FAb). Since the components of P are sepa-
rated, we have ~
L(P)~ P
in D(%Ab) and L
ToL(P)~M

in D(FAb). Hence, L
lolLL ~id.

To conclude, it is sufficient to remark that a sequence
M — M — M"
of %Ab is strictly exact in FAb if and only if it is strictly exact in %Ab. O
Remark 3.1.23. The functor
I - D(FAb) — D(FAD)

does not preserve the right t-structures. As a matter of fact, if u : M — N is a
strict monomorphism of FAb with a non closed range, the complex

0—M-L5N-—=0

with M in degree 0 has null cohomology in that degree in RH(FAb) but not in
RH(FAD).
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3.1.3 The category R and filtered sheaves

Definition 3.1.24. Let RZ denote the graded ring Z[T].
To any filtered abelian group M, we associate the graded RZ-module

R(M) = P My,

the multiplication
A Mk — Mk+1

being the canonical inclusion. This gives us an additive functor

R : FAb — Mod(RZ)

where Mod(RZ) denotes the category of (graded) RZ-modules.
Let N be an RZ-module. Denote

N1k - Nip — N
the action of T" and consider the inductive system

(Nk, M1,k ke
Set

(L(N))oo = lim N,
keZ

and let (L(N))x be the canonical image of Ny in (L(N))s. Clearly,

(L(N)k)kez

forms a filtration of the abelian group (L(N))s. We denote L(N) the corresponding
filtered abelian group. This gives us an additive functor

L: Mod(RZ) — FAD.
Proposition 3.1.25. We have the canonical functorial isomorphisms
Hom -, (L(N), M) ~ HomMOd(RZ)(N, R(M))

and
LoR(M)~ M.

In particular, R is a fully faithful continuous functor and L is a cocontinuous functor.
Moreover, R is strictly exact and is compatible with direct sums.
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Proposition 3.1.26. The essential image of
R : FAb — Mod(RZ)
is formed by RZ-modules M such that
T :M — M
is injective.

Proposition 3.1.27. The essential image of R forms a L-projective subcategory of
Mod(RZ). In particular,
L : Mod(RZ) — FAb

is an explicitly left derivable right exact functor which has finite homological dimen-

sion.

Proof. Let us denote P the essential image of R.
(a) Any object of Mod(RZ) is a quotient of an object of P. As a matter of fact,

the canonical morphism
P P rz(-k) — M

kE€Z he M,

is an epimorphism for any RZ-module M and it follows from the preceding propo-

P P Rz(—k) ~ REP P Fz(-k)).

k€Z he My, kEZ he My,

sitions that

(b) In an exact sequence
0—M —-M-— M —0

of Mod(RZ) where M, M" belong to P, M belongs to P. This follows directly from
the preceding proposition since a subobject of an object of P is clearly an object of
P.
(c) If
0—M —M-—M"—0

is an exact sequence of Mod(RZ) with M’ M, M" in P, the sequence
0— L(M')— L(M) — L(M") — 0
is strictly exact in FAb. As a matter of fact, we may assume

M' ~ R(N'), M~ R(N), M"~R(N").
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Hence, using the fact that R is fully faithful, we see that the given exact sequence
may be obtained by applying R to a strictly exact sequence of the form

0—-N —-N-—=N'—0
of FAb. The conclusion follows from the fact that L o R ~ id. O
Proposition 3.1.28. The functor
RR : D(FAb) — D(Mod(RZ))

is an equivalence of categories which exchanges the left t-structure of D(JFAb) with
the canonical t-structure of D(Mod(RZ)). A quasi-inverse of RR is given by

LL : D(Mod(RZ)) — D(FAD).
In particular, R induces an equivalence of categories
LH(FAb) =~ Mod(RZ).
Proof. This follows directly from the preceding propositions. O
Corollary 3.1.29. The functor
FAb — Ab”
which associates to any filtered abelian group M the inductive system
k— My,
the transitions of which are given by the inclusions
My, — My (k <K,
induces an equivalence of categories
LH(FAD) ~ Ab”.
Proof. This follows from the preceding proposition if one notes that the functor
Mod(RZ) — Ab”
which sends an RZ-module M to the inductive system
(Mg, T-: My, — My )rez

is clearly an equivalence of categories. O
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Proposition 3.1.30. The structure of closed category of FAb induces a structure of
closed category on LH(FAb) which is compatible with the usual structure of closed
category of Mod(RZ) through the equivalence of the preceding proposition.

Proof. Note that there are obvious canonical functorial morphisms
R(M)® R(N) — R(M ® N)

R(FHom (M, N)) — GHom (R(M), R(N))

for M, N in FAb. Although they are not bijective in general, one can check easily
that they become isomorphisms if M ~ FZ(l) for some [ € Z. Therefore, we see
that

RR(M) @" RR(N) ~ RR(M &% N)
RR(RFHom(M, N)) ~ RGHom(RR(M), RR(N))

and the conclusion follows. ]

Remark 3.1.31. The category R = LH(FAD) is a closed elementary abelian cate-
gory for which we may apply all the results obtained in the preceding chapter. In
particular, the cohomological properties of filtered sheaves on a topological space X
are best understood by working in D(X, R).

3.2 Topological Sheaves

3.2.1 The category of semi-normed spaces

In this section all vector spaces are C-vector spaces. Recall that a semi-norm on a
vector space F is a positive function p on E such that

pler +e2) < pler) + p(ex) for any ej,es € E
p(ce) < lc|p(e) forany ceC,ec FE

Let E be a vector subspace of ' and let p be a semi-norm on F. Recall that p
induces a semi-norm p’ on E and a semi-norm p” on F'/E. These semi-norms are
defined respectively by

ple)=ple) and p'([flp) = mfp(f +e).
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Definition 3.2.1. A semi-normed space, is a vector space endowed with a semi-
norm pg. A morphism of semi-normed spaces is a morphism f : E — F of the
underlying vector spaces such that

lpro f| < Cpg

for some C' > 0. With this notion of morphisms, semi-normed spaces form a category
which we denote by Sns.

Let E be a semi-normed space. As is well-known, the semi-norm pg gives rise
to a canonical locally convex topology on E. Hereafter, we will always have this
particular topology in mind when we use topological vocabulary in relation with
semi-normed spaces. Using this convention, a morphism of semi-normed spaces is
simply a continuous linear map.

Lemma 3.2.2. The category Sns is additive. More precisely:
(a) The C-vector space 0 endowed with the 0 semi-norm is a null object of Sns.

(b) For any E F in Sns, the C-vector space E @ F endowed with the semi-norm
p defined by

ple, f) = pe(e) + pr(f)

is a biproduct of E and F' in Sns.
Lemma 3.2.3. Let f : E — F be a morphism of Sns. Then,
(a) Kerf is the vector space f~1(0) endowed with the semi-norm induced by pg;
(b) Cokerf is the vector space F/f(E) endowed with semi-norm induced by pp.
Therefore,
(c) Tmf is the vector space f(F) endowed with the semi-norm induced by pr;

(d) Coimf is the vector space E/f~(0) endowed with the semi-norm induced by
pe. Equivalently, Coim f may be described as the vector space f(E) endowed
with the semi-norm p defined by

z) = inf
p(z) ye}fl(w)pE(y)

for any x € f(E).

In particular,
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(e) f is strict if and only if

Jomf pe(r+y) < Cpr(f(z))

for some C' > 0. In other words, f is strict if and only if it is relatively open.
Proposition 3.2.4. The category Sns is quasi-abelian.

Proof. We know that Sns is additive and that any morphism of Sns has a kernel
and a cokernel.
Consider the cartesian square

where f is a strict epimorphism and let us show that wu is a strict epimorphism. We
may assume that 7" is the kernel of

Eoc 2 F
Hence,
T={(z,y) e EOG: f(x) =gy}
Denoting

i:Ker(f —g)—>EeBG

the canonical injection and mg and mg the canonical projections, we have
v=mgpot and u=mgodl.

Since f is surjective, for any y € G there is x € E such that

In such a case, (z,y) € T and
u(r,y) = y.

This shows that the application wu is surjective.
Recall that

peac((z,y)) = pe() + pa(y) V(z,y) € E® G.
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Clearly,
Keru = {(e,0) € E® G : f(e) = 0}.

Therefore, for any (z,y) € T, we have

inf = p((z,y) +(e,€)) = inf pr(z +e)+pa(y).

(e,e’)eKeru e€Ker

Since f is a strict epimorphism, there is C' > 0 such that

infpr(a: +e) < Cpr(f(z))

ecKer

for any x € E. From the continuity of g, we get C’ > 0 such that

pr(f(z)) = prg(y)) < C'paly).

for any (x,y) € T. Hence, there is C” > 0 such that

inf p((z,y) + (e,€) < C"paly)

(e,e’)eKeru

for any (z,y) € T and u is a strict epimorphism.
Consider the cocartesian square

where f is a strict monomorphism and let us show that u is a strict monomorphism.

Denote o the morphism
(%):E—~GaF

We may assume that
T = Cokera = (G® F)/a(E).

Denoting
¢:GOF — (Go F)/a(E)

the canonical morphism and o and o¢ the canonical embeddings, we have
u=qgoog and wv=gqgoop.
Consider y € G such that u(y) = go og(y) = 0. It follows that

(y,0) € a(E)
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and there is € E such that

(y,0) = (9(z), = f(x)).

Since f is injective, z = 0 and we get y = g(z) = 0. Hence u is injective.
Since ¢ is continuous and f is strict, we can find positive constants C', C’ and
C" such that

pa(y) < paly + 9(x)) + pa(g(x))

¢y +g(r)) + Cpe(x)

(y +g(x)) + C'pr(f(x))
+

or((y +9(z), —f(2)))

for all y € G and all x € E. Therefore, for any y € G, we have

QA3 T3

IAN A IN TN
’B

pa(y) < C” inf p((y + g(w), = f(2)))

<C" inf p(ly+vy, 7
L ((y+y.2"))

< C"p(q((y,0)))
< C"plu(y)),

where p denotes the semi-norm of (G @& F)/a(E) induced by p. It follows that u is
a strict monomorphism. ]

Definition 3.2.5. Let E and F' be semi-normed spaces.
We denote by ¥ ® F' the semi-normed space obtained by endowing the vector
space F @, F' with the semi-norm p defined by

p(z) = _inf  pp(rr)pe(ys)-
2= =1 T ®Uk

We denote by L(E, F) the vector space Hom(E, F) endowed with the semi-
norm ¢ defined by

q(h) = sup pp(h(x)).

pe(2)<1
We denote by C the semi-normed space obtained by endowing C with the semi-

norm | - |.

Proposition 3.2.6. The category Sns endowed with ® as internal tensor product,
L as internal homomorphisms functor and C as unit object form a closed category:.
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Definition 3.2.7. Let (E;);c; be a family of semi-normed spaces. We denote by
@ E; the vector space ), ; E; endowed with the semi-norm p defined by
icl

p((€i)ier) = Zpi(ei).

i€l

We denote by [] E; the subvector space of [[,.; £; formed by the families (e;)ic;
el
such that

p(e) = suppi(e;) < +o0
el

endowed with the semi-norm p.

Proposition 3.2.8. (a) Let (u; : E; — F);cr be a bounded family of morphisms of
semi-normed spaces. Then, there is a unique morphism

U :éiéEk — F

el

such that u o s; = u; (here s; : E; — @ E; denotes the canonical monomorphism).
el
(b) Let (v; : F — E;)ier be a bounded family of morphisms of semi-normed
spaces. Then, there is a unique morphism

[ 2}7——>Ifll%

el

such that p; ov = v; (here p; : [[ — E; denotes the canonical epimorphism).
il
(c) Let (u; : E; — F})ier be a bounded family of morphisms of semi-normed
spaces. Then, the kernel and the cokernel of

Dr—Dr

i€l el

are respectively isomorphic to @ Keru; and € Cokeru;. Similarly, the kernel of
iel el
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is isomorphic to || Keru;. Moreover, if each u; is strict, then the cokernel of
iel

is isomorphic to [ [ Cokeru;.
i€l

Remark 3.2.9. We could also introduce the subcategory Sns of Sns whose mor-
phisms are the linear maps f : F — F such that

lpr o f| < pE.

Then,

~— ~—

S wi ]
iel icl
appear as the true direct sum and direct product of objects of Sns. Note however

that Sns is not additive and so does not enter into the general framework of quasi-
abelian categories.

Corollary 3.2.10. For any set [

@ C (resp. H C)

iel iel
is projective (resp. injective) in Sns.
Proof. The first part follows directly from the preceding proposition thanks to the
characterization of strict epimorphisms contained in Lemma 3.2.3. As for the second

part, the characterization of strict monomorphisms (loc. cit.) reduces it to the well-
known Hahn-Banach theorem. ]

Proposition 3.2.11. The category Sns has enough projective and injective ob-
jects.

Proof. (a) For any object E of Sns, the canonical morphism

~—

@CLE

beBg
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defined by
u((eo)oens) = Y cob

beBg

is a strict epimorphism. As a matter of fact, any ¥’ € Bg may be written as

u((vb)veny)

and

P = (Owp)een, = 1.

@ C

beBg

Thanks to the preceding corollary, it follows that Sns has enough projective object.

(b) Let E be an object of Sns and let us show that there is a strict monomorphism
from FE to an injective object of Sns. Denote N the subspace p~*(0) of E endowed
with the null semi-norm. Since any linear map h : X — N is continuous, it is clear
that N is injective in Sns. Therefore, the sequence

0—-N—F—FE/N—0

splits in Sns and F is isomorphic to N @& E/N. Hence, we may assume N = 0
(i.e. E is separated). In this case, denote by B the unit semi-ball of L (£, C) and
consider the morphism

defined by

v(e)y = ¢(e).
Thanks to the theorem of bipolars, this is clearly a strict monomorphism and the
conclusion follows from the preceding corollary. O

Proposition 3.2.12. Let (E;);cr be a family of semi-normed spaces. Then, for any
semi-normed space F' we have the following canonical isomorphisms

éE@F é
el i€
ZEI

FﬁE ;ﬁ
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Proof. This follows directly from the adjunction formula

Homg (E®F,G) ~ Homg (E,L(F,Q)).

Proposition 3.2.13. For any projective object P of Sns the functor
P®-:8ns — Sns

is strongly exact. Moreover for any projective object P' of Sns, the object P ® P’
is also projective.

Proof. Let P be a projective object of Sns. Since the result will be true for a direct

factor of P if it is true for P, we may assume that P is of the form @ C. Thanks
il

to Propositions 3.2.12 and 3.2.8 we may even reduce ourselves to the case P = C.

But C is the unit object of the closed category Sns, so we get the conclusion. [}

Corollary 3.2.14. The abelian category LH(Sns) has a canonical structure of
closed category.

Proof. This follows from Corollary 1.5.4. m

3.2.2 The category of normed spaces

Definition 3.2.15. We denote by Nws the full subcategory of Sns formed by
normed vector spaces.

Proposition 3.2.16. Let u: E — F be a morphism of Nvs. Then

(a) Keru is the subspace u=(0) endowed with the norm induced by that of E,

(b) Cokeru is the quotient space F'/u(FE) endowed with the norm induced by that
of F,

(c¢) Imu is the subspace u(E) endowed with the norm induced by that of F,

(d) Coimu is the quotient space E/u=*(0) endowed with the norm induced by that
of F,

(e) w is strict if and only if u is relatively open with closed range.
Proof. Direct. O

Proposition 3.2.17. The category Nvs is quasi-abelian.
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Proof. Since Nws is clearly additive with kernels and cokernels, we only need to
prove that axiom QA is satisfied. Let

EOL)FO

]

E1U—1>F1

be a cartesian square with u a strict epimorphism. It follows from the preceding
proposition that wug is a strict epimorphism of Sns and that the square is cartesian
in Sns. Therefore, u; is a strict epimorphism in Sns and thus in Nvs. Now, let

E, L)Fl
|
Ey u—0>FQ

be a cocartesian square in Nvs where ug is a strict monomorphism of Nwvs. It
follows that wug is a strict monomorphism of Sns with closed range. By definition

(;0 ) v=(ur f)

EFy———FE ®oFh——F —0 (%)

the sequence

is costrictly exact in Nvs. We know ¢ is a strict monomorphism of Sns. Let us
prove that its range is closed. Assume x,, is a sequence of Fy such that

(—e(@m), uo(zm)) — (y,2)

in Fy & Fy. Then, ug(z,,) — z in Fy and since ug has closed range, there is x in Ej
such that ug(x,,) — ug(x). Since ug is relatively open, z,, — = in Ey. Therefore
(—e(xm), uo(zm)) — (—e(z),uo(x)) and since £y & Fy is separated, we see that
(y,2) = (—e(x),uo(z)). Hence ¢ is a strict monomorphism of Nvs and the sequence
(*) is costrictly exact in Sns. It follows that u; is a strict monomorphism of Sns
an it remains to show that it has a closed range. Let x,, be a sequence of F; such
that ui(z,) — y in Fi. Set y = 1¢(2,t). This means that

V(X — 2, —t) — 0
in Fi. Since the sequence (*) is strictly exact, there is a sequence s,, of Ey such that
(Tm — 2+ e(Sm), =t —uo($m)) — 0

in £y @ Fp. It follows that wg(s,,) — —t in Fy. Hence s, — s in Ey and ug(s) =
—t. Moreover, x, — x = z — e(s) in E;. Clearly, ui(z) = ¥(z,0) = ¢¥((2,t) +
]

(—e(s),up(s))) = y and the conclusion follows.
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Proposition 3.2.18. The canonical inclusion
I: Nvs— Sns

has a right adjoint
Sep : Sns — Nuws.

Moreover, Sep o I = idpsys.
Proof. We define Sep by setting
Sep(E) = E/N
where N = {x € E : pgp(x) = 0}. One checks easily that
Hom g, (E,I(F)) = Hom,, (E/N, F)
and the conclusion follows. O
Proposition 3.2.19. The functor
Sep : Sns — Nws
is strongly right exact and has a left derived functor
LSep : D*(Sns) — D*(Nwvs) x e {0,+,—.0b).

The functor
I: Nvs — Sns

is strictly exact and gives rise to a functor
I:D*(Sns) — D" (Nws) x € {0,+, —,b}.
Moreover, I and LSep define quasi-inverse equivalences of categories. In particular,
I: LH(Nvs) — LH(Sns)

is an equivalence of categories. (Note that the same result does not hold for

RH(Nwvs) and RH(Sns).)

Proof. Since any object of Sns is a quotient of an object of the form
Pbc
iel

and since objects of this form are clearly separated, one sees easily that Nvs forms
a Sep-projective subcategory of Sns. The conclusion follows. O
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Corollary 3.2.20. The functor
Sep : Sns — Sns
is left derivable and
LSep : D*(Sns) — D*(Sns) x e {0,+,—,b}

is isomorphic to the identity.

3.2.3 The category ¥V and topological sheaves
In this section, we fix two universes U and V such that U € V.

Proposition 3.2.21. The category
W = TIndy Snsy

is an elementary quasi-abelian category. It has a canonical closed structure extend-
ing that of Snsy. For any projective object P of Indy Snsy, the functor

P®-:Indy(Snsy) — Indy(Snsy)

is strongly exact and transforms a projective object into a projective object. In
particular,

EH(ITLdv(SnSU)) ~ Indv(ﬁH(SnsU))

is canonically a closed abelian category, the projective objects of which have similar
properties.

Proof. This is a direct consequence of Proposition 2.1.17, Proposition 2.1.19 and
Proposition 1.5.4. O

Corollary 3.2.22. Let P denote the full additive subcategory of Snsy formed by
semi-normed spaces of the form
Pbc

il

for some U-set I. Then, we have the canonical equivalence of categories
W = Add(P, Aby).

Proof. This follows from Proposition 2.1.14. O
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Definition 3.2.23. We denote 7 ¢ the category formed by locally convex topologi-
cal vector spaces and continuous linear maps. For any object E of 7 ¢, we denote by
Bg the ordered set formed by absolutely convex bounded susbsets. For any B € Bg,
we denote Ep the vector subspace of E generated by B endowed with the gauge
semi-norm associated to B.

Proposition 3.2.24. The functor
W :Tcy — W
defined by setting

W(E): hi)l’l “EB”
BeBg

is faithfull. Moreover, Hom,,,(W (E), W (F)) is formed by linear maps from E to F
which transform bounded subsets of E' into bounded subsets of F'. In particular,

Hom (W (E), W(F)) = Hom , (&, F')
if £ is bornological.
Proof. This follows directly from the formula

Hom,,,( lim “Eg”, lim “Fp”)~ lim lim Homg, (Eg, F).
BeBy B'eB' BeBy B'eB'p

L]

Remark 3.2.25. Let E be an object of 7¢y. Through the equivalence of Corol-
lary 3.2.22, W(E) corresponds to the functor

P — Hom, (P, E)

from P to Aby. Note also that

Hom ; (P C, E) ~ (o (I; E)
iel
where (o (I; E) denotes the space of bounded families of E which are indexed by 1.
Proposition 3.2.26. The functor
W :Tcy — W

preserves projective limits. Moreover, an algebraically exact sequence

0 —-F —FE—E —0



142 CHAPTER 3. APPLICATIONS

of FN (resp. DFN) spaces gives rise to the exact sequence
0— W(E)—W(E)— W(E") —0

of W.

Proof. This follows directly from the preceding remark combined with well-known
results of functional analysis. O

Remark 3.2.27. The preceding result show that a sheaf with values in 7 ¢y give
rise to a sheaf with values in WW. Note also that the categories of FN and DFN
spaces appear as full subcategories of WW. Since we may apply to the category W
all the results of the preceding chapter, the cohomological theory of W-sheaves is
well-behaved. Putting all these fact together make us feel that VV-sheaves form a
convenient class of topological sheaves for applications to algebraic analysis.
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