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Abstract

In this short paper, we study a few topological properties of the sheaf
of real analytic functions on a real analytic manifold M . In particular, we
show that its topological Poincaré-Verdier dual is the sheaf of hyperfunction
densities on M . We also prove that if N is a second real analytic manifold,
then the continuous cohomological correspondences between the sheaf of real
analytic functions on M and the sheaf of hyperfunctions on N are given by
integral transforms whose kernels are hyperfunction forms on M × N of a
suitable kind. This result may be viewed as a real analytic analogue of the
well-known kernels theorem of Schwartz.

Introduction

Let M be a real analytic manifold of dimension m and let X be a complexification

of M . Denote orM the orientation sheaf of M and OX the sheaf of holomorphic

functions on X. A classical pure codimensionality theorem due to M. Sato sates

that all the cohomology sheaves of the complex

orM ⊗RΓM(OX)

vanish except for the m-th one. This non-vanishing cohomology sheaf is then defined

to be the sheaf BM of hyperfunctions on M .

This approach is at first glance completely different from the one followed by

L. Schwartz to construct the sheaf of distributions on a smooth manifold. Recall

that, if M is a smooth manifold of dimension m, one defines the sheaf Db of distri-

butions on M by duality through the formula

Db(U) = L(Γc(U ; orM ⊗C
m
∞), C)

where Cm
∞) is the sheaf of smooth m-forms on M and U is any open subset of M .
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Of course, there are well-known ways to construct the sheaf of hyperfunctions

on M by means of duality formulas. However, these constructions are not very

functorial and rely on ad-hoc tricks.

In this paper, we will show that L. Schwartz approach works almost as is in

the real analytic framework provided that we work at the cohomological level in a

suitable category of topological sheaves.

More precisely, we will show that the topological Poincaré-Verdier dual of the

topological sheaf Vτ
M of real analytic densities on a real analytic manifold M is

isomorphic the topological sheaf Bτ
M of hyperfunctions; a result which entails that

RΓ(U ;Bτ
M) ' RL(RΓc(U ;Vτ

M), Cτ ).

This result will appear as an easy consequence of the results in [7]. Moreover,

the method followed in the proof will also allow us to recover easily Sato’s pure

codimensionality theorem.

The second result established in this paper is also a consequence of the results

in [7] and generalizes to a real analytic situation the kernels theorem of L. Schwartz.

A well-known result of sheaf theory adapted to the case of topological sheaves states

that for any topological sheaf F on M and any topological sheaf G on N , we have

RΓ(M ×N ; RL (p−1
M F, p!

NG)) ' RL(RΓc(M ; F ), RΓ(N ; G)).

Here, we will replace F by Aτ
M and G by Bτ

N and show that the corresponding kernel

sheaf

RL (p−1
M F, p!

NG).

is canonically isomorphic to

p−1
M V

τ
M ⊗̂p

−1

M
Aτ

M

Bτ
M×N .

In other words, we will show that continous cohomological correspondences between

the sheaf of real analytic functions on M and the sheaf of hyperfunctions on N are

given by integral transforms whose kernels are hyperfunction forms on M ×N of a

suitable kind.

The paper is divided in four sections.

The first two are of introductory nature and are devoted to short surveys on

topological sheaves and on topological properties of the sheaves of holomorphic

functions. In the third section we study the topological properties of the sheaves

of real analytic functions and hyperfunctions and we establish the duality theorem.

The last section deals with the kernels theorem.
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1 Topological sheaves

The naive point of view one can adopt if one wants to deal with topological sheaves

is to consider the category T c of locally convex topological vector spaces and to

work with the category

Shv(X; T c)

of sheaves on X with values in T c.

If one follows this approach, one encounters two main difficulties.

The first one is that the category T c is not abelian. Hence, we cannot use the

usual formalism to do homological algebra in T c. The category T c is however not

too far from an abelian one and we can deal with its homological algebra through

the theory of quasi-abelian categories developed in [8] (see [6]).

The second difficulty is more serious and is related to the fact that inductive

limits are not exact in T c. To work around it, we proposed in [7] to replace the

category T c with the category Ind(Ban) formed by the ind-objects of the category

of Banach spaces. As a matter of fact, it follows from [8] that most of the well-

known results of the cohomological theory of abelian sheaves hold for sheaves with

values in this category (Poincaré-Verdier duality included). Moreover, this category

is sufficiently related to T c so that we can use it to keep track of the topological

information carried by the sheaves we encounter in algebraic analysis.

As a help to the reader, and to fix the notations, let us briefly recall the main

facts concerning quasi-abelian sheaves and more specifically sheaves with values in

Ind(Ban).

The central notion is that of a quasi-abelian category (i.e. an additive category

with kernels and cokernels such that the push-forward (resp. the pull-back) of a

kernel (resp. a cokernel) is also a kernel (resp. a cokernel)). Let E be such a category.

A morphism of E is said to be strict if its coimage is canonically isomorphic to its

image. A complex

· · · −→ Xk−1 dk−1

−−→ Xk dk

−→ Xk+1 −→ · · ·

of E is said to be strictly exact in degree k if dk−1 is strict and Ker dk = Im dk−1.

Localizing the triangulated category K(E) of complexes “modulo homotopy” by the

null system formed by the complexes which are strictly exact in every degree gives

us the derived category D(E). This category has two canonical t-structures. Here,

we will only use the left one. Its heart LH(E) is formed by the complexes of the

form

0 −→ X−1 d−1

−−→ X0 −→ 0

where d−1 is a monomorphism. The cohomology functor

LHk : D(E) −→ LH(E)
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sends the complex X · to the complex

0 −→ Coim dk−1 −→ Ker dk −→ 0

with Ker dk in degree 0. In [8], it was shown that in most problems of homological

algebra we may replace the quasi-abelian category E by the abelian category LH(E)

without loosing any information. It was also shown there that if E is elementary

(i.e. if it has a small strictly generating set formed by tiny projective objects), then

the sheaves with values in E share most of the usual properties of sheaves of abelian

groups (including Poincaré-Verdier duality). If E has moreover a closed structure

given by an internal tensor product and an internal Hom functor satisfying some

natural assumptions, then Künneth theorem holds for sheaves with values in E .

One checks easily (see e.g. [4]) that the category Ban is quasi-abelian and that

for any set I, the space l1(I) (resp. l∞(I)) of summable (resp. bounded) sequences

of C indexed by I is projective (resp. injective) in Ban. Using these spaces, one

can prove that Ban has enough injective and projective objects. As is well-kown,

the category Ban has also a canonical structure of closed additive category. This

structure is given by a right exact tensor product

⊗̂ : Ban× Ban −→ Ban

and a left exact internal Hom

L : Banop × Ban −→ Ban.

Denoting ⊗̂
L

the left derived functor of ⊗̂ and RL the right derived functor of L ,

we have the adjunction formula

RHom(E ⊗̂
L

F, G) ' RHom(E, RL(F, G)).

Let U, V be two universes such that V 3 U. Denote BanU the category formed

by the Banach spaces which belong to U and consider the category

IndV(BanU)

of ind-objects of BanU. Recall that the objects of IndV(BanU) are functors

E : I −→ BanU

where I is a V-small filtering category and that if

E : I −→ BanU, F : J −→ BanU
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are two such functors, then

Hom IndV (BanU )(E, F ) = lim
←−
i∈I

lim
−→
j∈J

HomBanU
(E(i), F (j)).

For further details on ind-objects, we refer the reader to classical sources (such

as [1, 2]) and to [5]. Following the standard usage and to avoid confusions, we will

denote

“lim
−→

”
i∈I

E(i)

the functor E : I −→ BanU considered as an object of IndV(BanU). Similarly, we

denote “X” the ind-object associated to the U-Banach space X. In other words, we

set

“X” = “lim
−→

”
i∈I

C(i)

where I is a one point category and C : I −→ BanU is the constant functor with

value X.

Note that from a homological point of view the category IndU(BanU) is very close

to the category of qB-spaces introduced and studied by Waelbroeck (see [9]). This

category is however, a little bit different from the category IndV(BanU) considered

here.

In the rest of this paper, we will not make the universes U, V explicit in our

notations since this is not really necessary for a clear understanding. So we will

simply denote Ind(Ban) the category

IndV(BanU).

Thanks to a result in [8], we know that this category is an elementary closed

quasi-abelian category. It follows that sheaves with values in it share most of

the usual properties of abelian sheaves (including Künneth Theorem and Poincaré-

Verdier duality). We will call them topological sheaves.

In Ind(Ban), the internal tensor product

⊗̂ : Ind(Ban)× Ind(Ban) −→ Ind(Ban)

and the internal Hom functor

L : (Ind(Ban))op × Ind(Ban) −→ Ind(Ban)

are characterized by

(“lim
−→

”
i∈I

Ei) ⊗̂ (“lim
−→

”
j∈J

Fj) = lim
−→
i∈I

lim
−→
j∈J

“Ei ⊗̂Fj”
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and

L(“lim
−→

”
i∈I

Ei, “lim
−→

”
j∈J

Fj) = lim
←−
i∈I

lim
−→
j∈J

“L (Ei, Fj)”.

The internal tensor product (resp. internal Hom functor, external tensor prod-

uct) for sheaves with values in Ind(Ban) will be denoted by ⊗̂ (resp. L , �̂) and

we will use the classical notations for the other usual functors of sheaf theory. In

particular, Rf ! (resp. f !) will denote the direct (resp. inverse) image with proper

support.

To make a distinction between a classical sheaf of C-vector spaces and its topo-

logical analogue, we will append the superscript τ to the latter one. For example

Cτ
X will denote the constant topological sheaf sheaf with fiber “C” and

ωτ
X = a!

XC
τ
{pt} (aX : X −→ {pt})

will denote the dualizing complex for topological sheaves. Following our conventions,

the Poincaré-Verdier dualizing functor for topological sheaves is the functor

D(·) = RL (·, ωτ
X).

A link between the category T c and the category Ind(Ban) is given by the

functor IB : T c −→ Ind(Ban) defined by setting

IB(E) = “lim
−→

”
B∈BE

ÊB

where BE is the set of absolutely convex bounded subsets of E and EB the linear

hull of B. This functor was studied in [7]. Although it is not fully faithful, we have

Hom Ind(Ban)(IB(E), IB(F )) ' HomT c
(E, F )

and

IB(L
b
(E, F )) ' L(IB(E), IB(F )).

if E is bornological and F complete. Moreover, IB is compatible with projective

limits of filtering projective systems of complete spaces and with complete inductive

limits of injective inductive systems of Fréchet spaces indexed by N. It follows from

these properties that if X is a topological space with a countable basis and if F is

a presheaf of Fréchet spaces on X which is a sheaf of vector spaces, then

U 7→ IB(F (U)) (U open of X)

is a sheaf with values in Ind(Ban). This result allows us to associate topological

sheaves to many of the sheaves we encounter in algebraic analysis. This is in par-

ticular the case for the sheaf Ωp

X of holomorphic p-forms and for the sheaf C
(p,q)
∞,X of

smooth (p, q)-forms on a complex analytic manifold X.
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To end this section let us recall the two acyclicity results established in [7].

The first one is related to a result of Palamodov for T c (see [3]) and states that if

E is a DFN space and if F is a Fréchet space, then both LHk(RHom(IB(E), IB(F )))

and LHk(RL(IB(E), IB(F ))) are 0 for k 6= 0.

The second one states that if E and F are objects of Ind(Ban) with E nuclear,

then E ⊗̂
L

F ' E ⊗̂F .

2 Topological properties of OX

Let X be a complex analytic manifold and let OX be the sheaf of holomorphic

functions on X. As was explained in the preceding section, we can associate to OX

the topological sheaf

Oτ
X = IB(OX).

This sheaf was studied in [7]. Let us recall some of its properties.

2.1 Cartan’s Theorem B

Let X be a complex analytic manifold and let U be an open subset of X such that

Hk(U,OX) ' 0 (k 6= 0). Then, we have the canonical isomorphism

RΓ(U,Oτ
X) ' Γ(U,Oτ

X) ' IB(OX(U)).

It follows that, if X is a Stein manifold and K is a holomorphically convex compact

subset of X, then

RΓ(K,Oτ
X) ' Γ(K,Oτ

X) ' IB(OX(K)).

2.2 Holomorphic Künneth Theorem

Let X and Y be complex analytic manifolds. Then, we have the canonical isomor-

phism

Oτ
X�̂

L
Oτ

Y ' O
τ
X×Y .

Consequently, if A, B are subsets of X and Y , then

RΓc(A× B,Oτ
X×Y ) ' RΓc(A,Oτ

X) ⊗̂
L

RΓc(B;Oτ
Y ).

2.3 Holomorphic Poincaré duality

Let X be a complex analytic manifold of dimension dX and let Ωτ
X be the topological

sheaf associated to the sheaf ΩX of holomorphic forms of degree dX . Then, we have

the canonical isomorphism

D(Oτ
X) ' Ωτ

X [dX ].
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2.4 Holomorphic Schwartz’ kernels theorem

Let X, Y be complex analytic manifolds of dimension dX , dY and denote

Ω
(dX ,0)τ
X×Y

the topological sheaf associated to the sheaf of holomorphic forms of degree dX in

the X variables and 0 in the Y variables. Then, we have the canonical isomorphism

Ω
(dX ,0)τ
X×Y [dX ] ' RL (q−1

X O
τ
X , q!

YO
τ
Y ).

This isomorphism entails that

RΓ(X × Y ; Ω
(dX ,0)τ
X×Y [dX ]) ' RL(RΓc(X;Oτ

X), RΓ(Y ;Oτ
Y ))).

3 Topological properties of AM

Let M be a real analytic manifold of dimension m and let X be a Stein complexifi-

cation of M .

Definition 3.1. We denote Aτ
M the restriction to M of the topological sheaf Oτ

X .

Remark 3.2. The sheaf of C-vector spaces associated to Aτ
M is of course the sheaf

AM of real analytic functions on M , hence the notation. If K is a compact subset

of M , then

Γ(K;Aτ
M) ' Γ(K;Oτ

X)

is isomorphic to IB(OX(K)) where OX(K) is endowed with its classical DFN topol-

ogy. However, if U is an open subset, we do not know the relations between the

ind-Banach space

Γ(U ;Aτ
M)

and the locally convex topological vector spaces obtained by endowing AM(U) with

its various classical topologies.

Proposition 3.3.

(a) The topological Poincaré-Verdier dual

D(Aτ
M) = RL (Aτ

M ; ωτ
M)

is concentrated in degree 0.

(b) We have the canonical isomorphism

D(Aτ
M) ' RΓM(Ωτ

X)[m].
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Proof. (a) Let K be a compact subset of M and denote

iK : K −→M

the canonical inclusion. We have

i!KD(Aτ
M) ' D(i−1

K A
τ
M).

Hence,

RΓK(M ; D(Aτ
M)) ' RL(RΓ(K;Aτ

M), C).

Since

RΓ(K;Aτ
M) ' RΓ(K;Oτ

X)

and K is holomorphically convex in X, it follows from the results recalled in Sub-

section 2.1 that this complex is isomorphic to

IB(OX(K)).

Morover, the space OX(K) being DFN, the first acyclicity theorem recalled in Sec-

tion 1 shows that

RL(IB(OX(K)), C) ' IB(L
b
(OX(K), C)).

In particular,

RΓK(M ; D(Aτ
M))

is concentrated in degree 0.

Now, let U be a relatively compact open subset of X. Using the distinguished

triangle

RΓU̇(M ; D(Aτ
M)) −→ RΓU(M ; D(Aτ

M)) −→ RΓ(U ; D(Aτ
M))

+1
−→

we see that

RΓ(U ; D(Aτ
M))

is also concentrated in degree 0. The conclusion follows.

(b) Denote

iM : M −→ X

the canonical inclusion. We know (see Subsection 2.3) that

D(Oτ
X) ' Ωτ

X [m].

Therefore,

i!MΩτ
X [m] ' i!MD(Oτ

X) ' D(i−1
M O

τ
X) ' D(Aτ

M).
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Corollary 3.4. The complex

RΓM(Oτ
X)

is concentrated in degree m.

Proof. Since Ωτ
X is locally isomorphic to Oτ

X , this follows from the conjunction of

parts (a) and (b) of the preceding proposition.

Remark 3.5. Since the complex of sheaf of C-vector spaces associated to RΓM(Oτ
X)

is RΓM(OX), the preceding result contains Sato’s pure codimensionality theorem

which lies at the basis of the theory of hyperfunctions.

Definition 3.6. Recall that, according to Sato, the sheaf BM of hyperfunctions on

M is defined as

Hm(orM ⊗RΓM(OX))

where orM = Hm(ωM) is the orientation sheaf of M . So, it is natural to define the

topological version Bτ
M of BM as

LHm(orτ
M ⊗̂RΓM(Oτ

X))

where orτ
M = LHm(ωτ

M) is the topological orientation sheaf of M . We also define a

topological version Vτ
M of the sheaf VM of real analytic densities on M by setting

Vτ
M = orτ

M ⊗̂Ωτ
X|M

.

Proposition 3.7. We have the following canonical isomorphisms :

D(Aτ
M) ' Vτ

M ⊗̂Aτ

M

Bτ
M ;

D(Vτ
M) ' Bτ

M .

Proof. By part (b) of Proposition 3.3, we have

D(Aτ
M) = RΓM(Ωτ

X)[m].

Hence,

D(Aτ
M) ' Ωτ

X|M
⊗̂

Aτ

M

RΓM(Oτ
X)[m].

Using part (a) of Proposition 3.3 and the preceding definition, we have also

orτ
M ⊗̂RΓM(Oτ

X)[m] ' Bτ
M .

Since

orτ
M ⊗̂orτ

M ' C
τ
M ,

we get

D(Aτ
M) ' Ωτ

X|M
⊗̂ orτ

M ⊗̂B
τ
M ' V

τ
M ⊗̂ B

τ
M .

Since Vτ
M is locally isomorphic to Aτ

M , the second part of the result follows easily

from the first one.
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4 Continous correspondences between AM and BN

Proposition 4.1. Let M , N be real analytic manifolds of dimension m, n and let

pM : M ×N −→M and pN : M ×N −→ N

be the canonical projections. Then,

RL (p−1
M A

τ
M , p!

NB
τ
N) ' p−1

M V
τ
M ⊗̂p

−1

M
Aτ

M

Bτ
M×N .

Proof. Let X, Y be Stein complexifications of M and N and let

iM : M −→ X, iN : N −→ Y, iM×N : M ×N −→ X × Y

be the canonical inclusions. Denote

pX : X × Y −→ X, pY : X × Y −→ Y

the canonical projections. Using a few well-known functorial isomorphisms of sheaf

theory, we get

i!M×NRL (p−1
X O

τ
X , p!

YO
τ
Y ) ' RL (i−1

M×Np−1
X O

τ
X , i!M×Np!

YO
τ
Y )

' RL (p−1
M i−1

M O
τ
X , p!

N i!NO
τ
Y ).

We know that

orτ
N ⊗̂RΓN(Oτ

Y )[n] ' Bτ
N .

Therefore,

i!NO
τ
Y ' orτ

N ⊗̂B
τ
N [−n].

Hence,

i!M×NRL (p−1
X O

τ
X , p!

YO
τ
Y ) ' RL (p−1

M A
τ
M , p!

N(orτ
N ⊗̂B

τ
N [−n]))

' p−1
N orτ

N ⊗̂RL (p−1
M A

τ
M , p!

NB
τ
N )[−n] (*)

Using the results recalled in Subsection 2.3, we have

RL (p−1
X O

τ
X , p!

YO
τ
Y ) ' Ω

(m,0)τ
X×Y [m]

where the right hand term denotes the topological sheaf associated to the sheaf of

holomorphic forms of degree m in the X variables and 0 in the Y variables. From

the preceding isomorphism it follows that

i!M×NRL (p−1
X O

τ
X , p!

YO
τ
Y ) ' i!M×NΩ

(m,0)τ
X×Y [m]

' p−1
M Ωτ

X|M
⊗̂

p
−1

M
Aτ

M

orτ
M×N ⊗̂B

τ
M×N [−n].
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Since

orτ
M×N ' orτ

M �̂ orτ
N ,

we get

i!M×NRL (p−1
X O

τ
X , p!

YO
τ
Y ) ' p−1

N orτ
N ⊗̂p−1

M V
τ
M ⊗̂p

−1

M
Aτ

M

Bτ
M×N [−n].

Combining this isomorphism with (*) and using the fact that

orτ
N ⊗̂orτ

N ' C
τ
N ,

we get the isomorphism

RL (p−1
M A

τ
M , p!

NB
τ
N) ' p−1

M V
τ
M ⊗̂p−1

M
Aτ

M

Bτ
M×N .

Corollary 4.2. Let M , N be real analytic manifolds. Then,

RL(RΓc(M ;Aτ
M), RΓ(N ;Bτ

N)) ' RΓ(M ×N ; p−1
M V

τ
M ⊗̂p

−1

M
Aτ

M

Bτ
M×N)

and

RL(Aτ
M ,Bτ

M) ' RΓ∆(M ×M ; p−1
M V

τ
M ⊗̂p

−1

M
Aτ

M

Bτ
M×M)

where ∆ is the diagonal of M .

Proof. By well-known results of sheaf theory, for any topological sheaf F on M and

any topological sheaf G on N , we have

RΓ(M ×N ; RL (p−1
M F, p!

NG)) ' RL(RΓc(M ; F ), RΓ(N ; G))

and, if M = N , we also have

RΓ∆(M ×M ; RL (p−1
M F, p!

MF )) ' RL(F, F ).

By combining these isomorphisms with the preceding proposition, we get the con-

clusion.

Remark 4.3. The first isomorphism of the preceding corollary means in particular

that any continuous cohomological correspondence between Aτ
M and Bτ

N is realized

by an integral transform whose kernel is a section of

p−1
M VM ⊗p

−1

N
AM

BM×N .

This can be viewed as a real analytic version of the well-known kernels theorem of

Schwartz. As for the second isomorphism, it means in particular that continuous

local operators from Aτ
M to Bτ

M are represented by a hyperfunction kernel whose

support is in the diagonal ∆ of M .
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